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Abstract: Land surface temperature (LST) is one of the most important parameters in urban thermal
environmental studies. Compared to natural surfaces, the surface of urban areas is more complex, and
the spatial variability of LST is higher. Therefore, it is important to obtain a high-spatial-resolution
LST for urban thermal environmental research. At present, downscaling studies are mostly performed
from a low spatial resolution directly to another high resolution, which often results in lower accuracy
with a larger scale span. First, a step-by-step random forest downscaling LST model (SSRFD) is
proposed in this study. In our work, the 900-m resolution Sentinel-3 LST was sequentially downscaled
to 450 m, 150 m and 30 m by SSRFD. Then, urban spatial morphological parameters were introduced
into SSRFD, abbreviated as SSRFD-M, to compensate for the deficiency of remote-sensing indices as
driving factors in urban downscaling LST. The results showed that the RMSE value of the SSRFD
results was reduced from 2.6 ◦C to 1.66 ◦C compared to the direct random forest downscaling model
(DRFD); the RMSE value of the SSRFD-M results in built-up areas, such as Gulou and Qinhuai
District, was reduced by approximately 0.5 ◦C. We also found that the underestimation of LST caused
by considering only remote-sensing indices in places such as flowerbeds and streets was improved in
the SSRFD-M results.

Keywords: step-by-step downscaling of LST; land surface temperature; urban spatial morphology

1. Introduction

As an important physical variable driving the energy exchange between the surface
and the atmosphere, the surface temperature (LST) is one of the key parameters for studying
the energy balance of the surface at global or regional scales. Currently, LST is widely used to
assess surface moisture and drought levels [1–4], calculate urban heat island intensity [5–7]
and simulate surface energy exchange [8–11]. In urban areas, the spatial and temporal
heterogeneity of urban surface temperature is obvious due to the extremely complex
surface, the strong differences in three-dimensional spatial geometry and the variety of
surface components and types. Therefore, studies of the urban thermal environment and
other urban-related research fields usually require LST data with a higher spatiotemporal
resolution.

The LST data obtained by thermal infrared remote-sensing technology generally have
the problem of conflicting spatial and temporal resolutions. For example, the Moderate
Resolution Imaging Spectroradiometer (MODIS) LST product has a high temporal resolu-
tion, but the spatial resolution is only 1000 m; Sentinel-3 operates through a binary orbit
with a temporal resolution of fewer than 0.9 days, but the spatial resolution of the LST
product is also 1000 m; the land surface temperature product retrieved from Landsat TIRS
has a spatial resolution of 100 m, but the revisit period is as long as 16 days. Together with
the influence of clouds, the available valid Landsat LST data are even further diminished.
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High-temporal-resolution data are difficult to generate for refined surface temperature
studies at an urban scale due to their low spatial resolution, while the high spatial resolution
LST data are unable to study the variation pattern of LST in time due to their low temporal
resolution. To solve the contradiction of spatial and temporal resolutions of remote-sensing
thermal data, scholars have proposed a large number of technical methods from various
perspectives, such as image processing and statistical regression, to obtain land surface
temperature data with high spatial and temporal resolutions.

The statistical regression method has gained wide application in LST downscaling
studies due to its low computational complexity and satisfactory downscaling results. The
application of this method has become relatively mature in suburban and mountainous ar-
eas with simple land covers at a large spatial scale [12,13]. However, there are two problems
that cannot be ignored when applying the statistical method to urban areas with complex
land surface types. Firstly, the larger the spatial resolution span of the downscaling, the
lower the accuracy tends to be. From the available thermal infrared remote-sensing data,
there are lots of LST products with a higher temporal resolution at about 1000-m spatial
resolution. When they are downscaled to the 100-m level or even the 10-m level, the spatial
resolution of the downscaled LST differs from the original resolution by a factor of 10 or
even 100, and the downscaled accuracy decreases as the spatial resolution increases. The
main reason for this problem is that the assumption of a “constant spatial scale relationship”
between LST and the driving factor does not hold when the resolution difference is large.
Secondly, the traditional two-dimensional remote-sensing spectral indices and surface
parameters are not sufficient to accurately describe the spatial pattern of an urban surface.
Currently, commonly used remote-sensing indices for downscaling models, such as the
normalized difference vegetation index (NDVI), normalized difference moisture index
(NDMI), normalized difference water index (NDWI) and normalized difference building
index (NDBI) [14] use surface parameters including the DEM, slope, slope direction, lati-
tude, longitude and surface cover type [15,16], as well as multispectral data [17] describing
the vegetation cover, moisture status and topographic relief of the land surface from the
two-dimensional perspective. In contrast, cities are dominated by buildings and imper-
vious pavements, but the influence of the three-dimensional morphological structure on
local land surface temperature is less considered. In fact, a large number of studies have
demonstrated that urban spatial morphological parameters such as the sky view factor
(SVF), frontal area index (FAI) and building density (BD) are closely related to LST [18–21],
meaning they need to be considered in downscaling models.

To address the above two problems, this study aimed to develop a step-by-step LST
downscaling method by further considering urban spatial morphological parameters to
obtain the urban land surface temperature at a spatial resolution of 30 m with high accuracy.
The paper takes the central urban area of Nanjing, Jiangsu Province, China as the study area,
and selects multi-source remote-sensing data, three-dimensional spatial distribution data
of urban buildings to downscale the Sentinel-3 LST with the spatial resolution of 1000 m
to the resolutions of 450, 150 and 30 m step-by-step using surface 2D and 3D parameters
as driving factors. The downscaling results are evaluated by Landsat TIRS LST at the
resolution of 30 m. Then, the influence of urban spatial morphological parameters on land
surface temperature downscaling is discussed. The step-by-step LST downscaling method
changes the traditional studies that directly downscale LST from a low spatial resolution to
a high one, selecting several spatial resolutions for the intermediate downscaling process.
The intermediate downscaling process is equivalent to supplementing the model with the
land surface information and reducing the difference in spatial resolution, thus ensuring
that the statistical regression model varies less with the spatial scale.

