
(I)  Corrected scattering and reabsorption effects of canopy SIF based on SCOPE 

1、theoretical basis 

The spectral invariant theory with a spectral invariant 𝝆  (recollisional 

probability) and bidirectional gap fraction has been successfully used to better 

understand the absorption and scattering effects within the canopy (Stenberg et al., 

2016). However, it assumed that the canopy is bounded underneath by a non-

reflecting surface (the ‘black-soil’ conditions). Based on the above assumptions and 

the similar scattering processes for SIF photons and reflected photons, the SIF escape 

probability from leaf level to canopy level in observing direction Ω can be expressed 

as: 

𝜀𝐶𝐿(𝜆, Ω) =
𝐵𝑅𝐹(𝜆,Ω)

𝑖0𝜔𝐿(𝜆)
                       (S1) 

Where 𝜀𝐶𝐿  indicates the canopy escape efficiency from leaf to canopy, 𝜆  is the 

spectrum band, Ω is the observational angle. 𝐵𝑅𝐹 is the bi-directional reflectance, 

𝑖0 is the canopy interception probability, and 𝜔𝐿 is the leaf albedo. 

In addition, the escape probability for SIF from the PS level to the leaf level 

(𝜀𝐿𝑃(𝜆)) is closely related to the leaf chlorophyll content but wavelength dependent 

(Gitelson et al., 1998; Porcar-Castell et al., 2014). Consequently, the SIF escape 

probability from the PS level to the canopy level can be expressed as: 

𝜀𝐶𝑃(𝜆, Ω) = 𝜀𝐿𝑃(𝜆) × 𝜀𝐶𝐿(𝜆) = 𝜀𝐿𝑃(𝜆) ×
𝐵𝑅𝐹(𝜆,Ω)

𝑖0𝜔𝐿(𝜆)
         (S2) 

The 𝜔𝐿(𝜆) is not easy to be accurately measured, and the 𝜀𝐿𝑃(𝜆) cannot also be 

approximately estimated with absence of chlorophyll content.  

Calculating 𝑖0 requires additional knowledge of canopy architecture, including 

the leaf projection function (𝐺(𝜃), Ross, 1981), leaf area index (LAI), solar zenith angle 

(SZA, 𝜃), and the clumping index (CI; Chen, 1996). While both 𝐺(𝜃), LAI, and CI 



are measurable quantities, both strongly vary in time and space, making them difficult 

to quantify remotely (Ryu et al., 2010). Based on the simplifying assumption that 𝑖0 is 

approximated by the fraction of absorbed photosynthetically active radiation (fPAR) 

(Gates et al., 1965; Zeng et al., 2019). The SCOPE simulations were used to validate 

the close relationship between 𝑓𝑃𝐴𝑅 and 𝑖0 (Figure S1). 

 

Figure S1. 𝑓𝑃𝐴𝑅 is a good approximation of canopy directional interceptions, 𝑖0. All values generated using 

SCOPE (Table S1) for different soil background (Figure S2). “Black” soil with reflectance of 0 named as 

Soil00, field measured soil reflectance with three levels of brightness named as Soil01, Soil02, and Soil03. 

2、Simulated dataset based on SCOPE 

In this study, we used SCOPE v1.73 version. The amount of absorption of SIF by 

leaves is mainly related to chlorophyll content (Agati et al., 1998), while the canopy 

scattering is mainly related to the canopy structure parameters (LAI) and solar-view 

geometries (SZA). Therefore, we parameterized SCOPE for sets of different leaf 

chlorophyll contents (Cab), LAI levels, and different SZAs.Values or sources of some 

important input parameters required for SCOPE model are listed in Table S1. The 

viewing zenith angle was set as 25° (the tower-based observation angle). Leaf angle 

distribution is assumed to be spherical, which is a good approximation in crops such as 

corn (Lemeur and Blad, 1974; Verhoef and Bach, 2007).  

In addition, we also evaluated the effects of different soil backgrounds (Figure 

S2; “Black” soil with reflectance of 0 named as Soil00, field measured soil reflectance 

with three levels of brightness named as Soil01, Soil02, and Soil03) on the performance 



of the 𝑓𝑒𝑠𝑐_688 calculated by 
𝑅𝑒𝑑𝑣

𝑓𝑃𝐴𝑅
. For each soil background, TOC reflectance, TOC 

SIF, and total SIF emission of the 48000 scenarios were simulated.  

