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Abstract: The advancement of innovative underwater remote sensing detection and imaging methods,
such as continuous wave laser line scan or pulsed laser (i.e., LiDAR—Light Detection and Ranging)
imaging approaches can provide novel solutions for studying biological substrates and manmade
objects/surfaces often encountered in underwater coastal environments. Such instruments can be
used shipboard or coupled with proven and available deployment platforms as AUVs (Autonomous
Underwater Vehicles). With the right planning, large areas can be surveyed, and more extreme
and difficult-to-reach environments can be studied. A prime example, and representing a certain
navigational challenge, is the under ice in the Arctic/Antarctic or winter/polar environments or deep
underwater survey. Among many marine biological substrates, numerous species of macroalgae
can be found worldwide in shallow down to 70+ m (clear water) coastal habitats and are essential
ecosystem service providers through the habitat they provide for other species, the potential food
resource value, and carbon sink they represent. Similarly, corals also provide important ecosystem
services through their structure and diversity, are found to harbor increased local diversity, and are
equally valid targets as “keystone” species. Hence, we expand current underwater remote sensing
methods to combine macroalgal and coral surveys via the development of a multispectral laser serial
imager designed for classification via spectral response. By using multiple continuous wave laser
wavelength sources to scan and illuminate recreated benthic environments composed of macroalgae
and coral, we show how elastic (i.e., reflectance) and inelastic (i.e., fluorescence) spectral responses
can potentially be used to differentiate algal color groups and certain coral genus. Experimentally,
three laser diodes (450 nm, 490 nm, 520 nm) are sequentially used in conjunction with up to 5 emission
filters (450 nm, 490 nm, 520 nm, 580 nm, 685 nm) to acquire images generated by laser line scan
pattern via high-speed galvanometric mirrors. Placed directly adjacent to a large saltwater imaging
tank fitted with optical viewports, the optical system records target substrate spectral response
using a photomultiplier preceded by a filter and is synchronously digitized to the scan rate by a
high sample rate Analog-to-Digital Converter (ADC). Acquired images are normalized to correct
for imager optical effects allowing for fluorescence intensity-based pixel segmentation via intensity
thresholding. Overall, the multispectral laser serial imaging technique shows that the resulting high
resolution data can be used for detection and classification of benthic substrates by their spectral
response. These methods highlight a path towards eventual pixel-wise spectral response analysis for
spectral differentiation.

Keywords: multispectral; laser; imaging; fluorescence; automated; discrimination; macroalgae; coral

1. Introduction

Shallow coastal underwater biological surveys make for an essential part of active
ecological and environmental research. Numerous in situ methods for collecting relevant
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biological, physical, and phenomenological environmental data exist (e.g., photo id survey,
species % cover, bottom substrata id, behavioral video) and are a vital aspect of classical
research methods. With technological advancement, some of these methods have evolved
to distance-based, or more specifically Remote Sensing (RS) measurements such as satellites,
airborne, and Aerial Unmanned Vehicles (AUVs). These methods are useful in partly cir-
cumventing often complicated field work (e.g., diving surveys), at the expense of intricacies
related to the use of RS instrumentation. For example, high-resolution satellite imagery
allows characterization of benthic biological substrates such as coral [1–3], macroalgae [4],
eelgrass [5,6], and others. These remain somewhat limited in their resolution to a few, if
not many meters, and result in a loss of detail and spectral information via water column
scattering and absorption effects. To help mitigate these effects, imaging can be done while
reducing distance to surface and can be performed on days with better imaging conditions
(e.g., calm water surface). Airborne (i.e., plane) surveys are also presently done for studies
of macroalgae [7,8], eelgrass [9] distribution, coastal habitats [10] and aerial AUV sur-
veys performed on macroalgae using hyperspectral imaging sensors [11,12] which usually
provide better resolution than satellites. These are considered somewhat still limited in
resolution required for underwater classification and identification at a smaller scale than a
stand (e.g., kelp stand, eelgrass patch).

