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Abstract: Water, as an important part of ecosystems, is also an important topic in the field of remote
sensing. Shadows and dense vegetation negatively affect most traditional methods used to extract
water body information from remotely sensed images. As a result, extracting water body information
with high precision from a wide range of remote sensing images which contain complex ground-based
objects has proved difficult. In the present study, a method used for extracting water body information
from remote sensing imagery considers the greenness and wetness of ground-based objects. Ground
objects with varied water content and vegetation coverage have different characteristics in their
greenness and wetness components obtained by the Tasseled Cap transformation (TCT). Multispectral
information can be output as brightness, greenness, and wetness by Tasseled Cap transformation,
which is widely used in satellite remote sensing images. Hence, a model used to extract water body
information was constructed to weaken the influence of shadows and dense vegetation. Jiangsu and
Anhui provinces are located along the Yangtze River, China, and were selected as the research area.
The experiment used the wide-field-of-view (WFV) sensor onboard the Gaofen-1 satellite to acquire
remotely sensed photos. The results showed that the contours and spatial extent of the water bodies
extracted by the proposed method are highly consistent, and the influence of shadow and buildings
is minimized; the method has a high Kappa coefficient (0.89), overall accuracy (92.72%), and user
accuracy (88.04%). Thus, the method is useful in updating a geographical database of water bodies
and in water resource management.

Keywords: remote sensing imagery; water body extraction; Tasseled Cap transformation; WFV
onboard Gaofen-1; accuracy evaluation

1. Introduction

Water is an important resource for human survival and economic development [1–4].
Whether water is treated as an environmental factor, as a resource, or as a cause of flood
disasters, the monitoring and investigation of the nature of water bodies have great signifi-
cance in the use of natural resources; it is also important in land use planning, development
and protection of the environment, and in flood protection and mitigation [5–7]. Remote
sensing satellite observations can effectively overcome all kinds of the limitations that
may be encountered in ground mapping, with the graphics of the landscape recorded
numerically and processed by the computers [8–10]. Remote sensing satellite images cover
the entire Earth with high resolution, repeatable observation, and multispectral images,
which can accurately record rivers, lakes, coastlines, tidal conditions, as well as related
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ground information and allow researchers to determine the range of a water body quickly
and accurately; the cost of land-based surveys are saved while remotely sensed images
provide many economic and social benefits [11–14].

Since the 1970s, researchers have conducted a considerable amount of research on the
extraction of boundaries between water bodies and other ground-based objects [15–18].
From the earliest efforts in edge detection and threshold segmentation to the application of
deep learning, the methods for extracting water body information have been developing
over time with continuous progress [19–21]. The methods used to extract water body
information from remote sensing imagery can be divided into three categories: (i) the single
band threshold-band method, (ii) the spectrum photometric-based method, and (iii) the
water body index-based method [22–25]. (i) The single band threshold-based method is
an early commonly used method that uses a single band of a remote sensing image, the
reflectivity of water is significantly lower or higher than other features, and a water body can
be automatically extracted by setting the threshold [26–28]. The process of extracting water
bodies using the single band threshold-based method is relatively simple, and the effects of
extracting local water body information are clearly visible; nevertheless, dense vegetation,
mountain shadows, and the water body spectrum cannot always be correctly distinguished
while small water bodies cannot be extracted using this method [29–31]. (ii) The spectrum
photometric-based method extracts water bodies by searching for the difference between
the characteristics of the spectral curve of a water body and other features; this method can
extract water bodies as well as distinguish water bodies from shadows, making it suitable
for the extraction of water bodies in mountain plateaus [32–35]. For plains, this method can
extract the wider part of lakes, larger rivers, and smaller rivers, but a phenomenon known
as staggered buildings can create problems; however, a threshold can be used to judge the
conditions for the extraction of water bodies from small rivers and those of larger urban
areas [36–38]. In addition to buildings, this method is also affected by clouds. (iii) The
water body index-based method is performed by using normalized difference processing
of specific wavelengths of ground-based objects to highlight water body information in
remote sensing images [39–42]. The method is very precise, has wide applicability, is
simple to operate, and is currently the most widely used and developed method [43–45].
This method can effectively eliminate shadow pixels and improve the accuracy of shadow
extraction or of other dark surface areas; however, the reflective surfaces of urban areas,
such as ice, snow, and reflective roofs, may be accidentally classified as water.