2. Research Review

A lot of research has been carried out on land surface temperature downscaling by
scholars around the world. The main methods used for LST downscaling can be divided into
two categories: image-based spatiotemporal fusion and kernel-driven downscaling methods.
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The image fusion method obtains a high spatial and temporal resolution land of surface
temperature by constructing a model to generate fused images, based on the combined
weight of spectral, temporal and spatial information, by selecting similar images in the
spatiotemporal neighborhood to be fused. Unlike the statistical downscaling method, the
image fusion method does not directly model the relationship between land surface temper-
ature and influencing parameters at low-spatial-resolution scales. Classical algorithms are as
follows. Weng et al. [22] improved the STARFM model to establish the relationship between
MODIS and TM radiometric brightness by linear spectral mixing analysis, and proposed a
spatiotemporal adaptive fusion algorithm (SADFAT) for land surface temperature downscal-
ing. Wu et al. [23] proposed a spatiotemporal integrated temperature fusion model (STITFM)
for estimating high-spatiotemporal-resolution LST from multi-scale polar and geostationary
orbiting satellite observations. The image fusion-based approaches assume that the radiative
brightness for similar pixels behaves consistently at any spatial resolution, while in practice,
the radiative brightness will inevitably vary in space and time. So, this approach generally
performs poorly in urban areas with high-spatial-heterogeneity characteristics.

Kernel-driven downscaling methods can be classified into physical models and sta-
tistical regression methods according to whether the model is physically meaningful or
not. Physical downscaling methods establish the relationship between LST and auxiliary
data by using the physical mechanism of a mixture pixel and the thermal radiation prin-
ciple. In this way, low-spatial-resolution pixels are decomposed to multiple subpixels to
obtain the high-spatial-resolution LST. For example, L.J and Moore [24] developed the
pixel block intensity modulation (PBIM) method to improve the spatial information in
the low-spatial-resolution thermal infrared band by using multispectral data with a high
spatial resolution. Nichol [25] proposed the emissivity modulation (EM) model to improve
the spatial resolution of thermal radiation by using land surface emissivity and land cover
data. Wang et al. [26] downscaled MODIS LST to a 30-m resolution based on the thermal
decomposition equation. However, the design of physical models is usually difficult and
the models are computationally complex and time-consuming.

The basic principle of a statistical regression method is to assume that the relationship
between land surface temperature and driving factors does not change with the spatial
scale. A statistical regression model is built using the low-spatial-resolution LST and the
drivers, after which the high-spatial-resolution drivers are added to the model to predict the
high-spatial-resolution LSTs. Up to now, the statistical regression method is the most widely
used method in LST spatial downscaling studies. Based on the number of driving factors,
statistical regression methods can be divided into single- and multi-factor models. For
example, Distrad models used NDVI as the driver [27], and the TsHARP model used vege-
tation cover instead of NDVI [28]. In addition, Anthony et al. [29] developed a high-resolution
urban thermal fusion (HUTS) technique to downscale Landsat TIRS to 30 m based on NDVI
and surface albedo. Lacerda et al. [30] used the TsHARP model to downscale the MODIS
LST to a high spatial resolution of 10 m. Vaculik et al. [31] downscaled the GOES-R LST
with the resolution of 2000 m to 30 m by establishing a linear relationship between NDVI
and LST. J.M. et al. [32] modified the TsHARP algorithm to downscale MODIS LST data
covering one Spanish farm. However, single-factor models are only applicable to a region
with high vegetation cover; they do not perform well in urban or arid areas, limited by the
predictor variables. Multi-factor models with multiple remote-sensing indices and land
surface parameters as driving factors were gradually proposed and applied. For example,
Liu et al. proposed the G_Distrad model by adding NDBI and NDWI to the traditional
Distrad model [14]. Pereira et al. [33] proposed a geographically weighted regression model
(GWRK) by using NDVI and multispectral data to downscale the ASTER thermal infrared
data for the natural regions and urban areas of Pantanal, Brazil. Considering the complex
nonlinear relationships between land surface temperature and various geophysical parame-
ters in urban areas [12,13], the three-layer structural (TLC) model [34], neural network [35],
support vector machines [6], random forests [36] and other multivariate nonlinear statistical
models have been continuously developed and applied to urban LST downscaling studies.
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Random forest models have been widely used in urban LST downscaling studies in recent
years because of their low model complexity, fast training speed and ability to effectively
avoid overfitting problems. Li et al. [36] compared three machine learning algorithms,
random forest (RF), support vector machine (SVM) and artificial neural network (ANN), to
the traditional TsHARP method in both urban and suburban areas of Beijing, and found
that the LST downscaling accuracy of the machine learning algorithm was higher than
that of the TsHARP algorithm. Wang et al. [37] compared the downscaling results from
a multiple linear regression model (MRL), TsHARP model and random forest (RF), and
found that the RF model is more suitable for heterogeneous surfaces such as urban areas.
Ebrahimy et al. [38] used an adaptive random forest regression method to downscale
MODIS LST over Iran to 30 m in the GEE platform. Njuk et al. [39] proposed an improved
downscaling method for low-resolution thermal data based on minimizing the spatial
mean bias of random forest, and the results demonstrated that the method reduces the
inherent mean bias in the LST downscaling process and is more suitable for LST down-
scaling applications in complex environments. Here, we comprehensively analyzed most
land surface temperature downscaling methods and built global models and assumed that
the statistical relationships were spatially invariant, however, global models may produce
large errors in local area applications. In recent years, many scholars have devoted their
work to using local models to capture the spatial non-stationary characteristics of land
surface variables, and then established the local relationships between LST and influencing
factors to improve the accuracy of LST downscaling [15].

