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Abstract: Soil moisture (SM) is an important land-surface parameter. Although microwave remote
sensing is recognized as one of the most appropriate methods for retrieving SM, such retrievals often
cannot meet the requirements of specific applications because of their coarse spatial resolution and
spatiotemporal data gaps. A range of general models (GMs) for SM analysis topics (e.g., gap-filling,
forecasting, and downscaling) have been introduced to address these shortcomings. This work
presents a novel strategy (i.e., optimized wavelet-coupled fitting method (OWCM)) to enhance the
fitting accuracy of GMs by introducing a wavelet transform (WT) technique. Four separate GMs are
selected, i.e., elastic network regression, area-to-area regression kriging, random forest regression,
and neural network regression. The fitting procedures are then tested within a downscaling analysis
implemented between aggregated Global Land Surface Satellite products (i.e., LAI, FVC, albedo),
Thermal and Reanalysis Integrating Medium-resolution Spatial-seamless LST, and Random Forest
Soil Moisture (RFSM) datasets in both the WT space and the regular space. Then, eight fine-resolution
SM datasets mapped from the trained GMs and OWCMs are analyzed using direct comparisons
with in situ SM measurements and indirect intercomparisons between the aggregated OWCM-/GM-
derived SM and RFSM. The results demonstrate that OWCM-derived SM products are generally
closer to the in situ SM observations, and better capture in situ SM dynamics during the unfrozen
season, compared to the corresponding GM-derived SM product, which shows fewer time changes
and more stable trends. Moreover, OWCM-derived SM products represent a significant improvement
over corresponding GM-derived SM products in terms of their ability to spatially and temporally
match RFSM. Although spatial heterogeneity still substantially impacts the fitting accuracies of
both GM and OWCM SM products, the improvements of OWCMs over GMs are significant. This
improvement can likely be attributed to the fitting procedure of OWCMs implemented in the WT
space, which better captures high- and low-frequency image features than in the regular space.

Keywords: soil moisture; downscaling; optimization; wavelet transform; Qinghai–Tibet Plateau

1. Introduction

Soil moisture (SM) is a fundamental hydrological variable. It not only shows great
significance in the hydrological, bioecological, and biogeochemical cycles [1–3], but also
plays an active role in hydrological processes such as precipitation, runoff, infiltration, and
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evapotranspiration [4,5]. Operational SM products have been applied to many research
fields, including global climate change [6], agricultural applications [7], drought and flood
disaster monitoring [8,9], and weather forecasting [10,11].

Multiple satellite missions—e.g., the Soil Moisture Ocean Salinity (SMOS) and Soil
Moisture Active and Passive (SMAP) missions—provide operational SM products. How-
ever, their application is often limited by their coarse spatial resolution [12,13] and spa-
tiotemporal gaps in their data products [14,15]. These shortcomings are often mitigated via
the production of downscaled and/or gap-filled SM products. For example, the 3 km SMAP
SM product (L2_SM_SP) is based on downscaling the enhanced Level 2 SMAP brightness
temperature product (L1C_TB_E) using 3 km co-polarized and cross-polarized backscatter
measurements provided by Sentinel-1 radars [16]. By applying the semi-physical disag-
gregation based on physical and theoretical scale change (DisPATCh) method, a ground
segment with a 1 km spatial resolution for the SMOS data—known as CATDS—has been
developed over the global cover [17]. Likewise, the Climate Change Initiative (CCI) SM
product minimizes temporal gaps by combining SM retrievals obtained from multiple
active and passive sensors using weighted averaging [15].

In addition, a large number of empirical or semi-physical relationships have been
developed to link coarse-resolution, satellite-based SM retrievals with other land-surface
parameters to obtain finer-resolution and more-continuous SM data products. These fitted
models take a wide variety of forms, including optical and thermal temperature/vegetation
feature space regression [18–20], active and passive microwave data fusion [16,21–23],
machine learning [24–26], deep learning [27,28], geostatistical methods [29–31], and data
assimilation methods [32–34]. ElSaadani et al. investigated the applicability of a convo-
lutional long short-term memory network (ConvLSTM) algorithm for predicting SM and
filling observational gaps in south Louisiana in the United States [28]. Prasad et al. designed
a new multivariate sequential predictive model that utilizes the ensemble empirical mode
decomposition (EEMD) algorithm hybridized with extreme learning machines (ELMs) to
forecast soil moisture (SM) over weekly horizons [35]. Jin et al. developed a geographically
weighted area-to-area regression kriging (GWATARK) model for the upstream region of
the Heihe River Basin [36]. Wei et al. used gradient boosting decision tree regression
(GBDT) with SMAP L3_SM_P to produce a 1 km SM product over the Qinghai–Tibet
Plateau (QTP) [37]. Moreover, Liu et al. compared six downscaling strategies, including
artificial neural networks, Bayesian estimation, decision trees (CART), nearest-neighbor
algorithms, random forests, and support-vector machines [38]. Qu et al. compared the
performances of five SM fitting models (i.e., multiple statistical regression, DisPATCh,
random forest, Gaussian process regression, and area-to-area regression Kriging) for SM
downscaling [39]. Generally, these methods are characterized by inherent advantages,
disadvantages, background theories, suitable operating environments, and other specific
assumptions, which have been thoroughly analyzed in [40] and [41,42].

As discussed above, current SM analyses (e.g., gap-filling, downscaling, and fore-
casting) generally rely on existing SM fitting methods, with some based on comparisons
between multiple methods. However, few studies have focused on general method opti-
mization, which is directly related to the subsequent accuracy of the resulting SM products
(i.e., products after gap-filling, downscaling, and/or forecasting). A possible issue in exist-
ing SM fitting methods is that it is often difficult to capture data characteristics in feature
space. For example, SM products generally contain unique image signal characteristics
at different image frequencies in the time and space domains. In SM analysis applica-
tions, image signal characteristics at different scales—caused by scale-invariance of spatial
heterogeneity—also cannot be ignored [43,44]. Therefore, characteristics at a specific spatial
resolution cannot be similarly extrapolated to other SM resolutions.

In response to these general challenges, we propose a plausible strategy (i.e., optimized
wavelet-coupled fitting method, or OWCM) to optimize the general SM fitting methods
(GM) via the application of the wavelet transform (WT) technique. WT is a powerful
technique for separating the high- and low-frequency feature information of an image when
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characterizing spatial features across multiple scales [44]. It has been applied for remote
sensing data fusion [45,46]. Detailed information obtained by WT decomposition can
potentially improve upon regression fitting accuracy. In this work, eight fine-resolution SM
datasets are generated using four separate GMs—elastic network regression, area-to-area
regression Kriging, random forest regression, and neural network regression—each fitted
both with and without application of the WT technique. Next, the advantage associated
with applying WT to the general fitting models is analyzed by comparing SM products
that are OWCM-derived (i.e., fit in the WT transform space) versus GM-derived (i.e.,
fit in regular space without WT) fine-resolution (0.01◦ × 0.01◦, hereafter referred to as
‘fine-RES’) SM datasets. Our key objectives are therefore to (1) apply WT to develop new
robust, optimized fitting approaches based on four general fitting methods; (2) test the
spatiotemporal heterogeneity of each in situ node, to select ground SM observations with
high representativeness of the true values; and (3) evaluate the performances of the OWCM-
derived and GM-derived fine-RES SM datasets against selected ground observations.