Tasseled Cap transformation (TCT) is a special type of principal component trans-
formation, which combines complex factors into several components while introducing
multi-faceted variables, and it simplifies the problem and, at the same time, obtains more
scientifically sound and effective data information [46]. In this paper, we aim to provide
a detailed guide on how to develop an approach capable of providing estimates of wa-
ter body information from the wide-field-of-view (WFV) image of the Gaofen-1 satellite
with a wide range. This approach both considers the greenness and wetness of ground-
based objects obtained by TCT to weaken the influence of shadows and dense vegetation.
This paper is of great significance for updating basic geographic information and water
resources investigation.

2. Materials and Methods
2.1. Study Area

The study area is located at the intersection of Jiangsu and Anhui provinces, China,
which is a part of the Yangtze River Delta. The Yangtze River forms the Yangtze River
Delta, an alluvial plain, before entering the sea [47–49]. The delta covers parts of two
provinces, Zhejiang and Jiangsu, and the city of Shanghai [50,51]. This densely populated
low-lying plain also supports a well-developed area of agriculture; the plain is covered
by a dense river network, agricultural areas, and more than 200 lakes. The research area
includes a variety of terrain such as plains, lakes, and mountains with numerous urban
areas (Figure 1).
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Figure 1. Remotely sensed photo of the study area. An inset map shows the location of the study
area within the Anhui and Jiangsu provinces.

2.2. Data

In the study, the image of the covered study area was acquired on 31 December 2016
by the WFV camera onboard the Gaofen-1 satellite. Gaofen-1 (in the Chinese language, gao
fen means high resolution) is the first of a series of high-resolution optical Earth observation
satellites of the China National Space Administration, Beijing, China, which is configured
with two 2 m panchromatic/8 m resolution multispectral cameras and a set of four 16 m
resolution multispectral medium-resolution wide-field cameras [52]. The WFV sensor with
16 m spatial resolution consists of three visible light bands (0.45–0.52 µm, 0.52–0.59 µm,
0.63–0.69 µm) and a near-infrared band (0.77–0.89 µm) [53–55]. With the satellite’s four-day
repetition cycle, the combination of high temporal and spatial resolution is achieved; this
combination has played an important role in land and resources investigation and in the
dynamic monitoring of the environment and climate change as well as in supporting
precision agriculture and urban planning [56–58].

For the Gaofen-1 satellite data, no definite coefficient for TCT has yet to be developed;
however, by comparing the parameters of the WFV cameras sensor of Gaofen-1 with known
satellite sensors with Tasseled Cap transform coefficients, it was found that the WFV sensor
and the IKONOS satellite sensor have a similar number of bands and spectral range of
bands [59]. As the TCT conversion coefficient is fixed and determined by the band number
and band range of a sensor, the conversion coefficient of the IKONOS satellite was selected
in this paper (Table 1) [60,61].

It can be seen from Table 1 that (1) All band coefficients used to calculate the bright-
ness component are positive, each band makes a positive contribution to the brightness
component, and the contribution sequence is near-infrared band > red band > green band >
blue band. (2) The near-infrared band has a positive contribution to the greenness compo-
nent, while the other bands have a negative contribution, and the contribution sequence is
near-infrared band > green band > red band > blue band. (3) The red band has a positive
contribution to the wetness component, while the other bands have a negative contribution,
and the contribution sequence is red band > blue band > green band > near-infrared band.
(4) The green band has a positive contribution to the yellowness component, while the
other bands have a negative contribution, and the contribution sequence is green band >
blue band > red band > near-infrared band.
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Table 1. The weights of the Tasseled Cap transformation for the WFV sensor onboard the
Gaofen-1 satellite.

Blue Band Green Band Red Band Near-Infrared Band

Brightness component 0.326 0.509 0.560 0.567
Greenness component –0.311 –0.356 –0.325 0.819
Wetness component –0.612 –0.312 0.722 –0.081
Yellowness component –0.650 0.719 –0.243 –0.031

2.3. Method

Tasseled Cap transformation (TCT), also known as Kauth–Thomas transformation,
was first reported in 1976 by using maximum segment size data on the growth of crops and
vegetation; it consisted of four bands in the maximum segment size analysis [62–64]. In
the four-dimensional space, the spectral data points of vegetation are regularly distributed,
forming a hat-like shape; therefore, this transformation is named a Tasseled Cap transfor-
mation [65,66]. TCT has been widely used in many fields, such as crop type recognition [67],
crop growth monitoring [68], remote sensing ecological assessment [69,70], and monitoring
of land surface changes [71,72]. It also has important application value in forest type
classification [73], distinguishing forest density [74], and biomass inversion [75,76].

For satellite remote sensing imagery, a TCT can compress a multispectral image into
a sum of a set of components, each of which corresponds to a weighted index [66]. The
weighted index can reflect each pixel in the original multispectral image.