3. Materials and Methods
3.1. Study Area

The central urban region of Nanjing, Jiangsu Province, China was chosen as the study
area because it contains a variety of underlying surface types such as buildings, vegetation
and water bodies, which helps to carry out land surface temperature downscaling studies of
complex ground cover types. Figure 1 presents a true-color image and building distribution
map of the study area at a spatial resolution of 10 m.
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The study area includes several urban administrative districts, including the Qixia,
Xuanwu, Gulou, Qinhuai and Jianye Districts, with an area of approximately 18 × 18 km2.
The study area is located in the central region of the lower Yangtze River, with geographic
coordinates between 31◦14′N and 32◦37′N and 118◦22′E and 119◦14”E. The total built-up
area is approximately 823 km2. Although the study area is near a hilly area, the topography
is flat, and there are many low hills and gentle hills. Nanjing has a humid subtropical
climate with four distinct seasons, abundant rainfall and significant temperature differences
between winter and summer. The average annual precipitation is 1106 mm, and the average
annual temperature is 15.4 ◦C. Nanjing had a population of 10,312,200 at the end of 2019,
with a resident population of 8.5 million, including 7.072 million in urban areas, and an
urbanization rate of 83.2%. Nanjing is one of the economic-center cities in China, with a
regional GDP of $1.6 billion in 2021.

3.2. Data

The Sentinel-3 LST product at a 1000-m spatial resolution for downscaling and Sentinel-2
multispectral image data were downloaded from the ESA website (https://scihub.copernicus.
eu/dhus/#/home, accessed on 14 May 2022). The Landsat LST product at a 30-m spatial
resolution for validation of downscaling results was downloaded from the USGS website
(https://earthexplorer.usgs.gov/, accessed on 30 December 2021). Sentinel-2 visible light
and shortwave infrared bands (B2–B4, B8, B11 and B12) were used to calculate normalized
remote-sensing spectral indices. Nanjing downtown building and wind data were used to
calculate urban spatial morphological parameters. Nanjing wind data from 2016 to 2020
were used to calculate the wind direction frequency, which were downloaded from the
China Air Quality Online Monitoring and Analysis Platform (https://www.aqistudy.cn/
historydata/, accessed on 14 May 2022). The details of all the data involved in this study
are presented as follows.

3.2.1. Landsat LST Product

Landsat LST products were generated by EROS based on a single-channel inversion
algorithm, by using the Landsat C2L1 thermal infrared band and other ancillary data [40,41].
Landsat LST products were resampled from 100 to 30 m for release to users by EROS using
the nearest-neighbor resampling method. The Landsat LST images used in this study were
imaged at 10:37 a.m. on 4 October 2021, with orbital row/column numbers 120/038 [42].

3.2.2. Sentinel-3 LST Product

The Sentinel series is an Earth observation satellite mission of the European Copernicus
program. Sentinel-3 carries a variety of payloads, such as OLCI (sea and land colorimeter)
and SLSTR (sea and land surface temperature radiometer), which are mainly used for
high-precision measurements of the sea surface topography, sea and surface temperatures,
ocean water color and soil properties [43]. Both 3A and 3B satellites in orbit have revisit
periods of less than one day for areas within 30◦ latitude of the equator. SLSTR has six
solar reflection bands (S1–S6) and four thermal infrared bands (S7–S9, F1, F2) with spatial
resolutions of 500 and 1000 m, respectively. The Sentinel-3 LST products are produced
by a split-window algorithm using three bands of S7–S9 and other auxiliary data, and
the products are accurate to 1 K. The LST product of Sentinel-3B SLSTR was selected for
this study, with an imaging time of 10:04 am on 4 October 2021. The Sentinel LST was
resampled to a spatial resolution of 900 m by using the bilinear interpolation method for
downscaling in this study to match the reference LST with a spatial resolution of 30 m.

3.2.3. Sentinel-2 Multispectral Data

Sentinel-2 is a multispectral high-resolution imaging satellite with two satellites in
orbit, 2A and 2B, with a revisit period of five days [44]. Each satellite carries a multispectral
imager (MSI), which can cover 13 spectral bands with ground resolutions of 10, 20 and
60 m and an amplitude of 290 km. The blue, green, red, and near-infrared bands needed for

https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
https://earthexplorer.usgs.gov/
https://www.aqistudy.cn/historydata/
https://www.aqistudy.cn/historydata/
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this study are the B2, B3, B4 and B8 bands of the Sentinel-2 satellite, each with a resolution
of 10 m. B11 and B12 are shortwave infrared bands with a resolution of 20 m, resampled to
10 m to match the visible bands.

3.2.4. Urban Building Data

The building data used in this study were provided by Urban Data Corps, obtained in
around 2012. Urban Data Corps is ranked in the top 10 in the big-data field according to the
2017 China Big Data Development Report published by the National Information Center of
China. Urban Data Corps can provide a variety of high-precision data for urban research.

The building vector data contain the polygon of the building distribution, building
floor data and building height data in a shapefile format with the WGS-84 coordinate
system. Comparing the urban building distribution data with satellite images in 2012,
we found that the building location and outline highly overlap with the satellite images,
and the building floor number is also very consistent with the field survey results, which
indicates the high accuracy of the building distribution data. The field survey found that
the ground cover types in most of the study areas, such as Gulou District and Qinhuai
District, did not change significantly between 2012 and 2021, except for Qixia District.
In this study, the building vector data in the shapefile format were firstly converted to
raster data in the TIF format with a spatial resolution of 10 m. After that, the urban spatial
morphological parameters were calculated based on the building raster data and other
auxiliary data using corresponding formulas.

3.3. Calculation of the Downscaling Driving Factor
3.3.1. Calculation of the Remote-Sensing Spectral Index

The L2A-level surface reflectance data from Sentinel-2B were selected for this study to
calculate remotely sensed spectral indices that are closely related to surface temperature,
including the modified normalized difference water index (MNDWI), normalized differ-
ence building index (NDBI), normalized difference built-up and soil index (NDBSI) [28],
normalized difference moisture index (NDMI), normalized difference vegetation index
(NDVI) and soil adjusted vegetation index (SAVI). The calculation process was performed
using SNAP 8.0, a professional piece of software for data-processing in the Sentinel series.
The calculation formula is shown in Table 1.