2. Materials and Methods
2.1. Study Area and In Situ Network Measurements

The QTP is the highest plateau in the world, and contains a unique ecohydrological
and geographical environment [47]. It covers approximately 250 million km2, ranging
from 26.5◦ to 40◦N in latitude and 73◦ to 105◦ in longitude. As shown in Figure 1, most
of the region is at a high elevation, and the average altitude is 4000 m above sea level [48].
The environmental characteristics of the QTP are alpine, arid, and anoxic, making the
plateau’s ecological environment extremely fragile and sensitive. The combination of its
high elevation and unique atmospheric, water, and energy circulation creates a series of
‘high-cold’ vegetation types distributed over the QTP [49,50]. For nearly half a century, the
QTP has had a trend of warming and humidification, and frequent hydrometeorological
change has been observed in this region [51].

SM datasets measured in situ, which can be downloaded from https://data.tpdc.ac.cn
(accessed on 21 June 2022), were collected from three study sites (Naqu, Ngari, and Maqu).
They belong to the CTP-SMTMN (Soil Moisture and Temperature Monitoring Network
on the central TP) [52] and the Tibet-Obs (Tibetan Plateau Observatory of Plateau-Scale
Soil Moisture and Soil Temperature) [53,54] observatory systems. Naqu has a cold, semi-
arid climate and land cover dominated by alpine meadows. The Ngari region is also
characterized by alpine meadows, but with a cold, arid environment. The Maqu region
has a cold, humid climate and dense vegetation cover. The primary characteristics of these
networks are summarized in Table 1. More details can be found in the above references. In
this study, ground measurements were used for two purposes: (1) examining the spatial
representativeness of measurements collected by each in situ SM sensor within the three
networks, and (2) evaluating the eight fine-RES SM datasets generated from the four GMs
by combining and non-combining with the WT technique.

Table 1. Summary of the basic information of the three in situ networks.

Networks Ngari Naqu Maqu

Datasets Tibet-Obs CTP-SMTMN Tibet-Obs
Location in QTP West Central Northeast

Total nodes 18 57 20
Measured SM depth 5 cm 0–5 cm 5 cm

Measured time
interval 15 min/day 30 min/day 15 min/day

Used time coverage April 2016–September 2016

https://data.tpdc.ac.cn
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Figure 1. (a) The QTP study area and the (b) Naqu, (c) Ngari, and (d) Maqu in situ SM networks. 

Table 1. Summary of the basic information of the three in situ networks. 
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Figure 1. (a) The QTP study area and the (b) Naqu, (c) Ngari, and (d) Maqu in situ SM networks.

2.2. The 0.25◦ × 0.25◦ Original Soil Moisture Product

The 0.25◦ × 0.25◦ Random Forest SM product (RFSM, https://data.tpdc.ac.cn, ac-
cessed on 21 June 2022) is a reconstructed, long-term SM dataset with a satisfactory accuracy
over the QTP [55,56]. Here, it was used as the coarse SM reference for constructing SM
fitting models. The RFSM product was developed by adopting AMSR-E and AMSR2
microwave brightness temperature from five channels (H and V polarization of 10.7 GHz
and 18.7 GHz, V polarization of 36.5 GHz) as well as auxiliary data (e.g., DEM, land
cover, latitude, longitude) to train the random forest model on the first two years of the
SMAP SM data product (2015 and 2016). Over the test period from May 2017 to May 2018,

https://data.tpdc.ac.cn
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RFSM preserved the traits of SMAP well (R = 0.95, RMSE = 0.03 m3/m3), based solely
on AMSR-E and AMR2 inputs. Simultaneously, validation against in situ measurements
showed that RFSM has relatively high temporal accuracy (R = 0.75, RMSE = 0.06 m3/m3,
bias = −0.03 m3/m3). It is worth noting that higher uncertainties generally characterize
remotely sensed SM products during the frozen season. With this limitation in mind, our
analysis is based only on the unfrozen season from April to September 2016.

2.3. The 0.01◦ × 0.01◦ Fine-RES Products

Global Land Surface Satellite (GLASS, http://www.geodata.cn/thematicView/GLASS.
html, accessed on 21 June 2022) datasets were used in this work. GLASS datasets include
a series of high-precision, spatially continuous, long-term global products, i.e., leaf area
index (LAI), surface broadband albedo (albedo), fractional vegetation cover (FVC), gross
primary production (GPP), evapotranspiration (ET), etc. Here, the 1 km × 1 km GLASS
FVC [57], 500 m × 500 m LAI [58], and albedo [59] products were adopted as independent
variables to construct the fitting models. They were mosaicked and reprojected to cover the
QTP using the MODIS Reprojection Tool. Next, nearest-neighbor interpolation was utilized
to resample them to a spatial resolution of 0.01◦ × 0.01◦. All pixels classified as water or
ice/snow were removed.

Land-surface temperature (LST) is considered to be a dominant energy parameter
describing surface water and heat conditions [29,60]. The 1 km Thermal and Reanalysis
Integrating Medium-resolution Spatial-seamless LST–Tibetan Plateau (TRIMS LST-TP,
https://data.tpdc.ac.cn, accessed on 21 June 2022) [61,62] was selected to overcome the
challenges of thermal infrared remote sensing detection as a result of temporal/spatial
gaps and misdetection due to cloud/topography causes [63,64]. TRIMS LST leverages both
high spatial resolution from MODIS LST and all-weather capability from AMSR-E/AMSR2
passive microwave brightness temperature. Peng et al. demonstrated that LST is more
sensitive to SM during daytime than nighttime, and has a stronger correlation with and
sensitivity to SM than other factors [65]. Pablos et al. also concluded that downscaled SM
results based on MODIS daytime LST are superior to results based on MODIS nighttime
LST. As a result, the daytime TRIMS LST-TP product was applied here [66].

The above products, collected for training OWCMs and GMs during the unfrozen
season from April to September 2016, were resampled and reprojected to fit the original
RFSM SM product (0.25◦ × 0.25◦) and target (0.01◦ × 0.01◦) scales. Two additional factors
derived from them—the temperature vegetation dryness index (TVDI) and soil evaporation
efficiency (SEE)—were also adopted as independent variables for the fitting procedure.
TVDI is a compound temperature–vegetation parameter derived from the soil moisture dry–
wet edge contour in the two-dimensional feature space of vegetation index and LST [67–69].
SEE is a parameter obtained from the improved calculation method for soil moisture
evaporation efficiency [29,70]. It is worth noting that the GLASS LAI from April 2014
to September 2016 was collected for in situ heterogeneity quantification, as shown in
Section 3.2.1.