The TCT is as Equation (1) [62–64]:

y = cx + a (1)

where y is the component in multispectral space after the transformation, x corresponds to
the multispectral bands before the transformation, c is the transformation coefficient, which
is related to the sensor onboard a satellite, and a is a constant used to avoid negative values.

In this new spectral space after the TCT occurs, the first four components (brightness,
greenness, wetness, and yellowness components) are important. The brightness component
reflects the comprehensive effect of total reflectivity; the greenness component is related to
vegetation cover, leaf base cover index, and biomass; the wetness component reflects the
moisture condition of the ground-based objects, and the yellowness component indicates
the maturity of vegetation [49,77,78].

The size of the component index corresponding to each pixel can reflect the correlation
between its corresponding features and these components (Figure 2). Since different
features have different correlations with the four components, these pixels are based on the
component values in a 4-dimensional space. The distribution forms different settlements.
The pixels in each settlement correspond to the same kind of features, and the boundaries
are obvious. It is easy to find the difference between different objects and extract the
water information.

Tasseled Cap transformation uses principal component analysis, and its conversion
coefficient is fixed, which is determined by the number of frequency bands and spectral
range of frequency bands. Therefore, it is independent of individual images so that the
soil brightness and greenness can be compared between different images. Compared with
other ground-based objects, water bodies have unique characteristics in their greenness
and wetness components. Therefore, based on the characteristics of the TCT, a method for
extracting water body information from remote sensing imagery has been proposed for use
in processing remote sensing imagery; water body information can be extracted accurately
and the influence of shadows and dense vegetation can be weakened.
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Figure 2. Scatter plot of ground-based objects in the space of TCT.

The variation in water content and vegetation coverage of the ground-based objects
will cause water bodies to show unique characteristics in the feature space after TCT.
The overall workflow of the method for extracting water body information from remote
sensing imagery considering greenness and wetness can be divided into four steps: (a) pre-
processing, (b) TCT, (c) extraction of water body information, and (d) accuracy assessment
(Figure 3).
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Figure 3. Flowchart of the proposed method.

First, the original remote sensing image data were pre-processed with radiometric
calibration and atmospheric correction to eliminate the deviation caused by atmosphere
absorption and scattering of light. Second, the correlated remote sensing image information
was converted into uncorrelated linear information using TCT; four components were
obtained: brightness, greenness, wetness, and yellowness. Third, based on the greenness
and wetness components, the difference between the water body and other ground-based
objects (vegetation, man-made object, shadow) was analyzed and the model was con-
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structed to extract water body information. Finally, an accuracy assessment was carried
out by calculating the Kappa Coefficient, overall accuracy, and user accuracy.

3. Results
3.1. Water Body Information Extraction from Remote Sensing Imagery While Considering
Greenness and Wetness

The original remote sensing image was pre-processed with radiometric calibration
and atmospheric correction to eliminate most of the deviation caused by the atmosphere,
and Environment for Visualizing Images (ENVI) version 4.8 software has been used to
perform statistical and visual analyzes on satellite imagery. Then, a TCT was performed
to obtain the four components, brightness, greenness, wetness, and yellowness, using the
weights in Table 1. The results are shown in Figure 4.
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In the feature map (Figure 5), the water bodies show different distribution characteris-
tics from those of vegetation (including dry field), man-made features (including roads,
residential, and industrial land), and shadow (mainly mountain and building shadows).

As can be seen from Figures 4 and 5, the water bodies correspond to relatively high
and low values in the wetness and greenness components, respectively; vegetation has a
relatively high value in the greenness component; meanwhile, shadows and man-made
objects have more diverse reflectivity due to the variety of their species. By adding an
auxiliary line Iwetness = Igreenness to Figure 5, it is easy to see that the corresponding pixels of
water bodies are all located below the auxiliary line, and the vegetation and shadows are
all located above the line; therefore, the condition of “Iwetness > Igreenness” can easily be used
to divide the water bodies from the shadows and vegetation. However, some man-made
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objects still fall below the auxiliary line; one can see a clear gap exists between the greenness
component of these man-made objects and the greenness component of the water body.
Therefore, the thresholding condition “Igreenness < K” was set to distinguish the water bodies
from the man-made object.
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Equation (2) provides the formula for extracting water body information as follows:{
Iwetness > Igreenness
Igreenness < K

(2)

where Iwetness and Igreenness are the wetness and greenness components obtained by TCT,
respectively, and K is the empirical constant of the greenness component, usually 750.

The greenness and wetness components obtained from the TCT were used to extract
water body information with the support of Equation (1). The extraction results are shown
in Figure 6.
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By visually observing the difference between the extraction results and the original
remote sensing image, Figures 1 and 6 show that the extracted water body information is
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consistent with the visual results regardless of the size and contour of water bodies and can
effectively remove the shadows of mountains, buildings, and clouds. However, man-made
buildings cause some errors.