Table 1. Remote-sensing spectral indices required for downscaling and calculation formulas.

Var. Description Equations

MNDWI Improve the normalized difference water body index to highlight water
body information MNDWI = ρ3−ρ12

ρ3+ρ12

NDBI Normalize the difference building index to highlight building
information NDBI = ρ12−ρ8

ρ12+ρ8

NDBSI Indicate the degree of dryness of the ground surface [45]

IBI =
2×ρ11

(ρ11+ρ8)−
(

ρ8
(ρ8+ρ4)+

ρ3
ρ3+ρ11

)
2×ρ11

(ρ11+ρ8)+
(

ρ8
(ρ8+ρ4)+

ρ3
ρ3+ρ11

)
SI = (ρ11+ρ4)−(ρ8+ρ2)

(ρ11+ρ4)+(ρ8+ρ2)

NDBSI = IBI+SI
2

NDMI Indicate the vegetation moisture NDMI = ρ8−ρ11
ρ8+ρ11

NDVI Highlight vegetation information NDVI = ρ8−ρ4
ρ8+ρ4

SAVI Reduce the sensitivity of vegetation indices to changes in reflectance of
different soils

SAVI = ρ8−ρ4
ρ8+ρ4+L × (1 + L)
L = 0.5

Notes: ρ1–ρ12 denote the surface reflectance of Sentinel-2 bands 1–12.

3.3.2. Calculation of Urban Spatial Morphological Parameters

The building vector data of Nanjing were converted to raster data with a 10-m resolu-
tion to calculate urban spatial morphological parameters including the building density
(BD), frontal area density (FAD), floor area ratio (FAR), mean height (MH) and sky view
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factor (SVF). The SVF was calculated by the raster algorithm. The influence of buildings
within a radius of 100 m was considered when calculating the SVF of each pixel. FAD was
calculated using the building raster data and the wind direction frequency data by a self-
developed raster algorithm with a plot area of 100 × 100 m2. Other spatial morphological
parameters, such as BD, FAR and MH, were calculated using 10-m building raster data and
the corresponding equations in Table 2 with a plot area of 100 × 100 m2.

Table 2. Urban spatial morphological parameters required for LST downscaling.

Var. Description Equations

BD Building Density BD = ∑n
i=1 Ai
AT

Ai indicates the ith building area and AT indicates the calculated plot area

FAD Frontal Area Density

λ f (z) =
n
∑

i=1

A(θ)proj(z)
AT

× Pθ,i

λf(z) indicatestheweightedfrontalareadensity(FAD);
A(θ)proj(z) indicates the projected area at a certain height z

in the wind direction θ, Pθ,i indicates the frequency of the wind direction θ,
i = 1,. . . , 16

FAR Floor Area Ratio FAR = ∑n
i=1 Fi×Ai

AT
FiindicatestheithbuildingfloornumberandAiindicates the ith building area

MH Mean Height MH = ∑n
i=1 Hi

n
Hi indicates the ith building height and n indicates the number of buildings

SVF Sky View Factor

Ψsky = 1−
360/α

∑
i=1

sin2β× (α/360)

β = tan−1(H/X)
ψsky indicates SVF, β indicates the building height angle, H indicates the building

height, X indicates the calculated radius and is set to 100 m in this study

Note: Except for SVF, the plot area AT calculated by all other parameters takes the value of 100 × 100 m.

3.4. Downscaling LST Method Based on Random Forest

The core idea of surface temperature downscaling is the invariance of the relationship
between LST and driving factors at different spatial resolutions so that the statistical
relationship between LST and the regression kernel at a low resolution can be applied to
a high spatial resolution to complete the downscaling process. The specific formulas are
as follows:

T′c = f (varc) (1)

∆T = Tc − T′c (2)

T′f = f
(

var f

)
+ ∆T (3)

where varc denotes the low-resolution explanatory variable, varf denotes the high-resolution
explanatory variable, Tc denotes the low-resolution LST, Tc’ denotes the predicted low-
resolution LST, ∆T denotes the simulation residual and Tf’ denotes the predicted high-
resolution LST.

This study used the random forest algorithm to construct the LST downscaling model.
Random forest is an integrated decision tree-based learning algorithm proposed by Breiman
in 2001 as a supervised learning algorithm [32]. The algorithm uses the bootstrap resam-
pling method to randomly select samples from the training sample set. The extracted
bootstrap samples are trained separately for each decision tree, and an algorithm for ran-
domly selecting a subset of features is introduced in the process of splitting the nodes of
the decision tree. The prediction results of each decision tree are counted and voted on
to obtain the final prediction results of the input data. The random forest algorithm has
stronger noise immunity than other algorithms because of the introduction of randomly
selected training samples and randomly selected feature subsets that make the correlation
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among each decision tree smaller. The random forest algorithm is better at handling non-
linear problems than traditional statistical regression algorithms. As long as the number of
decision trees is sufficient, the random forest algorithm can effectively avoid the overfitting
problem, and the training speed is faster. The random forest algorithm can examine the
interaction between features during the training process and output the feature importance,
which is a reference for analyzing the degree of influence of features. In this study, the
experimental dataset was divided into training and validation datasets according to the
ratio of 8:2. The main parameters that need to be set manually to build a random forest
downscaling model using the Pycharm platform include the number of decision trees
(n_estimators) and the maximum number of features (max_features). n_estimators refers to
the number of decision trees built in the random forest, which was set to 700 after testing in
this study. max_feature refers to the maximum number of features selected when building
each decision tree, which was set to log(n_estimators) in this study. Other parameters were
set to default values.