Given the known topographical influence on SM, topography complexity index (Tci)
is a composite exponent computed from a digital elevation model (DEM). Here, DEM
information, as shown in Figure 1a, was acquired from the USGS global 30-arc second
elevation dataset (GTOPO-30) with a spatial resolution of 30′′, developed by the United
States Geological Survey (USGS, https://lta.cr.usgs.gov/, accessed on 21 June 2022). Tci
was computed based on the following equation [56]:

Tci =

√
1
n

n

∑
i=1

(
demi − dem

)2
, dem =

(dem1 + . . . + demn)

n
(1)

where demi, dem, and n are the ith, average value, and sample size of the 30′′ DEMs within
a 0.25◦ and 0.01◦ pixel, respectively. In addition, latitude, longitude, and DOY (day of year)
information are also adopted as fitting parameters.

http://www.geodata.cn/thematicView/GLASS.html
http://www.geodata.cn/thematicView/GLASS.html
https://data.tpdc.ac.cn
https://lta.cr.usgs.gov/
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2.4. Auxiliary Data

The QTP land cover shown in Figure 1 is based on MODIS MCD12Q1 data and the
International Geosphere-Biosphere Programme (IGBP) classification system. The QTP land
cover data were used in the multifactorial statistic factor selection (MFS) process introduced
in Appendix A.

The precipitation product (Pre) captures surface daily rainfall accumulations. These
accumulations were extracted from the gridded daily scale dataset of CN05.1 (http://data.
cma.cn/, accessed on 21 June 2022) [71] and used to validate the eight fine-RES SM datasets
indirectly. As an augmentation of CN05 [72], CN05.1 is based on the interpolation of more
node observations (~2400), and is characterized by a higher spatial resolution of 0.25◦ × 0.25◦.

3. Methodology
3.1. Optimize General Fitting Methods by Wavelet Transform

Here, we introduce a method for optimizing general fitting models. Our key innova-
tion is OWCM—that is, the application of a wavelet transform technique to four GMs to
implement their fitting procedure in WT space. Elastic network regression, area-to-area
regression kriging, random forest regression, and neural network regression were chosen
to capture a range of GMs. As a test, we applied OWCMs to the specific SM problem of
spatial downscaling. The selected four GMs were applied to both the regular and WT space
to obtain four GM-derived and four OWCM-derived fine-RES SM datasets.

For a typical SM downscaling procedure implemented in the regular space, regression
relationships are generally obtained between SM and attributes (e.g., time-varying FVC,
LAI, albedo, LST, and time-constant DEM and LAT/LONG in this study) at a coarse resolu-
tion using a GM, and then applied to map between attributes and SM at a fine resolution.
In contrast, OWCMs implement the downscaling procedures in the WT space. Specifically,
(1) each of the coarse-resolution SM and the aggregated time-varying attributes were first
decomposed to four WT components; (2) the GMs were then trained with each group of the
same wavelet components obtained from SM and attributes at a coarse resolution; (3) the
trained GMs were then utilized with the corresponding decomposed wavelet components
of the attributes to map four SM wavelet components at a fine resolution; and (4) an inverse
wavelet transformation was applied to the four fine-resolution wavelet components of SM
to obtain the fine-RES SM image. It is worth noting that, before applying regression in the
regular or WT space, multifactorial statistic factor selection (MFS) was implemented to
determine the appropriate attributes. A detailed description of the MFS process is presented
in Appendix A.

3.1.1. Wavelet Transform

As a mathematical tool initially designed for signal processing, WT provides multires-
olution/multiscale analysis functions and effectively extracts global and multiscale features
of images within the spatial frequency domain [45].

The block diagram in Figure 2 explains the application of a wavelet transformation
in detail. During the two-dimensional wavelet transform process, a digital image is de-
composed into four images (hereafter called LL, HL, LH, and HH). Here, ‘H’ stands for
high-pass filter, ‘L’ stands for low-pass filter, and ‘HL’ means a high-pass filter correspond-
ing along the row direction of the input image and a low-pass filter following along the
column direction. The same nomenclature applies to the LH, HH, and LL images. The
spatial resolutions of these decomposed images are twice as coarse as the original one. For
example, in this work, the spatial resolution of the original SM image is 0.25◦ × 0.25◦, and
the spatial resolution of its four decomposed images is 0.5◦ × 0.5◦. Commonly applied WT
techniques include the Haar, Daubechies, Coiflet, and Symmlet filters [73].

http://data.cma.cn/
http://data.cma.cn/
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Figure 2. The block diagrams of the wavelet transformation in decomposing an n×m image into
four decomposed images.

This study uses a 2D discrete Harr WT to decompose SM image signals. Following
Figure 2, the Haar decomposition process can be expressed as shown in Equations (2) and
(3) [74]. Taking an original n×m image A(n, m) as an example, first, WT applies a convo-
lution filter to matrix A(n, m) along its row direction, and implements a downsampling
process to obtain row decompositions of AL and AH :AL(i,j) =

A(i,2j−1)+A(i,2j)
2 1 ≤ i ≤ n, 1 ≤ j ≤ m

2

AH(i,j) =
A(i,2j−m−1)−AL(i,j−m

2 )

2 1 ≤ i ≤ n, m
2 < j ≤ m

(2)

where i and j are the row and column number of A, respectively, and AL and AH represent
the average and detail coefficients for image A, respectively.

Next, the Harr WT applies a convolution filter to AL and AH along the column
direction: 

ALL(i,j) =
AL(2i−1,j)+AL(2i,j)

2 1 ≤ i ≤ n
2 , 1 ≤ j ≤ m

2

ALH(i,j) =
AL(2i−n−1,j)−ALL(i− n

2 ,j)

2 1 ≤ i ≤ n
2 , m

2 < j ≤ m

AHL(i,j) =
AH(2i−1,j)+AH(2i,j)

2
n
2 < i ≤ n, 1 ≤ j ≤ m

2

AHH(i,j) =
AH(2i−n−1,j)−AHL(i− n

2 ,j)

2
n
2 < i ≤ n, m

2 < j ≤ m

(3)

where ALL represents the low-frequency average characteristics, and looks most like the
original image. Analogically, ALH represents the detail coefficients of AL; AHL and AHH
represent the average and detail coefficients of AH , respectively. Note that fitting models
can instead be applied to the WT space—e.g., the high-frequency details or low-frequency
approximations obtained in Equation (3)—to retain high-frequency or low-frequency in-
formation contained in the original image. In addition, the four decomposition images
generated in Equation (3) can be inversely reconstructed to regenerate image A following
the inverse process along the column and row directions.

3.1.2. General Fitting Methods

Elastic network regression (ER) [75] is a multivariate statistical regression model that
uses two prior regularization terms from ridge regression and lasso regression. ER can
eliminate the high collinearity between variables and reduce their dimensionality so as to
obtain better fitting results than linear regression.

Area-to-area regression kriging (ATARK, hereafter referred to as ATA) [36] follows
the principle that geographical attributes are often spatially autocorrelated [76]. The
implementation of ATA includes two steps: (1) constructing the coarse-scale trend surface
with the regression process and obtaining residuals by subtracting the regressed trend
surface from the original geospatial field; and (2) applying area-to-area kriging interpolation
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to reconstruct the residuals at a fine resolution and then superposing them onto the trend
surface to obtain the final results.

The random forest model (RF), introduced by Breiman [77], is an ensemble learning
technique commonly applied to classification and regression problems. The basic principle
is integrating results taken from different decision trees through ensemble learning. Mul-
tiple decision trees are first built during training, and then the individual results of the
trees are generated as the prediction. RF has many advantages, including insensitivity to
multivariate collinearity and default hyperparameter values, with anti-noise ability, and
strong robustness when applied to high-dimensional data [78,79].