3.2. Accuracy Assessment

Accuracy assessment is an important part of information extraction from remote sens-
ing imagery, and using the confusion matrix to calculate the Kappa coefficient, overall accu-
racy (OA), and user accuracy (UA) is a common method for accuracy assessment [79–81].
The real boundary of the water bodies was obtained by visual interpretation from the
Gaofen-1 satellite image, and the Kappa coefficient, OA, and UA were calculated based
on visual interpretation and the extracted results. The water bodies were obtained by the
proposed method and the results were obtained by single band threshold-based method,
spectrum photometric-based method, normalized difference water index-based method
(NDWI-based method), water ratio index-based method (WRI-based method), and auto-
mated water extraction index-based method (AWEIsh-based method) which were com-
pared to perform a quantitative evaluation of the results [82–84], and the experiment was
carried out by ENVI 4.8 software.

Table 2 shows that the Kappa coefficient, OA, and UA of the proposed method are all
higher than those of the traditional methods. This indicates that the water body information
extracted using the proposed method is consistent with the visual interpretation results,
and the method considering the greenness and wetness of ground-based objects is reliable
and accurate.

Table 2. Quantitative evaluation of extracting water body information.

Method Formula Kappa
Coefficient OA (%) UA (%)

Single-band threshold-based method ρNIR < 0 0.77 86.63 80.28
Spectrum photometric-based method ρgreen + ρred > 2 × ρNIR 0.86 90.05 83.51
NDWI-based method (ρgreen − ρNIR)/(ρgreen + ρNIR) > 0 0.88 93.35 87.69
WRI-based method (ρgreen + ρred)/(2 × ρNIR) > 1 0.83 87.08 84.92
AWEIsh-based method (ρblue + 2.5 × ρgreen − 3.25 × ρNIR) > 0 0.78 80.34 78.59
The proposed method Iwetness > Igreenness and Igreenness < 750 0.91 97.02 90.81

Note: ρ is the reflectance of remote sensing imagery; red, green, NIR are red, green, and near-infrared bands,
respectively; Iwetness and Igreenness are wetness and greenness obtained by TCT, respectively.

4. Discussion

The components obtained by the TCT are associated with water content and vegetation
coverage of ground-based objects, which is helpful in extracting water body information
quickly and simply by using remote sensing images in a wide range. Following remote
sensing image pre-processing, TCT, and model construction considering greenness and
wetness, the water body information can be extracted accurately. Unfortunately, there
are some factors affecting the extraction accuracy of the water body information. First, a
pixel in the remote sensing image measures the combined reflectance of all ground objects
contained on the ground of the same size as the spatial resolution [4,28,49]. Therefore,
mixed pixels cause boundaries between land and water body to become vague and affect
the accurate statistics of the extracted water body information. Second, the threshold
values in the constructed model are obtained by the statistics of the sampling points
and are representative of the study area [3,10,49]. Therefore, the use of the model in
other regions may produce uncertainty errors. Third, the water surface can be shaded
by vegetation covering the bank zone, and then the surface morphology of extracted
water body information is affected [85–87]. Therefore, considering the characteristics
of smooth edges of banks, edge restoration of extracted water body information is also
worth discussing.
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5. Conclusions

The present study developed a method for extracting water body information from
remote sensing imagery by considering the greenness and wetness of ground-based ob-
jects using TCT. This was applied to reduce the influence caused by shadows and dense
vegetation to achieve simple, fast, and accurate extraction of water body information. The
experiment using the WFV sensor onboard the Gaofen-1 satellite was carried out along
the border between Jiangsu and Anhui of the Yangtze River Delta, China, to demonstrate
and validate this method. Based on the qualitative and quantitative evaluations, the pro-
posed method is accurate, and the validity and practicality of the proposed method have
been verified.

The proposed method has high precision and is simple to operate. However, some
weakness remained that has not been eliminated in this experiment. The influence of mixed
pixels caused the boundaries of water body information extracted from remote sensing
imagery to be inconsistent with the actual boundaries of water bodies in the real world. In
addition, using the coefficient of IKONOS to perform the TCT of data collected by the WFV
sensor onboard the Gaofen-1 satellite also leads to an uncertain effect in the extraction of
water body information. Therefore, developing a mixed pixel decomposition method that
can be used to extract the boundaries of water body information more accurately will need
to be a follow-up research study. Obtaining the coefficient of the WFV imagery acquired
using the Gaofen-1 satellite to reduce the uncertain influence of water body information
extraction is another direction that will need continuing efforts.
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