3.5. Step-By-Step Random Forest Downscaling Method (SSRFD)

When the spatial resolution spans a larger range, the downscaling results cannot
accurately characterize the spatial distribution of LST, which tends to underestimate the
surface temperature in building areas and overestimate it for water bodies and vegetated
areas. This study proposed a step-by-step downscaling LST method based on the random
forest model (SSRFD), which achieves a significant increase in the spatial resolution of
LST without excessive loss of accuracy through multiple, small-scale spatial resolution
downscaling processes. During the SSRFD model’s work, each intermediate downscaling
adds additional and finer surface information to the model. In this way, models are trained
to accurately express the relationship between land surface temperature and driving factors.

In this study, the direct random forest downscaling (DRFD) method was performed to
directly downscale 900-m Sentinel-3 LST to a 30-m resolution, and then two downscaling
methods were conducted using the proposed SSRFD method. The first method, named
SSRFD, downscaled the 900-m Sentinel-3 LST to 30 m after 450 m and 150 m sequentially,
where the SSRFD was driven by the six remote-sensing indices mentioned above. The sec-
ond method, named SSRFD-M, downscaled 900-m Sentinel-3 LST to 30 m by the same
process through SSRFD, where five additional urban spatial morphological parameters
were added as the SSRFD driver factors. After that, LST downscaling results of DRFD,
SSRFD and SSRFD-M were compared at a 30-m spatial resolution, which were all evalu-
ated by using the 30-m Landsat-8 LST as the reference. Moreover, the influence of urban
spatial morphological parameters on LST was analyzed based on SSRFD-M at a 30-m
spatial resolution.

3.6. Accuracy Evaluation Methods

Pearson’s correlation coefficient (r), the mean absolute error (MAE) and root mean
square error (RMSE) were used to comprehensively evaluate the downscaling results.
Meanwhile, the maximum/minimum, mean (Mean) and standard deviation (SD) were
calculated to evaluate the spatial variability characteristics of LST images before and after
downscaling. The SD can reflect the spatial variability of thermal features.

4. Results
4.1. Comparison of the Results Obtained with SSRFD and DRFD

To reduce data differences caused by different sensors and LST inversion algorithms
and increase the comparability and verifiability between Landsat-8 and Sentinel-3 LST
products, a simple linear correction was applied to Sentinel-3 LST before the downscaling
work. After performing the linearity correction, the maximum, minimum and mean values
of Sentinel-3 LST changed from 38.80, 27.57 and 35.18 ◦C to 41.25, 30.84 and 37.90 ◦C,
respectively, which were closer to Landsat LST in the range of values. The RMSE of the
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two LST products changed from 3.22 to 1.59 ◦C, indicating that the systematic differences
between Sentinel-3 LST and Landsat LST were reduced to some extent.

Comparative plots of the downscaling results are given in Figure 2, where the 900-m
Sentinel-3 LST was downscaled to 30 m using the DRFD method and SSRFD method. Com-
paring Figure 2b,c with Figure 2a, both results captured finer spatial discrepancy character-
istics and texture features, and the resulting LST distribution is basically consistent with
Landsat LST. However, according to Figure 2b, there are large areas of high-temperature
regions in the study area. The results obtained with DRFD as a whole are significantly
overestimated. For example, the regions along the northwestern coast of the Yangtze
River, Xuanwu Lake and Zijinshan Mountain show obvious temperature overestimation
errors. The difference characteristics between the high-temperature region and the sub-high-
temperature region are less clearly expressed than Landsat LST in Figure 2a. In contrast to
Figure 2b, the results obtained with SSRFD (Figure 2c) captured the spatial distribution
differences and textural characteristics more accurately. The distribution characteristics of
both the building high-temperature zone and the water and vegetation low-temperature
zone are in good agreement with Figure 2a. Overall, the results obtained with DRFD show
an overall underestimation of the high-temperature region and an overestimation of the
low-temperature region, which cannot accurately depict the spatial distribution pattern of
LST in the study area.
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The statistics (Table 3) show that the results from DRFD, with an SD of 2.64, are 0.82
lower than Landsat LST, but their mean value is 1.41 ◦C higher than Landsat LST. This is
consistent with the performance of the DRFD results in Figure 2b, which further illustrates
the overall high surface temperature predicted by DRFD. In comparison, the maximum,
mean and SD of the results from SSRFD are 50.76, 36.78 and 3.73 ◦C, respectively, which
only differ from the corresponding index of Landsat LST by approximately 0.3 ◦C. In
summary, the downscaling results of SSRFD are more accurate, which is also demonstrated
in Figure 3.

Table 3. Statistical values of LST downscaled from DRFD, SSRFD methods and Landsat reference
LST data at a 30-m resolution.

Statistical
Variables Reference LST/◦C DRFD LST/◦C SSRFD LST/◦C

Maximum 51.06 42.80 50.76
Minimum 13.94 28.95 24.36

Mean 36.50 37.91 36.78
Standard deviation 3.46 2.64 3.73
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Figure 3. Histogram of downscaled LST and Landsat LST at 30-m resolution (black cubes refer to
Landsat LST, red circles refer to downscaled LST obtained by the SSRFD method, blue triangles refer
to downscaled LST obtained by the DRFD method).

According to Figure 3, The histogram curves of SSRFD results fit better with that of the
Landsat LST, as they both have clear “peak” values between 27.5–29 and 37–39 ◦C, which
indicates that the SSRFD results are reasonable overall. The DRFD results differ significantly
from the Landsat LST in terms of histogram shape characteristics, data distribution interval
and data value range, e.g., the “peaks” of the results from DRFD are distributed between
40 and 41 ◦C. Overall, Figure 3 shows that the dense temperature interval of the image
element distribution of DRFD is higher than that of SSRFD LST and Landsat LST.