To improve resolution for underwater RS and bring further light to the sub-surface
biological environment, instrument adaptations must be made. Passive illumination from
the sun, which most satellites use to measure reflectance and spectral response, causes a
remote sensing instrument to lose much of its resolution when probing in deeper than
shallow water. Besides absorption and scattering by water molecules, particles in the water
column can be an important factor in scattering of the downwelling (i.e., illumination) and
upwelling (i.e., reflectance, fluorescence) light, also leading to a reduction of resolution
and contrast. This type of illumination underperforms for underwater imaging for these
reasons. Comparatively, active illumination systems can vary in form and use, such as a
broad light source in an underwater photo/video imager [13], up to a focusable laser, as
in certain satellites (e.g., ICESat-2 or planes equipped with LiDAR (Light Detection and
Ranging) sensors. While both may be used to image remotely following illumination and
even reaction (e.g., fluorescence), the latter can generate a spectral response in the observed
substrate over a small footprint area (i.e., cm to km, depending on application), but also
provide range (e.g., sea-level/shallow depth bathymetry [14].

The advantages of direct illumination of photo responsive underwater biological
organisms by laser source have seen much evolution over the past 30 years. Many of these
efforts have been geared towards deployment by divers or onboard semi-autonomous
underwater instruments [13,15–19], but efforts are now mostly on integrating these imaging
technologies into underwater AUVs or appropriately fitted research vessels. Naturally,
an efficient way to generate spectral response for biological substrate classification is by
bringing laser imaging to underwater RS via underwater AUV integration (i.e., Continuous
Wave (CW) Laser Line Scan (LLS), or CW-LLS; serial LiDAR or pulsed LLS). Laser imaging
systems like these are especially well suited for working in different lighting environments,
such as in the dark, where passive illumination would not work, but also in less than
optically clear waters (e.g., serial LiDAR). Reducing the light source beam angle by using a
tightly focused laser beam reduces scattering volume in water, resulting in better image
contrast [20]. Such detection methods can also be applied in more extreme environments,
such as under ice-covered marine environments. Advantages of using an AUV also include
the possibility of simultaneous oceanographic measurements such as temperature, salinity,
water column chl-a, nutrients, irradiance, etc.) and using these for radiometric correction.

Response to light in a substrate can be observed through water but possibility of its
detection is wavelength dependent (notwithstanding particle scattering effects), due to
absorption processes, especially towards the infrared where photons become exponentially
absorbed by water molecules [21]. Many aquatic photosynthetic/photo responsive organ-
isms such as phytoplankton, diatoms, macroalgae, and corals have evolved to using or



Remote Sens. 2022, 14, 3105 3 of 24

reacting to available light within the PAR range (i.e., 350/400–700/800 nm) for photosynthe-
sis. This process allows their study by observing fluorescence as a by-product. Reflectance
measurements in underwater substrates or organisms can also be an important tool for tar-
get discrimination. Several lab studies have shown the potential for fluorescence detection
and possibly identification in color class of macroalgae [17,22,23]. Although thousands of
species of macroalgae are found worldwide, all belong to one of three possible color classes
(Rhodophyta: red, Chlorophyta: green, Phaeophyta: brown), each type with their own
characteristic photopigment assemblages. The latter are responsible for color class-specific
wavelength-dependent spectral response to light (i.e., reflectance, fluorescence, absorption),
with some variations between species and depending on health status. Corals may also
vary by their reflectance and fluorescence depending on species with/without symbiotic
microalgae and/or structural elements and fluorescent proteins [24–26]. There is therefore
much potential to benefit from these processes in devising ways to detect and classify them.

To improve upon current automated underwater imaging techniques for classification
of coastal benthic flora and sessile fauna, our work on underwater multispectral laser serial
imaging demonstrates the potential for discriminating between different macroalgal color
types and coral under different imaging scenarios. Further, we emphasize the photobiology
of macroalgae and coral in selecting suitable instrumentation for generating and recording
their spectral response (i.e., reflectance, fluorescence), while attempting to keep a simple
design. Image processing techniques related to the methods used are discussed in detail,
including detector illumination falloff correction and pixel segmentation processes that can
lead to classification. Results on reflectance and fluorescence measurements, including the
possibility of evaluating practical fluorescence efficiency, are discussed while proposing
possible improvements to the imager for better substrate discrimination.