 

Figure S2. Different soil reflectance used in SCOPE simulation. 

Table S1. The main input parameters of the SCOPE model simulations for each 

soil background (Soil01, Soil02, Soil03, Soil04) 

Parameters Symbols Units Range 

Chlorophyll 𝑎 + 𝑏 content 𝐶𝑎𝑏 𝜇𝑔 𝑐𝑚−2 2-80 

Leaf area index LAI 𝑚2 𝑚−2 0.5-6 

Solar zenith angle 𝑡𝑡𝑠 ° 20-60; 55-90 

Incoming shortwave radiation (0.4-

2.5𝜇𝑚) 
Rin 𝑊 𝑚−2 50-500 

3、Uncertainties of 𝒇𝑷𝑨𝑹 estimated by WDRVI 

In addition, we used SCOPE to validate the performance of 𝑓𝑃𝐴𝑅 estimated by 

WDRVI (Figures S3 and S4). From the results, we can see that WDRVI is a good proxy 

of 𝑓𝑃𝐴𝑅 for different soil backgrounds. However, it should be noted that WDRVI 

can not reflect the impact of direct and diffuse radiation components on 𝒇𝑷𝑨𝑹, 

and it will bring some uncertainties to this study. 



 

Figure S3. The wide dynamic range vegetation index (WDRVI) is a good approximation of the fraction of 

absorbed photosynthetically active radiation, 𝑓𝑃𝐴𝑅. The data were averaged at an interval of 0.1. All values 

generated using SCOPE model simulations for canopies with different leaf area indices, leaf chlorophyll 

contents and solar zenith angles (20-60°). 

 

Figure S4. The wide dynamic range vegetation index (WDRVI) is a good approximation of the fraction of 

absorbed photosynthetically active radiation, 𝑓𝑃𝐴𝑅. The data were averaged at an interval of 0.1. All values 

generated using SCOPE model simulations for canopies with different leaf area indices, leaf chlorophyll 

contents and solar zenith angles (55-90°). 

Although the coefficients (0.516 and 0.726) were derived empirically from another 

work (Liu et al., 2019), we found that the coefficients (Table S2) obtained from SCOPE 

simulations agreed well with that and showed no significant difference for different 

solar zenith angles. 

Table S2. Fitted coefficients based on SCOPE simulations 

Datasets Soil background Coefficient a Coefficient b Significance 

Solar zenith angles (20-60°) 

Soil01 0.58 0.73 

p-value = 0.26 (>0.05) 

for coefficient a; 

p-value = 0.56 (>0.05) 

for coefficient b 

Soil02 0.56 0.74 

Soil03 0.52 0.76 

Solar zenith angles (55-90°) 

Soil01 0.50 0.76 

Soil02 0.52 0.75 

Soil03 0.55 0.74 



4、Evaluation of the corrected method using PROSPECT-D and SCOPE： 

In this study, we used PROSPECT-D leaf model to evaluate the effects of leaf 

biochemical parameters on 𝜔𝐿 . Detailed parameters used in PROSPECT-D can be 

found in Table S3.  

Table S3. The main input parameters of the PROSPECT-D model simulations 

Parameters units Value or range 

N（Leaf structural parameter）  1.0-1.6; step 0.2 

LCC（Leaf chlorophyll content） 𝜇𝑔 𝑐𝑚−2 10-80; step 10 

𝐶𝑎𝑟（Leaf carotenoid content） 𝜇𝑔 𝑐𝑚−2 25%LCC 

𝐶𝑤（Equivalent thickness） 𝑐𝑚 0.0015 

𝐶𝑚（Dry matter content） 𝑔 𝑐𝑚−2 0.005 - 0.02; step 0.005 

𝐶𝐴𝑛𝑡（Leaf anthocyanin content） 𝜇𝑔 𝑐𝑚−2 1 

𝐶𝑏𝑟𝑜𝑤𝑛（Leaf brown pigment content）  0 - 0.3; step 0.1 

From Figure S5, we can see that 𝜔688 and 𝜔760 showed different sensitivities in 

response to LCC. 𝜔688  was more sensitive to chlorophyll content and showed a 

nonlinear response curve (Figure S5a). This phenomenon can be explained by the 

increase of chlorophyll concentration would lead to the absorbed radiation per unit 

chlorophyll molecule decrease (Porcar-Castell et al., 2014). In addition, 𝜔688 was less 

sensitive to Cm, N, and Cbrown. 