Furthermore, the corresponding scatterplots of the two downscaling results from
SSRFD and DRFD with Landsat LST are given in Figure 4a,b, respectively. According to
Figure 4, the correlation r value between the DRFD results and Landsat LST is 0.6, while
the SSRFD results improve this to 0.81. The MAE and RMSE values of the DRFD results are
2 and 2.6 ◦C, respectively, while the SSRFD results decrease to 1 and 1.66 ◦C, respectively.
This indicates that using the SSRFD method can obtain a higher-accuracy LST than the
DRFD method when the spatial resolution spans a large range.
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4.2. Influence of Urban Spatial Morphological Parameters on Downscaling LST
4.2.1. Analysis of the Overall Downscaling Results in the Study Area

To evaluate the influence of urban spatial morphological parameters on LST down-
scaling, the five spatial morphological parameters calculated in Table 2 were introduced
into the driving factors of SSRFD to downscale Sentinel-3 LST from a spatial resolution of
900 to 30 m. The downscaling results were also validated by Landsat LST.

Figure 5a,b shows the correlation plots of Landsat LST with the results from SSRFD
and SSRFD-M, respectively, at a 30-m spatial resolution, where r improves from 0.81 to 0.85
and RMSE decreases from 1.66 to 1.44 ◦C after adding the spatial morphological parameters.
The statistical histograms of Landsat LST and downscaling results are given in Figure 6.
Compared to the SSRFD result, SSRFD-M is more matched with Landsat LST in distribution
shape, especially between 35 and 40 ◦C where buildings and concrete pavements are mainly
distributed. Otherwise, the features with temperatures between 28 and 35 ◦C are mainly
vegetation and water bodies. The curves of the two downscaling results in this interval
are higher than Landsat LST, indicating that there may be some LST overestimation in
downscaling results for vegetation and water body areas. Combined with the analysis of
Figure 5, we conclude that the SSRFD-M model performs better than SSRFD, especially for
dense building areas.

Figure 5. Scatterplots of the correlation analysis between downscaled LST and Landsat LST on the
overall region at a 30-m resolution. (a) SSRFD result. (b) SSRFD-M result.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 6. Histogram of downscaled LST and Landsat LST at a 30-m resolution (black cubes refer to 
Landsat LST, red circles refer to the SSRFD results and blue triangles refer to the SSRFD-M results). 

4.2.2. Analysis of Regional Downscaling Results in the Study Area 
In Section 4.2.1, we found that the spatial morphological parameters have some fa-

vorable effects on the LST downscaling, especially for building areas. However, we re-
mained unaware of how the urban spatial morphological parameters affect the LST 
downscaling results for different locations within the study. In this section, we intend to 
discuss the downscaling results for five subregions at a 30-m resolution to further analyze 
the role of urban spatial morphological parameters in the downscaling process. The dis-
tribution of correlations between the downscaling results and Landsat LST for five sub-
districts, Qixia, Gulou, Xuanwu, Qinhuai and Jianye, are given in Figure 7. The influence 
of urban spatial morphological features on LST downscaling can be further verified be-
cause of the complexity of the urban ground cover types considered. 

Figure 7a–c shows that the r value of the SSRFD-M downscaling results for the Gulou, 
Qinhuai and Jianye Districts improves from 0.44, 0.51 and 0.34 to 0.61, 0.68 and 0.45, re-
spectively, while the RMSE value decreases from 1.73, 1.69 and 1.81 °C to 1.22, 1.21 and 
1.41 °C, respectively. According to the statistical analysis of different areas, all three areas 
are located in a dense area of middle-rise buildings [33], where buildings and impervious 
surfaces dominate and the vegetation distribution is relatively low and sparse. Therefore, 
the LST distribution is closely related to the spatial morphological characteristics of build-
ings. These figures all exhibit that the downscaling results of SSRFD underestimated the 
LST for some regions between 35 and 40 °C. According to Figure 7d, r and RMSE values 
changed from 0.78 and 1.30 °C to 0.83 and 1.14 °C before and after considering spatial 
morphological parameters in Xuanwu District, respectively, with a slightly smaller im-
provement in accuracy relative to the Gulou and Qinhuai Districts. Statistically, among 
the Xuanwu District covered by the study area, non-built-up areas such as Zhong Shan 
Scenic Area and Xuanwu Lake account for approximately 50% of the district. Therefore, 
the inclusion of spatial morphological parameters has less influence on the downscaling 
results of these areas. If the downscaling results of building areas in Xuanwu District are 
counted separately, the RMSE of SSRFD-M decreases from 1.96 to 1.17 °C compared to the 

Figure 6. Histogram of downscaled LST and Landsat LST at a 30-m resolution (black cubes refer to
Landsat LST, red circles refer to the SSRFD results and blue triangles refer to the SSRFD-M results).



Remote Sens. 2022, 14, 3038 12 of 18

4.2.2. Analysis of Regional Downscaling Results in the Study Area

In Section 4.2.1, we found that the spatial morphological parameters have some
favorable effects on the LST downscaling, especially for building areas. However, we
remained unaware of how the urban spatial morphological parameters affect the LST
downscaling results for different locations within the study. In this section, we intend
to discuss the downscaling results for five subregions at a 30-m resolution to further
analyze the role of urban spatial morphological parameters in the downscaling process.
The distribution of correlations between the downscaling results and Landsat LST for
five subdistricts, Qixia, Gulou, Xuanwu, Qinhuai and Jianye, are given in Figure 7. The
influence of urban spatial morphological features on LST downscaling can be further
verified because of the complexity of the urban ground cover types considered.
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Figure 7a–c shows that the r value of the SSRFD-M downscaling results for the Gulou,
Qinhuai and Jianye Districts improves from 0.44, 0.51 and 0.34 to 0.61, 0.68 and 0.45, re-
spectively, while the RMSE value decreases from 1.73, 1.69 and 1.81 ◦C to 1.22, 1.21 and
1.41 ◦C, respectively. According to the statistical analysis of different areas, all three areas
are located in a dense area of middle-rise buildings [33], where buildings and impervious
surfaces dominate and the vegetation distribution is relatively low and sparse. There-
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fore, the LST distribution is closely related to the spatial morphological characteristics of
buildings. These figures all exhibit that the downscaling results of SSRFD underestimated
the LST for some regions between 35 and 40 ◦C. According to Figure 7d, r and RMSE
values changed from 0.78 and 1.30 ◦C to 0.83 and 1.14 ◦C before and after considering
spatial morphological parameters in Xuanwu District, respectively, with a slightly smaller
improvement in accuracy relative to the Gulou and Qinhuai Districts. Statistically, among
the Xuanwu District covered by the study area, non-built-up areas such as Zhong Shan
Scenic Area and Xuanwu Lake account for approximately 50% of the district. Therefore,
the inclusion of spatial morphological parameters has less influence on the downscaling
results of these areas. If the downscaling results of building areas in Xuanwu District are
counted separately, the RMSE of SSRFD-M decreases from 1.96 to 1.17 ◦C compared to
the SSRFD results, which proves that SSRFD-M can effectively improve the downscaling
effect in dense building areas. Figure 7e indicates that the SSRFD-M results for Qixia
only improved/decreased r and RMSE values by 0.02/0.06 ◦C, respectively, compared to
SSRFD. The reason for this is mainly the difference in years between Sentinel-3 LST data
and building data. The type of land surface cover in some regions of Qixia has changed
significantly. For example, the eastern side of Ningluo Expressway and the northern side of
Qixia Avenue have changed from natural surfaces to building and road types. The building
data used cannot accurately express the spatial morphological characteristics of these areas
and cannot effectively improve the accuracy of LST downscaling. In addition, we found
that a spatial resolution of 30 m may not be sufficient to show the surface temperature
distribution pattern inside complex building areas.