2. Materials and Methods
2.1. Laser Imaging Setup

Laser imaging systems typically consist of an emitter and detector assembly working in
synchrony for signal generation and acquisition. Various options exist in the configuration
of the elements within such a system, such as CW-LLS or using pulsed-gated (PG) as
for LiDAR applications. While galvanometric mirrors were our choice for creating a line
scanning and reproducing a moving platform (i.e., 2-axis scanning), a rotating prism could
also have been used, as well as a Micro-Electro-Mechanical System (MEMS) optical beam
steering. However, the prism limits scanning to one dimension without an added linear
displacement of the scanning assembly but may be appropriate once the system is mounted
to an imaging platform capable of directional movement. The MEMS can be more fragile in
field deployed instruments, but still a valuable option. Choice of detector can also depend
on the intended application, where PMTs may offer the most signal-to- noise ratio in a
dark environment but can be replaced by Silicon Photo Multipliers (SiPMs) in situations
where imaging is done in the daytime and sensors may be subject to a very wide range of
illumination. The deployment platform also imposes certain restrictions, such as payload
volume and overall power consumption. In the context of applying this type of instrument
on a limited space and low power AUV, we chose to experiment with laser diodes as they fit
these requirements, are affordable and much less restricting for wavelength selection range.
A PMT with high red wavelength sensitivity and relatively equal Quantum Efficiency in the
PAR 400–700 nm range (approx. 10 to 11%) was our choice to maximize spectral response
detection in a controlled setting. Narrow bandpass filters are typically necessary in isolating
specific inelastic (i.e., fluorescence) responses from elastic (i.e., reflectance) response and
ambient underwater light, as they can all be present to a varying degree during each
sampling event. A schematic is shown in Figure 1. Further specifics on the multispectral
laser sources, scanning, and detection assemblies as well as data acquisition procedures
are explained in detail as Supplementary Materials (see Supplementary Materials section
Additional methods M1).
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Figure 1. Multispectral laser serial imager experimental setup, showing aligned laser diode array,
2-axis galvanometric scanner, underwater imaging scene behind fused borosilicate optical port, PMT,
and filter wheel assembly, linked to an ADC unit for signal acquisition and digitization to a computer
via a custom GUI.

2.2. Imaging Environment
Experimental Saltwater Tank/Benthic Scene Recreation

The saltwater experimental tank in which we performed underwater imaging tests
has dimensions roughly 1.5 mW × 7.0 mL × 1.5 mH. The tank is divided into three
compartments, with one bulkhead at each 1/4 distance from the tank extremities. Each
bulkhead is fitted with two fused silica optical ports (approx. 150 mm diameter), these
being placed at 0.5 m from the tank bottom, distanced from each other by 0.6 m and
themselves centered on the bulkhead at their mid-distance. The central compartment is
fitted with 4 vertically aligned inlet nozzles per corner and one intake near the tank bottom,
with the possibility of controlling water flow volume and direction at each nozzle. The
4 outlets are connected to a 3

4 HP pump which takes the tank water through a filtration
system consisting of a UV filter (Smart HO UV sterilizer, 150 Watt), a 5-gallon activated
carbon filter and a 1-micron bag filter operating at 20–25 psi pressure.

Live macroalgae were obtained from the low tide to shallow subtidal zone of the
Florida Atlantic coast in proximity to Harbor Branch Oceanographic Institute (Fort Pierce,
FL, USA), Wabasso, Golden Sands State Park and South Beach, Vero Beach, Florida. Spec-
imen selection was based on visual appearance, where color, turgidity, lack of necrosis
and no/low epiphytic growth were the main criteria. Following collection, samples were
brought to our imaging facility, gently washed to remove any sediment and epiphytic
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growth, and placed into the experimental saltwater tank (Figure 2a). Macroalgae belonging
to the red (Rhodophyta), green (Chlorophyta), and brown (Phaeophyta) algae classification
groups were selected (6 total—Appendix A Table A1) to generate a series of spectral re-
sponse images based on their known characteristic fluorescence and absorption responses.
As characteristic photopigment assemblages are specific to these three color groups, it is
expected that these spectral responses can be generalized to other species of the same three
groups and can be applicable worldwide.
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Figure 2. Macroalgae and coral imaging substrates arrangement prior to imaging tests where
(a) macroalgae-only scene to left and (b) mixed macroalgae-coral scene to right. Shown are
Green: (G1) Codium sp.; Brown: (B1) Sargassum sp.; (B2) Dictyota sp.; (B3) Padina sp.; Red:
(R1) Grateloupia sp.; (R2) Halymenia sp.; Coral: (C1) Acropora (A) austrera; (C2) A. cyatherea;
(C3) A. nasuta; (C4) A. nobilis; (C5) Acropora valida; (C6) Echinopora lamellosa; (C7) Montipora (M)
capricornis; (C8) M. confusa; (C9) M. digitata; (C10) M. spongodes; (C11) Nephthea sp.; (C12) Pavona
(P) decussatus; (C13) P. frondifera; (C14) Pinnigorgia flava; (C15) Plexaura flexuosa; (C16) Pocilliopora
damicornis; (C17) Psammocora stellata; (C18) Seriatopora hystrix; (C19) Stylophora pistillata; (C20) Xenia
umbellata; (C21) A. nana; (A1) Artificial surface 1; (A2) Artificial surface 2; (R) Fluorescence scale; (S95)
95% Spectralon reference; (S5) 5% Spectralon reference.