To ensure that the training model was suitable for dealing with long spatiotempo-
ral sequences and dynamic movement (e.g., SM), nonlinear autoregressive models with
exogenous-input feedforward neural networks (NNs) were used for SM prediction. NNs
have been shown to perform well on problems involving long-term dependencies [80].
In this approach, output signals from one layer are regressed on the previous layer’s re-
sults with current and past values of the input signals by configuring a tapped delay line
(TDL) [81,82].

3.2. Evaluation Strategy

The improvement of OWCMs over corresponding GMs was analyzed by direct com-
parisons of the GM-/OWCM-derived fine-resolution SM with in situ SM measurements,
as well as indirect intercomparisons between the aggregated OWCM-/GM-derived SM
and RFSM. To minimize point–cell-scale differences during direct validation, in situ mea-
surements from grid cells with low heterogeneity were used. Moreover, the performances
of GM- and OWCM-derived SM products were also evaluated in terms of their ability to
spatially and temporally match original RFSM estimates.

3.2.1. Heterogeneity Quantification at the Fine-RES Scale

The weak spatial representativeness of point-scale in situ observations at satellite reso-
lution scales represents a severe challenge for SM validation using ground measurements.
Upscaling errors can be minimized by selecting ground stations that maximally represent a
larger-scale region. Over the QTP, we identified in situ measurement sites with maximal
representativeness by measuring the spatial heterogeneity of the corresponding spatial grid
cell for better validation of the fine-RES SM.

To this end, coefficients of variation (CVs) and normalized information entropy (NIE)
measures were utilized to analyze the degree of spatial heterogeneity present within a grid
cell. CV is a normalized measure that characterizes data dispersion over a classical statistical
index [83]. NIE, derived from information entropy [84], can clarify the relationship between
probability and information redundancy.

Since vegetation and SM have the greatest impacts on the total grid heterogeneity, LAI
and SM were adopted in the heterogeneity analysis. Following an approach previously
described by Zhang et al. [85], the spatial heterogeneity score of a pixel was then described
by their weighted CV and NIE values:

ScoreLAI = 0.5× CVLAI + 0.5× NIELAI (4)

ScoreSM = 0.5× CVSM + 0.5× NIESM (5)

where CVLAI and NIELAI are the calculated CV and NIE of LAI, respectively, while CVSM
and NIESM are the corresponding values obtained from SM. The LAI and SM values used
to obtain these statistics come from the corresponding GLASS LAI and ground-measured
SM of the other four in situ measurement sites nearest to the evaluated one, considering
days when in situ SM values were available.
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Different weights were designed in calculating the total space heterogeneity score. The
formula is as follows:

Scorepixel = 0.25× n(ScoreLAI) + 0.75× n(ScoreSM) (6)

where Scorepixel is the total space heterogeneity score of the fine-RES pixel where a single
node is located, while n(ScoreLAI) and n(ScoreSM) represent the CV and NIE min–max
scores normalized to 0–1, respectively. A smaller value of Scorepixel indicates lower in situ
spatial heterogeneity and, therefore, improved representativeness of the point-scale ground
measurements within the pixel.

The heterogeneity of each pixel with the corresponding in situ SM measurement sites
was determined during the frozen (from October to March) and unfrozen (from April
to September) seasons. The daily scores were averaged to a seasonal value to measure
temporal changes in heterogeneity through the seasons. Finally, the last few in situ mea-
surement sites within each network (Naqu, Maqu, and Ngari) with the lowest-ranked
pixel scores were selected. These in situ measurement sites were determined to have low
spatiotemporal heterogeneity, revealing the high capacity to represent local ground ‘true’
values in point scale, and a good ability to evaluate the fine-RES SM.

3.2.2. Exploratory Data Analysis Method

Two time series may be strongly correlated within a specific period, but the correlation
can be weakened during a sub-period. For example, the GM-/OWCM-derived multiyear
SM sequences may be well correlated with RFSM due to their strong seasonality; however,
the situations may differ within a short period—especially in a rain or irrigation season—
because different fitting models, as well as different fitting strategies (e.g., the wavelet
transformation), have different abilities in capturing the rainfall and dry-down events.
Therefore, sampled correlation R sampled in different sub-periods may also be different.
Here, the exploratory data analysis (EDA) method was used to analyze the temporal
consistency between the OWCM-/GM-derived SM and RFSM within different sub-time-
periods.

The EDA method was developed by Brunetti et al. [86], with the initial idea conceived
for a methodology to study the correlation between two data series [87]. EDA allows for
the representation of every variation of correlation between two series over time. In this
work, EDA was utilized to examine the Pearson correlation coefficient variations between
the fine-RES SM series of GMs/OWCMs and the original RFSM series during different time
windows. The window length is defined as follows:

Length(i,j) =
{

2×
(

DOYi − DOYj
)

DOYmin ≤ DOYj < DOYi ≤ DOYmiddle
2×

(
DOYi − DOYj

)
DOYmiddle < DOYi ≤ DOYmax, 2× DOYi − DOYmax ≤ DOYj

, (7)

where DOYi and DOYj are the ordinals of the central and beginning days of the selected
time series, respectively, while DOYmin, DOYmiddle, and DOYmax are the ordinals of the
start, central, and end days of the entire time sequence, respectively.

3.3. Generalized Additive Model

To analyze the impacts of spatial heterogeneity on fitting accuracy, the contributions
to the correlation coefficient R from CVLST , CVLAI , CVTVDI , and CVSEE were explored
based on a generalized additive model (GAM). Here, the correlation R substituted into
GAM was calculated between aggregated GM-/OWCM-derived SM and RFSM in coarse
0.25◦ × 0.25◦ spatial resolution throughout the study period. GAMs are useful when
developing and evaluating the non-monotonic relationship between independent and
dependent variables [88,89]. To better describe the contributions of the four CV variables
in GAM, Tci and sample size were added as explanatory variables to the model. The
expression of GAM was therefore constructed as follows:

Scorepixel = 0.25× n(ScoreLAI) + 0.75× n(ScoreSM) (8)
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where c0 is an unknown coefficient; xi is the CV value of the ith continuous nonlinear
explanatory variable; fi, i=1,...,6 are nonparametric (unspecified) smooth functions between
the correlation coefficient R and the nonlinear heterogeneity variables (CVLAI , CVLST ,
CVTVDI , CVSEE), Tci, and sample size; and ε is the corresponding error. Explained deviance
(Dm) is used to confirm the contribution of various explanatory variables to the total R,
computed as follows:

Dm = 1− Dr/Dn (9)

where Dr is the residual model deviance, and Dn is the null model deviance. GAM is finally
applied based on the six sequences described above (i.e., CVLAI , CVLST , CVTVDI , CVSEE,
Tci, and sample size) using the R language package mgcv (https://www.rdocumentation.
org/packages/mgcv/, accessed on 21 June 2022).