 

Figure S5. Sensitivities of 𝜔𝐿 to LCC (a), Cm (b), N (c) and Cbrown (d) in ted band (688 nm, the red scatters) 

and far-red band (760 nm, the blue scatters) 



Based on the results shown in Figure S5, we used the fitted curve in Figure S5a 

and put it into the SCOPE simulations. From Figure S6, 𝑓𝑒𝑠𝑐_688  and Φ𝐹_688 

estimated by 
𝑅𝑒𝑑𝑣

𝑓𝑃𝐴𝑅
 agreed well with that in SCOPE. However, it should be noted that  

𝑓𝑒𝑠𝑐_688  and Φ𝐹_688  exhibited a nonlinear response to Cab, which indicated that 

chlorophyll content largely affected the estimation of 𝑓𝑒𝑠𝑐_688 and Φ𝐹_688. Therefore, 

it would bring some uncertainties for studying the temperature responses of Φ𝐹_688 

without carefully considering the influences of variations in chlorophyll content during 

growth periods. 

 

Figure S6. Comparison of 𝑓𝑒𝑠𝑐_688 estimated by 
𝑅𝑒𝑑𝑣

𝑓𝑃𝐴𝑅
 (red scatters) and 𝑓𝑒𝑠𝑐_688 of SCOPE (blue scatters) 

in relationship with Cab (a), and the corresponding Φ𝐹_688 in response to Cab (b). 

In addition, we also evaluated the performance of the total red SIF calculated by 

the canopy red SIF divided by the 
𝑅𝑒𝑑𝑣

𝑓𝑃𝐴𝑅
, and compared to the total red SIF based on 

SCOPE (Figures S7 and S8). From the results, we can see that 𝑡𝑆𝐼𝐹688 estimated by 

𝑅𝑒𝑑𝑣

𝑓𝑃𝐴𝑅
 shows a good relationship with 𝑡𝑆𝐼𝐹688 based on SCOPE. However, it should 

be noted that NDVI2 brings a nonlinear effect on the evaluation of 𝒕𝑺𝑰𝑭𝟔𝟖𝟖 

despite its role in reducing the impacts of soil background. In this study, we can 

see that 𝒇𝑷𝑨𝑹 did not show obvious changes during overwintering period, which 

indicated that chlorophyll content changed a little (Figure 5g). Therefore, our 

results were reliable to some degree (Figure S9). 



 

Figure S7. The relationships of 𝑡𝑆𝐼𝐹688  estimated by 
𝑅𝑒𝑑𝑣

𝑓𝑃𝐴𝑅
 and based on SCOPE for different soil 

background and for canopies with different leaf area indices, leaf chlorophyll contents and solar zenith angles 

(20-60°). 

 

Figure S8. The relationships of 𝑡𝑆𝐼𝐹688  estimated by 
𝑅𝑒𝑑𝑣

𝑓𝑃𝐴𝑅
 and based on SCOPE for different soil 

background and for canopies with different leaf area indices, leaf chlorophyll contents and solar zenith angles 

(55-90°). 

5、Comparison of 
𝑹𝒆𝒅𝒗

𝒇𝑷𝑨𝑹
 and random forest (RF) in this study： 

From Figure 4f and Figure S9, we can see that no matter 
𝑅𝑒𝑑𝑣

𝑓𝑃𝐴𝑅
 or RF exhibited a 

similar trend. It also demonstrates our results have certain degree of credibility. 

 

Figure S9. Seasonal changes of ΦF_688 estimated by random forest (RF) based on Liu et al. (2019) 

(II)  Times series of other variables and their relationships with 𝑻𝒂 



 

Figure S10. Seasonal dynamics of daily mean WDRVI (a), 𝑓𝑃𝐴𝑅 (b), NDVI (c), 𝑅𝑒𝑑𝑣 (d), 𝑁𝐼𝑅𝑣 (e), and 

the soil water content at 10 cm (𝑆𝑊10𝑐𝑚, f). The blue shaded rectangle represents the overwintering periods. 