In addition, multiple live coral specimens of different species (20 total—Appendix A
Table A1), obtained through a local supplier of sustainably cloned coral fragments (see
ORA production and husbandry practices), were as well incorporated onto the benthic
scene (Figure 2b). To provide stable imaging conditions, specimens were affixed to a
non-fluorescing semi-flexible Vexar® plastic mesh structure measuring approximately
1.0 m × 1.0 m, which was initially covered by a thick black felt material to provide a
uniform, non-reflective/fluorescing black background to the live substrates. For both
macroalgae and coral, water flow was adjusted to generate a laminar-type current (e.g.,
20–30 cm s−1) over the macroalgae and coral substrates, leading to slight movement in
their part but not in excess, which could possibly lead to their stress or detachment.

2.3. Imager Spectral Characteristics
2.3.1. Contrast-Related Image Quality Metrics

Multispectral image quality was evaluated via Contrast Ratio (CR) and Contrast Signal-
to-Noise-Ratio (CSNR) metrics. Specifically, 20 × 20 pixel matrices were extracted from
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illumination falloff corrected images’ targets corresponding to 99.9% and 5% reflectance
Spectralon™ pucks and nearby empty background from elastic images (i.e., 490 nm excita-
tion and 490 nm emission) Spectralon™. The following equation was used to calculate the
Contrast Ratio:

Contrast ratio =
mean (white)
mean (black)

(1)

where mean (white) and mean (black) represent the mean of Spectralon™ pixels and the
mean of nearby background pixels, respectively.

The following equation was used to calculate the Contrast Signal-to-Noise-Ratio:

CSNR =
mean (white)− mean (black)√

stdev (white) + stdev (black)
(2)

where stdev (white) and stdev (black) represent the standard deviation of Spectralon™
pixels and the standard deviation of nearby background pixels, respectively.

2.3.2. Fluorescence-Related Imaging System Variance Measure

To characterize fluorescence response imaging reproducibility, the macroalgal and
coral benthic scene was imaged a total of five times at each excitation–emission combination
explained in detail in Section 2.2. These repeated measurements allow for a pixel-wise
intensity variance evaluation between images and can easily be visualized as a pixel-wise
intensity variance map between replicate images.

2.3.3. Reflectance and Practical Fluorescence Efficiency Estimation

In an ideal scenario, photon flux and irradiance on the pixel can be precisely de-
termined by constant monitoring of the outgoing laser power output during scanning.
While this was not feasible for this experiment, a means to estimate practical fluorescence
efficiency from these measurements via photon budget can be conducted by the method
described in Supplementary Materials Additional Methods M1. However, reflectance
standards were included in the imaging scenes, and allow us to infer pixel reflectance
and fluorescence. By imaging these calibrated reflectance standards (i.e., Spectralon™
pucks) in conjunction with the macroalgae and coral specimens, reflectance standard (i.e.,
5% and 95%) reflection intensity can be used to evaluate reflectance and fluorescence in
other substrates.