4. Results
4.1. The Spatiotemporal Heterogeneity Rankings of the 0.01◦ × 0.01◦ Grids

The spatiotemporal heterogeneity of each 0.01◦ × 0.01◦ grid cell containing an in situ
measurement site within the Naqu, Maqu, and Ngari networks was quantified by the
synthesis season scores of CV and NIE weighting summation, i.e., the Scorepixel defined in
Equation (6). This score was further utilized to determine the spatial representativeness of
each in situ measurement site over the 0.01◦ × 0.01◦ grid cell. The boxplot with scatters in
Figure 3 indicates the heterogeneity distributions of all 0.01◦ × 0.01◦ grid cells containing
in situ measurement sites. Such grid cells were classified into three groups, with low
(score ≤ 0.4), moderate (0.4 < score ≤ 0.7), and high (0.7 < score ≤ 1) heterogeneity.
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Figure 3. The heterogeneity distributions of all grid cells containing in situ measurement sites within
the Naqu, Maqu, and Ngari networks. Green dots indicate low heterogeneity (score ≤ 0.4), blue
dots indicate moderate heterogeneity (0.4 < score ≤ 0.7), and red dots indicate high heterogeneity
(0.7 < score ≤ 1).

After removing null values, the sample size in Figure 3 was determined by the number
of corresponding in situ measurement sites with available seasonal heterogeneity scores
during each unfrozen/frozen period. In Naqu, many grid cells had low heterogeneity
scores, ranging from 0.12 to 0.40, with the number of low-heterogeneity grids accounting for
79% (42/53), 70% (38/54), 58% (32/55), 64% (35/55), and 53% (28/53) in the five temporal
periods. The corresponding percentages of low-heterogeneity pixels in Maqu were 53%
(8/15), 53% (8/15), 42% (6/14), 73% (8/11), and 50% (7/14), while for Ngari they were 50%
(6/12), 0 (0/12), 17% (2/12), 0 (0/10), and 0 (0/12). Therefore, Figure 3 demonstrates that,

https://www.rdocumentation.org/packages/mgcv/
https://www.rdocumentation.org/packages/mgcv/
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on average, Naqu contains less spatial heterogeneity than Maqu, and Maqu contains less
than Ngari.

By excluding in situ measurement sites without data from April to September in 2016,
the remaining grids with in situ measurement sites within the same network were sorted
by their seasonal heterogeneity scores. Only the last few lowest-scoring grids in each
network—i.e., eight from Naqu, five from Maqu, and five from Ngari—are listed in Table 2.
Each grid is named after the corresponding in situ node name. Table 2 shows that, among
the lowest-scoring in situ measurement sites, the score values still vary between in situ
measurement sites and periods. However, some grids maintained relatively stable low
spatiotemporal heterogeneity (e.g., P3, MS3494, and MS3518 in Naqu, NST03 in Maqu, and
SQ06 in Ngari). In situ SM datasets from these in situ measurement sites were then selected
for fine-RES SM validation.

Table 2. Results of the lowest-scoring spatiotemporal heterogeneity of the 0.01◦ × 0.01◦ grids with in
situ measurement sites *.

Network Rank
2014, Unfrozen 2014–2015, Frozen 2015, Unfrozen 2015–2016, Frozen 2016, Unfrozen

Grid Scorepixel Grid Scorepixel Grid Scorepixel Grid Scorepixel Grid Scorepixel

Naqu Lowest
8 sites

MS3518 0.1789 P11 0.2822 F4 0.2489 MSBJ 0.3143 P11 0.3226
MS3501 0.1774 MS3488 0.2755 BC05 0.2302 F2 0.3141 MS3523 0.3171
MS3533 0.1694 MS3494 0.2721 MS3593 0.2114 F1 0.3122 C2 0.3090

P11 0.1653 C2 0.2683 BC07 0.1735 C2 0.3104 MSBJ 0.3054
MS3494 0.1592 MSBJ 0.2681 MS3494 0.1650 P3 0.3063 P3 0.2999

BC07 0.1496 P3 0.2410 P3 0.1459 MS3494 0.2901 MS3518 0.2968
MS3523 0.1311 BC07 0.2329 MS3518 0.1426 BC07 0.2841 MS3494 0.2950

P3 0.1198 MS3518 0.2132 MS3523 0.1420 MS3518 0.2797 BC07 0.2744

Maqu Lowest
5 sites

NST-07 0.7924 NST-07 0.7045 NST-02 0.8563 NST-08 0.6754 NST-07 0.7929
NST-01 0.7853 NST-08 0.6260 NST-07 0.7988 NST-05 0.6345 NST-01 0.4082
NST-08 0.4246 NST-01 0.4822 NST-08 0.6553 NST-06 0.4537 NST-08 0.3974
NST-03 0.1130 NST-09 0.3337 NST-09 0.4188 NST-09 0.3189 NST-09 0.2988
NST-09 0.0759 NST-03 0.2516 NST-03 0.2694 NST-03 0.2830 NST-03 0.2111
SQ02 0.8211 SQ02 0.8143 SQ02 0.6524 SQ10 0.7016 SQ10 0.6939
SQ10 0.6258 SQ10 0.6383 SQ10 0.6319 SQ08 0.6359 SQ01 0.6197

Ngari Lowest
5 sites SQ01 0.3195 SQ01 0.4942 SQ14 0.6093 SQ01 0.5395 SQ08 0.5293

SQ06 0.3152 SQ06 0.4480 SQ01 0.5833 SQ06 0.4911 SQ06 0.4496
SQ14 0.2773 SQ14 0.4108 SQ06 0.3936 SQ14 0.4512 SQ14 0.4454

* Red indicates high rank, while blue indicates low rank. The darker the color, the higher/lower its spatiotemporal
heterogeneity value.

4.2. Direct Validation with In Situ Datasets

The temporal accuracy of the fine-RES SM datasets was assessed via comparisons with
in situ SM measurements from the selected in situ measurement sites with low and stable
heterogeneity in the three networks over the period of 1 April 2016 to 31 December 2016.
Based on our above analysis of the spatial representativeness of the ground measurements,
the direct validation of the fine-RES SM datasets was only implemented over the selected
grids identified in Section 4.1.

Figure 4 shows the temporal evolutions of 0.01◦ × 0.01◦ fine-RES SM products over the
selected grids, with precipitation plotted as an auxiliary time series. For the Naqu P3 grid
cell, the ATA-OWCM and ER-OWCM time series accurately capture the in situ SM dynamic
change, and are closer to the ground measurements than the corresponding GM-derived
SM product in spring. RF-GM SM overestimates SM throughout the period, and NN-GM
SM is too flat in the summer. For the Naqu MS3494 and MS3518 grid cells, GM-derived SM
poorly follows the ground measurements—especially during pluvial summer conditions.
In contrast, OWCM-based estimates are generally better. In the Maqu NST03 grid cell,
for example, fine-RES SM is distinctly underestimated by GMs, while OWCM-derived
SM accurately captures sharp temporal changes associated with observed precipitation.
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Over the Ngari SQ06 grid cell, the fine-RES SMs derived from all eight methods follow the
observed in situ SM trend. Note that OWCM-derived SM products perform better than GM-
derived SM products—that is, they exhibit greater consistency with in situ observations,
and relatively better dynamics. Overall, it can be observed that the OWCM-derived SM
products are generally closer to the in situ SM, and are well matched with in situ SM
dynamic changes during the wet season, while the GM-derived SM results show fewer
temporal changes and more stable trends. These differences can likely be attributed to the
improved fitting of OWCMs within the WT space.
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on RF and NN.