Local regression was used to smooth the data. The black shaded area indicates the 95% confidence interval. 

(III)  The effects of clear and cloudy weather conditions on the SIF-GPP 

relationship by considering 𝑻𝒂 

 

Figure S11. The relationships of GPP with  𝑡𝑆𝐼𝐹688 (a), 𝑡𝑆𝐼𝐹688 ∗ 𝑓(𝑇𝑎) (b), 𝑡𝑆𝐼𝐹760 (c), and 𝑡𝑆𝐼𝐹760 ∗

𝑓(𝑇𝑎) (d) based on half-hour measurements on the sunny days. The blue dotted line is the 1:1 line. 



 

Figure S12. The relationships of GPP with  𝑡𝑆𝐼𝐹688 (a), 𝑡𝑆𝐼𝐹688 ∗ 𝑓(𝑇𝑎) (b), 𝑡𝑆𝐼𝐹760 (c), and 𝑡𝑆𝐼𝐹760 ∗

𝑓(𝑇𝑎) (d) based on half-hour measurements on the cloudy days. The blue dotted line is the 1:1 line. 

(IV)  The changes in canopy structure during overwintering periods. 

The canopy structure can be viewed through field camera. However, the camera was set up 

since summer of 2021. Therefore, we can infer the canopy structure over the overwintering period 

between 2020 and 2021 from that over the overwintering period between 2021 and 2022.

Figure S13. Changes of canopy structure during overwintering periods between 2021 and 2022. 

(V) The ANCOVA analysis of red SIF quantum yield and far-red SIF 

quantum yield at leaf and photosystem level 

 



 

Figure S14. The results of ANCOVA analysis of 𝑐𝑆𝐼𝐹𝑦𝑖𝑒𝑙𝑑_688 and 𝑐𝑆𝐼𝐹𝑦𝑖𝑒𝑙𝑑_760 based on daily mean data. 

Table S4. The ANCOVA table for 𝑐𝑆𝐼𝐹𝑦𝑖𝑒𝑙𝑑_688 and 𝑐𝑆𝐼𝐹𝑦𝑖𝑒𝑙𝑑_760 

Source SS df MS F Prob>F 

Columns 2.4792 1 2.47922 21.42 4.914e-06 

Error 48.841 422 0.11574   

Total 51.3202 423    

 

 

Figure S15. The results of ANCOVA analysis of Φ𝐹_686 and Φ𝐹_760 based on daily mean data. 

Table S5. The ANCOVA table for Φ𝐹_686 and Φ𝐹_760 

Source SS df MS F Prob>F 

Columns 0.996 1 0.99962 5.47 0.02 

Error 77.165 422 0.18286   

Total 78.1648 423    

 

 

 



(VI) An equivalent improvement in SIF-based GPP estimation if omitted the 

negative 𝒕𝑺𝑰𝑭 values. 

Because photosynthesis and fluorescence responded differently to temperature (Figure 8), we 

further explored the 𝑡𝑆𝐼𝐹-GPP relationship by considering the influence of temperature. By using 

the empirical temperature-corrected equation, the GPP estimation based on 𝑡𝑆𝐼𝐹760 was improved 

(RMSE dropped from 6.34 to 5.56 𝑢𝑚𝑜𝑙 𝐶𝑂2 𝑚−2 𝑠−1, while R2 values increased from 0.47 to 

0.59; Figure S16d). Similar results can also be seen from the 𝑡𝑆𝐼𝐹688 -GPP relationship by 

considering air temperature (RMSE decreased from 5.19 to 5.05 𝑢𝑚𝑜𝑙 𝐶𝑂2 𝑚−2 𝑠−1 , while R2 

values increased from 0.61 to 0.66; Figure S16b). 

 

Figure S16. The relationships of GPP with 𝑡𝑆𝐼𝐹688  (a), 𝑡𝑆𝐼𝐹688 ∗ 𝑓(𝑇𝑎)  (b), 𝑡𝑆𝐼𝐹760  (c), and 

𝑡𝑆𝐼𝐹760 ∗ 𝑓(𝑇𝑎) (d) based on half-hour measurements. The blue dotted line is the 1:1 line. 