We further selected five building-dense areas near the western side of Xuanwu Lake,
Xinjiekou, Nanjing Museum, Nanjing Forestry University and the Olympic Sports Center,
for downscaling results comparison, as shown by A, B, C, D and E in Figure 8a, respectively.
A comparative analysis of the downscaling results with and without including spatial
morphological parameters was carried out, and the results are shown in Figure 8b. When
comparing the local downscaling results of SSRFD with SSRFD-M, it can be found that
the regional LST of the vegetation-covered regions in the built-up area changed after
considering the spatial morphological parameters. According to the SSRFD results of
A1–E1, vegetation-covered areas near buildings, such as streets planted with trees and
flowerbeds, showed a clear low-temperature zone (approximately 30–33 ◦C), which was 5–8
◦C lower than the surface temperature of nearby building areas (approximately 35–40 ◦C).
In contrast, the temperature in the corresponding regions illustrated by A2–E2 was only
approximately 3–5 ◦C lower than that of the nearby buildings. No obvious low-temperature
regions appeared in A2–E2, which were more consistent with the Landsat LST. Therefore,
this study infers that the underestimation of LST generated by the SSRFD using only
remote-sensing spectral indices was partially eliminated in SSRFD-M.

4.3. Parameter Importance Analysis of LST Downscaling

The importance of each driver at 90-, 450-, 150- and 30-m resolutions calculated by
the random forest model is shown in Figure 9. According to Figure 9a, the NDBI has the
highest importance at a 900-m resolution without spatial morphological parameters, which
indicates that the NDBI is significantly correlated with LST in urban areas. With the
increase in spatial resolution, the importance of the NDBI tends to decrease, and it drops
to the lowest value (25%) at a 30-m resolution. Vegetation moisture is an important factor
affecting LST in urban areas at any spatial resolution because the importance of the NDMI
is maintained at 28–30% as the spatial resolution changes. The importance of the MNDWI
increases from 11 to 15%, and the NDVI increases from 8% to 11%, which indicates that the
contribution of water bodies and vegetation to LST increases as the resolution increases.
The reason could be that some smaller lakes, green areas and narrow rivers are identified
at a high spatial resolution. Figure 9b shows that the overall importance of the remote-
sensing index did not change significantly in the SSRFD. Among the spatial morphological
parameters, the importance of BD, FAD, FAR and MH decreased with increasing spatial
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resolution, while the SVF increased from approximately 3% to approximately 6%. The
reason for this is that the regional spatial morphological parameters, such as BD, FAD
and FAR, calculated by a single size (100 × 100 m), cannot represent finer architectural
information. Therefore, the regional spatial morphological parameters are less relevant to
LST as the resolution increases. As shown in Figure 9a,b, compared to other remote-sensing
indices (all variations were in a range of 1–3%), there was a significant decrease in the
importance of the NDBI at lower resolutions of 900 and 450 m, from 30 and 29% in Figure 9a
to 22 and 23% in Figure 9b, respectively. The spatial morphological parameters at a low
resolution to some extent compensated for the deficiency of the NDBI in the description of
the spatial morphological features of buildings.
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Figure 8. Spatial distribution of the downscaled LST at the resolution of 30 m in five localities of the
study area (in b, A1–E1 refer to the downscaled LST from SSRFD, and A2–E2 refer to the downscaled
LST from SSRFD-M). (a) Landsat LST. (b) the downscaled LST for representative 5 local area.

Figure 9. Importance of each driver at spatial resolutions of 900, 450, 150 and 30 m. (a) No spatial
morphological parameters added. (b) Spatial morphological parameters added.