Figure 4 also shows the mismatch between GM-/OWCM-derived SM and in situ
SM. GM- and OWCM-derived SM products are generally underestimated in the wet
environment (Maqu) or season (summer), and slightly overestimated in the relatively dry
environment (Ngari) or seasons (spring and autumn). This likely relates to the differences
in the soil layer observation depths of satellite (1–2 cm) and in situ measurements (~5 cm).
These different observation depths can lead to (1) an underestimation of SM by satellite
in the dry season, as the upper soil layers are dryer than the deeper layers; and (2) an
overestimation in the wet season (summer) or soon after a rain event, because the upper
layers are wetter than the deeper layers [9,44,90]. By separating the high- and low-frequency
feature information of SM and SM fitting factors, OWCMs may be able to obtain high-
/low-frequency wavelet components of SM and SM fitting factors that can reflect SM
information in the deeper layers, so as to obtain more consistent verification results with
ground observations [44].
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Table 3 shows the classical statistical validation metrics, including correlation coeffi-
cient (R), bias, and root-mean-square error (RMSE), as well as unbiased root-mean-square
error (ubRMSE). Compared with GM-derived SM, the corresponding OWCM-derived SM
shows a significant improvement via higher R and lower RMSE values against in situ
SM measurements. Taking the three Naqu measurement sites as examples, the R and
RMSE values between RF-OWCM SM and in situ SM range from 0.720 to 0.970, and from
0.039 m3/m3 to 0.070 m3/m3, respectively. By contrast, the R and RMSE values between
RF-GM SM and in situ SM range from 0.203 to 0.437, and from 0.106 m3/m3 to 0.138 m3/m3,
respectively. This indicates that the correlation between RF-GM SM and the in situ SM is
weak, and the corresponding RMSE is generally above an acceptable accuracy threshold
of 0.040 m3/m3 (as defined by the NASA SMAP mission). The same is true for other GM-
derived SMs. In contrast, OWCM-derived SM estimates meet this threshold at most in situ
measurement sites. Compared to in situ SM, the ubRMSE of OWCM-derived SM over the
selected in situ measurement sites ranges between 0.0165 m3/m3 and 0.0895 m3/m3—better
than the corresponding ubRMSE of GM-derived SM, which ranges between 0.0300 m3/m3

and 0.1209 m3/m3.

Table 3. Statistical metrics of GM-/OWCM-derived fine-RES SM datasets based on comparisons with
in situ SM measurements. The superior metric within each pair of corresponding GM and OWCM
products is indicated by bold type.

Bias (m3/m3) R RMSE (m3/m3) ubRMSE (m3/m3)

OWCM GM OWCM GM OWCM GMs OWCM GMs

Naqu-P3

ER 0.0176 0.0331 0.9692 0.8225 0.0354 0.0695 0.0307 0.0613
ATA 0.0108 0.0289 0.9546 0.8374 0.0370 0.0689 0.0354 0.0627
RF 0.0106 0.0798 0.9519 0.4368 0.0385 0.1175 0.0371 0.0865
NN −0.0153 −0.0174 0.9587 0.6723 0.0460 0.0792 0.0435 0.0775

Naqu-
MS3494

ER −0.0187 −0.0764 0.7122 0.7007 0.0747 0.1283 0.0725 0.1034
ATA −0.0255 −0.0683 0.7412 0.4086 0.0730 0.1192 0.0686 0.0980
RF −0.0247 −0.0664 0.7204 0.2031 0.0698 0.1376 0.0655 0.1209
NN −0.0759 −0.1055 0.6908 0.3898 0.1172 0.1497 0.0895 0.1065

Naqu-
MS3518

ER 0.0122 0.0355 0.9633 0.8410 0.0378 0.0769 0.0359 0.0684
ATA 0.0029 0.0204 0.9621 0.8591 0.0383 0.0724 0.0383 0.0697
RF 0.0110 0.0431 0.9703 0.3298 0.0416 0.1059 0.0402 0.0970
NN −0.0211 −0.0208 0.9645 0.8037 0.0452 0.0833 0.0401 0.0809

Maqu-
NST03

ER −0.0345 −0.0911 0.7445 0.3446 0.0494 0.1163 0.0355 0.0726
ATA −0.0424 −0.0980 0.8922 0.1053 0.0496 0.1134 0.0258 0.0572
RF −0.0768 −0.1067 0.7079 0.2487 0.0855 0.1217 0.0377 0.0587
NN −0.0934 −0.1392 0.8038 0.1798 0.0987 0.1500 0.0321 0.0560

Maqu-
NST09

ER 0.0083 0.0346 0.8713 0.5545 0.0273 0.0583 0.0261 0.0470
ATA −0.0084 0.0076 0.8890 0.5340 0.0260 0.0458 0.0247 0.0453
RF −0.0010 0.0068 0.7627 0.4211 0.0341 0.0493 0.0342 0.0490
NN −0.0036 −0.0352 0.7937 0.1686 0.0335 0.0665 0.0335 0.0566

Ngari-
SQ06

ER −0.0340 −0.0853 0.8122 0.0242 0.0398 0.0922 0.0208 0.0349
ATA −0.0418 −0.0894 0.7748 0.1711 0.0472 0.0959 0.0219 0.0348
RF −0.0541 −0.1304 0.7879 0.1463 0.0584 0.1354 0.0220 0.0366
NN −0.0425 −0.0958 0.7717 0.0915 0.0481 0.1025 0.0227 0.0365

Ngari-
SQ14

ER 0.0041 0.0565 0.6734 0.1124 0.0232 0.0644 0.0229 0.0309
ATA 0.0074 0.0358 0.8455 0.2705 0.0180 0.0466 0.0165 0.0300
RF −0.0025 0.0491 0.7261 0.0054 0.0217 0.0585 0.0216 0.0319
NN −0.0141 0.0455 0.7850 0.0470 0.0237 0.0578 0.0191 0.0358

This significant improvement has two likely sources, associated with both the appli-
cation of OWCMs—which implement the fitting procedures in the WT space—as well
as the selection of grid cells with low spatial heterogeneity: First, the WT applied in the
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OWCMs separates high- and low-frequency SM features in a way that better captures the
relationship between SM and various land-surface attributes. Second, in situ measurement
sites with lower spatial heterogeneity demonstrate better representativeness of the overall
grid cell and, therefore, minimize error associated with point-to-grid-cell upscaling.

5. Discussion
5.1. Discussion of the Consistency between the OWCM-/GM-Derived SM and RFSM
5.1.1. Spatial Consistency

Typically, renormalization is included in the downscaling procedures so that spatial
resampling of fine-RES SM back to the original coarse-resolution grid will exactly match
the original coarse-scale products being downscaled (e.g., RFSM in this case). However,
it is worth noting that the eight downscaled fine-RES SM products obtained by GMs and
OWCMs were not renormalized in this way, so that we could better understand the relative
performance of the GMs and OWCMs.