By considering the influences of 𝑇𝑎, 𝑡𝑆𝐼𝐹760-based GPP estimation was improved (RMSE 

dropped from 5.58 to 4.67 𝑢𝑚𝑜𝑙 𝐶𝑂2 𝑚−2 𝑠−1, while R2 values increased from 0.50 to 0.65; Figure 

S17d). 𝑡𝑆𝐼𝐹688 -GPP estimation was also improved (RMSE decreased from 4.64 to 4.42 

𝑢𝑚𝑜𝑙 𝐶𝑂2 𝑚−2 𝑠−1, while R2 values increased from 0.65 to 0.69; Figure S17b) by integrating 𝑇𝑎 



with 𝑡𝑆𝐼𝐹688. It indicated that considering the effects of temperature could improve the SIF-based 

GPP estimation at different time scales. 

 

Figure S17. The relationships of GPP with 𝑡𝑆𝐼𝐹688  (a), 𝑡𝑆𝐼𝐹688 ∗ 𝑓(𝑇𝑎)  (b), 𝑡𝑆𝐼𝐹760  (c), and 

𝑡𝑆𝐼𝐹760 ∗ 𝑓(𝑇𝑎) (d) based on daily mean data. The blue dotted line is the 1:1 line. 

Table S6. The 𝑡𝑆𝐼𝐹-based GPP models with and without considering the effects of 𝑇𝑎 based on half-

hourly and daily mean data without the negative 𝑡𝑆𝐼𝐹 values. The 𝑓(𝑇𝑎) is the temperature-corrected 

function. 

 

 

(VII) temperature responses of SIF and GPP during the entire growing period 

Temporal resolution Band Regression Equation R2 RMSE 

half-hourly 

688 nm 
𝐺𝑃𝑃𝐹688 = 0.75 × 𝑡𝑆𝐼𝐹688 0.61 5.19 

𝐺𝑃𝑃𝐹688−𝑇𝑎
= 0.75 × 𝑓(𝑇𝑎) × 𝑡𝑆𝐼𝐹688 0.66 5.05 

760 nm 
𝐺𝑃𝑃𝐹760 = 10.58 × 𝑡𝑆𝐼𝐹760 0.47 6.34 

𝐺𝑃𝑃𝐹760−𝑇𝑎
= 10.58 × 𝑓(𝑇𝑎) × 𝑡𝑆𝐼𝐹760 0.59 5.56 

daily 

688 nm 
𝐺𝑃𝑃𝐹688 = 0.83 × 𝑡𝑆𝐼𝐹688 0.65 4.64 

𝐺𝑃𝑃𝐹688−𝑇𝑎
= 0.83 × 𝑓(𝑇𝑎) × 𝑡𝑆𝐼𝐹688 0.69 4.42 

760 nm 
𝐺𝑃𝑃𝐹760 = 11.8 × 𝑡𝑆𝐼𝐹760 0.50 5.58 

𝐺𝑃𝑃𝐹760−𝑇𝑎
= 11.8 × 𝑓(𝑇𝑎) × 𝑡𝑆𝐼𝐹760 0.65 4.67 



 

Figure S18. The relationships of daily mean 𝐿𝑈𝐸𝑝 (a), 𝑐𝑆𝐼𝐹𝑦𝑖𝑒𝑙𝑑_688 (b), 𝑐𝑆𝐼𝐹𝑦𝑖𝑒𝑙𝑑_760 (c), Φ𝐹_688 

(d), and Φ𝐹_760 (e) with air temperature (𝑇𝑎) during the entire growing period. The data were averaged 

over intervals of 4 ℃, and the error bars indicate the standard deviation. The 95% confidence levels for 

prediction are represented by the grey-shaded zones. 

 

Figure S19. The relationships of daily mean 𝐿𝑈𝐸𝑝/𝑐𝑆𝐼𝐹𝑦𝑖𝑒𝑙𝑑_688  (a), 𝐿𝑈𝐸𝑝/𝑐𝑆𝐼𝐹𝑦𝑖𝑒𝑙𝑑_760  (b), 

𝐿𝑈𝐸𝑝/Φ𝐹_688 (c), and 𝐿𝑈𝐸𝑝/Φ𝐹_760 (d) with air temperature (𝑇𝑎) during the entire growing period. 

The data were averaged over intervals of 4 ℃, and the error bars indicate the standard deviation. The 

95% confidence levels for prediction are represented by the grey-shaded zones. 

 

 

 