5. Discussion

With respect to the scale effect of the land surface temperature downscaling model,
Pu et al. [46,47] concluded that the “constant scale relationship” between LST and driving
factors does not hold under certain conditions. Comparing Figure 2a with Figure 2b for
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the main urban area of Nanjing, when the spatial resolution spans 30 times, the direct
downscaling results cannot accurately represent the spatial distribution of land surface
temperature, and the root mean square error of the traditional DRFD model is 2.6 ◦C
(Figure 4a). This is similar to LST downscaling results in different regions such as that
covered by Njuki et al. [39] in Kenya, Valdes et al. [13] in an arid Antarctic river valley,
Zhu et al. [15] in Beijing and Ebrahimy et al. [38] in Iran. When the Sentinel-3 LST was
downscaled to 450, 300, 150 and 30 m using the DRFD method, respectively, the research
process revealed a phenomenon where r gradually decreases while RMSE increases as the
spatial resolution span increases step-by-step, which is consistent with Zhu et al. (2020) [14]
and Cao (2020) [48]. Using the step-by-step downscaling model (SSRFD), the root mean
square error of the LST downscaling for the whole study area decreases to 1.66 ◦C, and
the accuracy improves by about 1 ◦C (Figure 4b). Tang et al. [16] conducted a second
downscaling procedure using the LST spatial features extracted from the initial downscaling
results and obtained a higher accuracy of downscaling result, similar to the results of this
study. The step-by-step downscaling method reduces the spatial resolution difference
before and after downscaling by adding an intermediate LST downscaling process between
low (e.g., 1 km) and high resolutions (e.g., 30 m), from which we can approximate that the
statistical downscaling model does not change with smaller scales. The SSRFD can obtain
a higher accuracy for LST downscaling and is more suitable for downscaling studies in
urban areas with complex surface coverage and high-LST spatial heterogeneity. However,
900 m was used as the initial resolution in the study, and the step-by-step downscaling of
resolution was performed subjectively by integer multiples of 2, 3 and 5. To obtain better
LST downscaling results, further studies may be needed to determine the optimal spatial
resolution change during stepwise downscaling.

In recent years, due to the continuous development of spatial data-acquisition technol-
ogy, urban 3D spatial distribution data are becoming more and more refined and can be
better used to calculate various urban spatial morphological parameters at different scales.
There are more and more studies selecting urban morphological parameters to analyze the
urban thermal environment. For example, Middel et al. [19] validated the effects of urban
morphology and landscape type on local microclimate zones in the semi-arid region of
Phoenix, Arizona; Qaid et al. [20] further explored the effect of SVF on the thermal environ-
ment of streets with different orientations; Wong et al., Li et al. and Nichol et al. studied the
characteristics of urban spatial morphology in Kowloon Peninsula, Hong Kong and con-
firmed that the urban spatial morphology profoundly affects the urban microclimate [49].
Based on the results of these studies, it appears that the spatiotemporal variability of the
urban thermal environment is closely related to the spatial morphological parameters, and
the influential role of these three-dimensional parameters needs to be considered in-depth
in urban LST downscaling studies. In this study, based on the traditional two-dimensional
surface parameters of the downscaling model, five spatial morphological parameters, SVF,
FAD, FAR, BD and MH, were added to downscale the Sentinel-3 LST to a high spatial
resolution of 30 m. It was found that the urban spatial morphological parameters did affect
the spatial distribution of LST, especially for the built-up areas.

The downscaling errors in the five building-dense areas decreased by 0.51, 0.48, 0.4,
0.16 and 0.06 ◦C (Figure 7). Analysis of the importance of the driving factors showed that
the importance of the urban spatial morphological parameters was lower than that of the
2D remote-sensing spectral index (Figure 9). The reason may be that the factors for BD,
FAD, FAR and MH were calculated through a moving window of 100 × 100 m, making it
difficult to accurately describe the 3D spatial features at a high spatial resolution of 30 m.
Compared to the other four spatial morphological parameters, SVF can be calculated pixel
by pixel, and its importance gradually becomes larger as the spatial resolution increases,
which generally indicates that the role of urban spatial morphological parameters cannot
be neglected for LST downscaling at higher spatial resolutions than 30 m. Li et al. [17]
and Liu et al. [50] also mentioned the necessity of considering urban spatial morphological
parameters in urban LST downscaling.
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In terms of downscaling accuracy validation, due to the lack of real land surface
temperature with a higher spatial resolution, we just downscaled LST to the resolution of
30 m. If there are LSTs at a high spatial resolution, such as the data collected by thermal
infrared sensors loaded on unmanned aerial vehicles or field measurement temperature
probes, LST downscaling for a higher spatial resolution could be performed to further
discuss the influence of morphological parameters.

Finally, a global random forest downscaling model was established in the study.
Considering the characteristics of different urban regions and establishing sub-regional local
models to improve LST downscaling accuracy need to be further discussed. For example,
Stewart et al. [51] proposed to establish local urban climate zones by considering building
and land cover types, an approach that can be used to downscale LST for various climate
zones. More accurate downscaling results may be obtained by further analysis of the
relationship between LST and urban spatial morphological parameters based on local
urban climate zones.

6. Conclusions

This study carried out downscaling LST in urban areas using the SSRFD and DRFD
methods, and the downscaling effects of the two methods were compared and analyzed.
Urban spatial morphological parameters were introduced in the driver to verify their role
in high-spatial-resolution downscaling LST. From the above investigations, the following
conclusions were drawn:

(1) The 900-m LST was downscaled step-by-step on the order of 450, 150 and 30 m.
Compared to the results obtained with DRFD, the r value between the SSRFD results
and Landsat LST was improved by 0.21, and the RMSE value was reduced by 0.94 ◦C.
The SSRFD results more accurately captured the spatial distribution characteristics of
the surface temperature, including the high-temperature zone of buildings and the
low-temperature zone of water and vegetation. The underestimation/overestimation
phenomenon of DRFD resulting in large errors in the high/low temperature zone was
avoided or attenuated when using the SSRFD method.

(2) The results obtained with SSRFD-M were partially significantly improved in the
Gulou, Qinhuai and Jianye built-up areas compared to SSRFD, in which r and RMSE
values improved/decreased by approximately 0.15 and 0.46 ◦C, respectively. The
phenomenon of low-temperature zones in vegetation-covered areas when only remote-
sensing spectral indices were used was improved. The SSRFD-M results to some
extent compensated for the deficiency of remote-sensing spectral indices used for
urban LST downscaling.

In this study, 900 m was used as the initial resolution, and downscaling was carried
out in integer multiples of 2, 3 and 5. Further research is needed to determine the optimal
downscaling resolution change multiples to obtain better downscaling results. In addition,
this paper established a random forest downscaling LST model for the study area as a
whole, while urban climate zones could be divided according to building and land cover
types. More accurate downscaling results may be obtained by further analysis of the
relationship between LST and urban spatial morphological parameters based on urban
local climate zones.
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