Within the QTP, Figure 5 shows images of monthly averaged SM estimates from
corresponding GM- and OWCM-derived fine-RES SM products, along with the original
RFSM. All eight fine-RES SM products generally match the temporal dynamic changes of
the original RFSM. However, SM estimates derived from the ATA-GM and ATA-OWCM
approaches are consistently better matched to the spatial patterns of RFSM; RF-GM and
RF-OWCM SM also have good performance, especially in the middle, south, and west
areas in summer. Considering the residual function in the ATA approach, it is reasonable to
infer that ATA has the best ability to reflect the spatial pattern of the original RFSM product
accurately. For both RF-GM and RF-OWCM, despite the machine learning model often
being characterized by a sliding and smoothing effect, a spurious mosaic phenomenon (i.e.,
the reflection of the underlying 0.25◦ × 0.25◦ grid in fine-RES SM results) is still seen in
certain areas. However, on the whole, the GM and OWCM of ER and NN have a stronger
smoothing effect than those of RF, and underestimate the spatial variability present in the
original RFSM product.

It can be observed that the most evident spatial characteristic of the original RFSM is
the increasing trend of SM from west to east over the QTP. Higher SM typically occurs in
the east, south, and southeast, while lower SM appears in the central and western regions.
The dynamic range of RFSM is better reflected in the OWCM-derived SM products than in
the GM-derived SM—especially for ER- and NN-based SM. Overall, the OWCM-derived
SM datasets represent a significant improvement with respect to the corresponding GM-
derived SM datasets, and the GM algorithms are deficient in preserving the dynamic range
of coarse-resolution SM information [24].

Moreover, the R and ubRMSE between the aggregated OWCM-/GM-derived SM
datasets and the original RFSM products were calculated spatially, as shown in Figure 6.
This echoes the comparison results above. ATA-OWCM SM behaves nearly the same as
ATA-GM SM, with a similar spatial distribution of R and ubRMSE. Moreover, the ATA-
OWCM and ATA-GM SM products preserve the spatial characteristics of the original RFSM
over most areas, with clearly higher R and lower ubRMSE compared with the other three
GM- and OWCM-derived SM products. RF-OWCM SM shows overall higher R and lower
ubRMSE than RF-GM SM. ER-OWCM SM also obtains overall better R values—especially
over the west and middle of the QTP, where the ER-GM SM product does not perform
well. Likewise, the ubRMSE of ER-OWCM SM shows a better spatial distribution than
that of ER-GM SM compared with the original RFSM products. It can be observed that the
NN-GM and NN-OWCM SM datasets have the worst performance among the four GM-
and OWCM-derived SM datasets, with NN-OWCM still outperforming NN-GM.
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As a summary of the information presented in Figure 6, Figure 7 shows the spatial fre-
quency distributions of the statistical metrics R, ubRMSE, and bias between the aggregated
OWCM-/GM-derived SM and the original RFSM over the QTP. In general, the distribution
of OWCM-derived SM metrics is notably superior to that of the corresponding GM-derived
SM products, and the ATA-OWCM SM products perform the best overall.
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Figure 7. Frequency distributions of the statistical metrics R (1st column), ubRMSE (2nd column),
and bias (3rd column) between the ATA (1st row)/RF (2nd row)/ER (3rd row)/NN (4th row)-based
OWCM/GM SM and the original RFSM over the QTP.

5.1.2. Temporal Consistency

EDA was utilized to test the time-series correlation R between the OWCM-/GM-
derived SM and the original RFSM in different time windows over the Naqu network.
The results are shown in Figure 8. Overall, in Naqu, the OWCMs performed significantly
better than GMs, and had a certain degree of optimization to the original method. Over
the entire period and the local periods, the correlation between the GM-derived SM and
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the original RFSM was improved to some extent by the OWCM when the correlation
between GM-derived SM and the original RFSM was poor (or even negative). At the same
time, it can be observed that the periods of poor correlation with the original RFSM for
all OWCMs and GMs were generally confined to the central days (x-axis) from 90 to 160—
corresponding to the period from June to August in the summer. According to Section 4.2,
OWCM-/GM-derived SM was generally lower than the SM measured in situ during this
period. However, it is worth noting that such underestimation is more significant for GMs
than for OWCMs, indicating the improvement in the underestimation by replacing GMs
with the corresponding OWCMs.

Remote Sens. 2022, 14, 3063 19 of 28 
 

 

 

Figure 8. EDA-based average correlation coefficient R plots between GM-/OWCM-derived SM and 

the original RFSM in Naqu. 
Figure 8. EDA-based average correlation coefficient R plots between GM-/OWCM-derived SM and
the original RFSM in Naqu.



Remote Sens. 2022, 14, 3063 18 of 25

5.2. Discussion of the Impacts of Spatial Heterogeneity on the Fitting Accuracy

According to Section 3.3, the impacts of spatial heterogeneity on the fitting accuracy of
OWCMs and GMs are further analyzed and discussed. Based on GAM, the partial deviance
explained by each factor (e.g., CVLAI , CVLST , CVTVDI and CVSEE) for the fitting accuracy of
each OWCM/GM was determined. Since the spline change trends for the fitting accuracies
of the eight GMs and OWCMs are similar, only the top four explained deviances are plotted
in Figure 9 for a clear presentation. The gray shaded area indicates 90% confidence intervals.
Unless otherwise specified, all discussion below is based on these intervals.
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(a) CVLST , (b) CVLAI , (c) CVTVDI , and (d) CVSEE. In (a–d), the dotted lines indicate the zero value
(y-axis) and the means of explanatory variables (x-axis), while the shaded areas are the 90% confidence
intervals. Moreover, the small vertical lines at the bottoms of the figures represent data points.

Overall, spatial heterogeneity shows a substantial impact on the fitting accuracy. The
contribution to the correlation coefficient R (between aggregated GM-/OWCM-derived SM
and RFSM) decreases from positive (or around zero) to negative as the spatial heterogeneity
increases—especially under high-CV conditions. Specifically, when CVLST increases, the
explained partial deviance decreases almost monotonously (Figure 9a). This indicates
that the LST heterogeneity negatively impacts the fitting accuracy, i.e., a higher CVLST
corresponds to lower fitting accuracy. LST has been regarded as a strong indicator of SM
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in previous studies due to the controlling effect of SM on surface energy exchange and
partition [37,91]. The pixel spatial heterogeneity brings uncertainty to the SM fitting process
because the pixel values of LST at different scales might not represent one another well [85].
Figure 9b shows that the explained partial deviances fluctuate around zero for small CVLAI
values, but decrease slightly when CVLAI increases. This implies that low vegetation
heterogeneity has no significant impact on the fitting accuracy, but still has a solid negative
impact during conditions of high vegetation heterogeneity. This could be explained by the
more complex couplings and feedback between SM and vegetation conditions (i.e., LAI)
when LAI is distributed heterogeneously within the pixel [92]. Figure 9c shows four upside-
down ‘U’ spline shapes for CVTVDI , with the explained partial deviance shifting from
negative to positive, and then back to negative. This indicates that the fitting accuracies are
less affected by moderate CVTVDI levels, but substantially negatively affected by low- and
high-CVTVDI conditions. In Figure 9d, the explained partial splines for CVSEE show a clear
downward trend similar to those for CVLST , drawing the same conclusions as discussed
above for CVLST .

6. Conclusions

Aiming to improve the fitting accuracies of the general models used in SM analyses
(e.g., downscaling, interpolation, and forecasting), the WT technique was introduced here to
implement the required fitting procedures in the WT space rather than the regular space. As a
test, four general regression models—i.e., ATA, ER, RF and NN—were selected and applied
to the specific SM problem of spatial downscaling. By coupling (OWCMs) and uncoupling
(GMs) the wavelet transformation, empirical relationships between the 0.25◦ × 0.25◦ RFSM
and 0.01◦ × 0.01◦ GLASS FVC, LAI, albedo, and TRIMS LST were constructed. As a result,
eight downscaled fine-RES SM datasets were produced using the trained GMs and OWCMs.

The performances of the GMs and OWCMs were demonstrated by validating and
analyzing the fine-RES SM datasets from two aspects: One was based on direct comparisons
with in situ SM measurements. The other was based on indirect intercomparisons of the
spatial and temporal consistencies between the aggregated OWCM-/GM-derived SM and
the original RFSM dataset. Overall, the OWCM-derived SM was generally closer to the in
situ SM and better matched with the in situ SM dynamic change during the unfrozen season
compared to the corresponding GM-derived SM products, showing fewer time changes and
more stable trends. Moreover, the OWCM-derived SM represents a significant improvement
over the corresponding GM-derived SM regarding the RFSM in terms of spatial distribution
and temporal variation. As discussed in Section 4.2, these improvements can possibly be
attributed to two main factors, i.e., the application of OWCMs, which implement the fitting
procedures in the WT space, and the selection of grid cells with low spatial heterogeneity.
Since WT separates the high- and low-frequency feature information, implementing the
fitting procedure between the same WT components of SM and the same attributes can
better capture the relationships between them. In addition, for both GM- and OWCM-
derived SM products, an in situ measurement site with lower spatial heterogeneity has
better representativeness of the overall grid cell and, therefore, minimizes errors due to the
point versus grid-cell upscaling differences, consequently improving our statistical indices,
i.e., generally higher R values and lower RMSEs and ubRMSEs.

Since the direct comparisons with in situ SM measurements were implemented only
over grids with low spatial heterogeneity, the impacts of spatial heterogeneity (indicated
by CVLST , CVLAI , CVTVDI , and CVSEE) on the fitting accuracy of OWCMs and GMs—i.e.,
the correlation coefficient R between aggregated GM-/OWCM-derived SM and RFSM—
were further analyzed and discussed based on a GAM. The results show that, despite
the selection of only spatially representative sites for validation, spatial heterogeneity
still substantially impacts the fitting accuracy of both GMs and OWCMs. Generally, the
contribution to the correlation coefficient R decreases from positive (or around zero) to
negative as the spatial heterogeneity increases. It is worth noting that the method of
characterizing the spatial heterogeneity to identify the in situ nodes with maximal spatial
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representativeness, as described in Section 3.2.1, is arguably subjective due to its selection
of the empirical coefficients adopted in Equations (4)–(6). However, the use of alternative
coefficients does not significantly influence the spatial heterogeneity ranking over the grids
with in situ measurement sites. OWCMs significantly improve the fitting effect of soil
moisture on the QTP. In the future, it will be necessary to further verify this optimization
effect in other regions and in situ networks, to determine its applicability in different related
SM analysis topics (e.g., gap-filling, forecasting, and downscaling) that require SM fitting
models.
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Appendix A. Multifactorial Statistic Factor Selection (MFS) Process

Anterior to operating the GMs and OWCMs in the SM fitting procedure, we utilized
the MFS process to determine the appropriate fitting factors for the GMs and OWCMs.
MFS can be regarded as an evaluation of the effectiveness of fitting factors.

MFS evaluates four fitting factors, along with their combinations (i.e., the product of
every two factors, the square and cube of every factor), within four typical land cover types
over the QTP, i.e., grasslands, croplands, barren or sparsely vegetated, and mixed forest,
according to the IGBP classification scheme (MODIS MCD12Q1 product). For each pixel of
a coarse WT component (0.5◦ × 0.5◦), MFS is directly applied in aggregated pure pixels
of the four typical land cover types, where there is only one typical land cover type of the
four. For other mixed pixels, the land cover type is regarded as the type of which the IGBP
original pixels (0.01◦ × 0.01◦) account for the most significant proportion within it. For
each pixel of a fine-resolution WT component (0.02◦ × 0.02◦), its land cover type is judged
by the type accounting for the largest proportion within the 3 × 3 neighborhood pixels
(0.06◦ × 0.06◦).

The MFS process involves two steps: (1) To identify the potentially relevant factors
by comparing the consistency between the frequency distributions of each fitting factor
and each WT-derived SM component in the probability density figure. (2) To determine
the final fitting factors significantly correlated with each WT-derived SM component by
testing partial correlation coefficients at 95% confidence intervals when fixing other fitting
factors. Taking the most widely distributed land cover type of grassland as an example,
the frequency distribution plots in the probability density of the four WT components (LL,
HL, LH, and HH) are shown in Figure A1. For brevity, only the final selected factors are
shown. Table A1 lists the corresponding fitting factors selected for the four WT components
and their corresponding partial correlation coefficients over the four land cover types, i.e.,
grassland, cropland, barren or sparsely vegetated, and mixed forest. For GMs, the final
selected factors are the same as the LL component, since LL is watched as the approximation
image of the original.
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Figure A1. Frequency distributions in the probability density of the final selected fitting factors, with
relatively good consistency with the frequency distribution of the original RFSM in the four WT
components (LL, LH, HL, HH) over grassland.

Table A1. Summary of the final selected factors by MFS for the four land cover types over the QTP.

Land Cover Types WT Component Selected Factors Partial Correlation
Coefficient *

Grasslands

LL LAI, LST 0.6673,0.7247

HH LAI, LST, albedo × FVC 0.5487, 0.6924, 0.5765

HL LST, albedo × FVC, LAI × FVC 0.4982, 0.4792, 0.6593

LH Albedo × FVC, LST 0.7873, 0.6169

Croplands

LL FVC, LST 0.8147, 0.7571

LH Albedo × LAI, LAI × FVC, albedo × FVC 0.6734, 0.5186, 0.4795

HL FVC × LST 0.6575

HH Albedo × LAI, albedo × LST 0.5917, 0.4452
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Table A1. Cont.

Land Cover Types WT Component Selected Factors Partial Correlation
Coefficient *

Barren or sparsely
vegetated

LL Albedo, LST 0.7129, 0.6122

LH Albedo × LAI 0.7642

HL Albedo × LAI 0.6436

HH Albedo × LAI, FVC × LST, LST × LAI 0.5749, 0.6352, 0.4557

Mixed forest

LL FVC, LST 0.6485, 0.5847

LH Albedo × FVC 0.5373

HL LST × LAI 0.5467

HH Albedo × FVC, LAI × FVC, albedo × LST 0.6278, 0.6617, 0.7423

* Partial correlation coefficient at 95% confidence interval.
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