The efficiency, or yield, is considered relative, as a typical underwater LLS or LiDAR
imaging system will only have access to the elastic and inelastic backscatter from a 2π sr
solid angle since seeing past/under an object is not practical or easily feasible. How much
of the inelastic forward scatter (i.e., behind the imaged substrate) is generated during a scan
event remains unclear and dependent on what happens inside the structure (if transmission
is possible) but much is likely lost through re-absorption within substrate structure (e.g.,
macroalgae blade, coral structure—depending on shape). Fluorescence emitted at or near
685 nm by chlorophyll-a is readily re-absorbed by adjacent photosynthetic structures if
conditions allow it, for example, from within an algal structure.

In a laser line scan-generated image, the number of photons emitted, either via re-
flectance or fluorescence, by the surface can be estimated by calculating pixel intensity
value change from the outgoing light reaching the target and, in this case, the wavelength-
dependent transmitted elastic backscattered values of the known reflectance standard
pucks. This allows the estimation of average reflectance in other substrates, or the received
elastic photons.

Similarly, the number of inelastic photons emitted from a surface can be estimated by
considering the observed inelastic signal intensity value, while considering for the emission
wavelength since photons originating at different wavelengths will have different energy
levels for a same number of photons. In a situation where the number of elastic photons
is known (i.e., via power monitoring) to correspond to an observed signal intensity, the
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corresponding number of observed photons at another wavelength, such as at 685 nm, can
be estimated.

In both situations, whether the number of incident photons is known, or the pixel
intensity is used as a proxy of the number of wavelength-dependent photons, beam at-
tenuation coefficient, c, (otherwise a + b: absorption + scattering) must be accounted for
the outgoing laser beam to correct for wavelength-specific water column absorption and
scattering from the source to the target scene. Moreover, Kd (z, λ), the downwelling diffuse
attenuation function (i.e., decrease of the downwelling irradiance, Ed (z, λ), by depth m−1)
must also be applied to the observed elastic and inelastic signal values to more precisely
estimate the number of elastic and inelastic photons originating from the illuminated
substrate. In this study, water column attributes correspond closely to Jerlov 1A waters
following particulate filtration and UV sterilization system activation in preparation for
imaging (i.e., values taken from [27]: 490 nm ex; aw = 0.0196, bsw = 0.0031, Kd = 0.0212).
Additionally, care must be taken to consider the spherical spreading factor, 1/r2, where
r = distance to target (assuming isotropic response). Wavelength-dependent PMT Quantum
Efficiency (QE) can also be compensated for before comparing elastic to inelastic photons
for a more thorough estimation of practical fluorescence.

In theory, the practical fluorescence yield, or efficiency, can be calculated as follows
(see [28] for a detailed explanation):

Practical Fluorescence Efficiency (ΦP fl) =
Nb inelastic photons emitted by surface

Nb elastic photons emitted − Nb inelastic photons emitted
(3)

Estimating the number of observed elastic and inelastic photons can notably be done
by working in photon units, from the initial number of photons emanating from the
imaging source. Another method is by working in relative photon units, using a calibrated
sensor (e.g., considering for wavelength-specific cathode radiant sensitivity). Pixel data
preparation done for calculating the practical fluorescence efficiency are listed in order:
(1) the image minimum and maximum pixel values, as well as zero offset are calculated
using the 5% and 99% reflectance standards. This is initially useful in calculating the
background material reflectance, for comparison to other substrates after normalizing
their pixel values to image minimum and maximum intensity range; (2) compensation
for background reflectance variation due to illumination falloff in an area of the image
is performed by first choosing a subset of pixels near the substrate to be evaluated (e.g.,
coral or macroalgae). Since the background is of the same material and reflectance and
fluorescence properties remain the same throughout the image, an “illumination correction
factor“ is calculated from subset pixels to correct for illumination discrepancies in the
background, as well as for substrates of interest; (3) the number of elastic photons emitted
from the surface can be approximated by comparing pixel values on a given area to values
calculated via the reflectance standards, considering for beam attenuation and diffuse
attenuation K:

Nb elastic photons emittedλ =Nb elastic photonsat source c Kz (λ elastic) Substrate reflectivity (4)

Following this step, (4) an estimation of the number of inelastic photons emitted
(e.g., 685 nm) by the illuminated (e.g., at 490 nm excitation) substrate, or in other words,
the Practical Fluorescence Efficiency, ΦP fl, can be obtained by bringing the results of the
previous 3 equations together into the following equation:

Nb inelastic photons emitted λ inelastic =
Nb elastic photons emittedλ elastic

Inelastic image pixel value
aλ+bλ

Elastic image pixel value
aλ+bλ

(5)

or
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Practical Fluorescence Efficiency (ΦP fl)

=

 Macroalgae inelastic pixel intensity
Kz685

Spherical spreading factor
685 nm


 Maximum pixel intensity (i.e., 100% reflectance standards)

Kz490

Spherical spreading factor
490 nm

 Target substrate elastic pixel intensity
Kz490

Spherical spreading factor
490 nm


(6)

Practical Fluorescence Efficiency (ΦP fl) =
Relative nb photons fluoresced by substrate
Relative nb photons absorbed by substrate

(7)

2.4. Image Processing

Per imaging scenario (i.e., macroalgae only, macroalgae + coral, macroalgae + coral +
manmade target), 12 images were acquired by laser scanning and simultaneously record-
ing spectral response at different excitation and emission wavelengths. Combinations
considered for multispectral analysis were: (1) 450 nm excitation + 450 nm, 488 nm,
520 nm, 580 nm, 685 nm emission; (2) 488 nm excitation + 488 nm, 520 nm, 580 nm,
685 nm emission, and 3) 520 nm excitation + 520 nm, 580 nm, 685 nm emission.). Each
image consists of the same number of pixels (i.e., 1000 by 1000, 1,000,000 total). Per imaging
scenario, these images can be represented as part of a multispectral stack 12 layers thick for
which each pixel location on the stack has 12 levels of information (Figure 3). As a way of
measuring imaging system reliability, 5 replicate scans were performed during the same
imaging session while iterating through each of the excitation–emission pairings (As a way
of measuring imaging system reliability, 5 replicate scans were performed during the same
imaging session while iterating through each of the excitation–emission pairings).
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Figure 3. Representation of mixed species macroalgae and coral multispectral response stacked data
set arrangement (a) bottom to top: 490 nm excitation, with 490 nm, 520 nm, 580 nm, and 685 nm
emission + pixel grid; (b) detailed 685 nm emission from 490 nm excitation + pixel grid; (c) isolated
pixels belonging to three types of macroalgae after segmentation (i.e., segmentation of fluorescent
pixels via intensity value thresholding).

The acquired data layers initially underwent correction steps for detector optical
effects. Mainly, images appeared to exhibit a roll-off of luminance or vignetting, where
fewer light rays are reaching the sensor the further from the FOV center they originate on
the scan field. While this was not accounted for in this prototype multispectral imager, such
effects can be minimized by using a matching lens. The drop-off in light intensity towards
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the edges of the images can also be somewhat corrected by removing the background
illumination by a technique involving imaging a homogeneous target which is possible by
using the same optical imaging system [29]. As we imaged a checkerboard pattern reference
background for illumination correction and not a uniform background (which would have
been easiest), fitting a curve matching the illumination peak of the reference background
(and hence each white square of the checkerboard) for each excitation wavelength was
necessary to capture the illumination intensity curve. To verify image intensity correction,
background values (i.e., between algal, coral, and artificial substrates) were compared and
therefore images deemed corrected when little or no illumination gradient was present in
the background. Light falloff could also be minimized by restraining image dimensions to
the 65% inner pixels, where light falloff could be more easily compensated for. Importantly,
no other radiometric corrections were made to the acquired images, keeping them intact
for pixel-wise spectral response comparison and analysis.

The process of image normalization (Figure 4) was followed by intensity thresholding
to identify pixels showing fluorescent response. Thresholding for macroalgae segmenta-
tion was conducted by using spectral response channels showing the strongest response,
from excitation at 490 nm and emission at 580 nm (red macroalgae) and 685 nm (green
macroalgae, brown macroalgae). Coral pixel identification via programmatic thresholding
was performed by using 450 nm and 490 nm excitation, and 490 nm, 520 nm, 580 nm,
and 685 nm emission responses, where many channels showed similar but slightly dif-
ferent responses, hence slightly different pixel segmentation between channels. This can
eventually be a cause for classification error, as spectral response channels do not overlap
perfectly between excitation wavelengths. In an eventual spectral response classification
scenario, manual segmentation of the pixel identities such as algal color class and speci-
men id, coral type/species group could be necessary to validate classification algorithms.
Illumination-normalized images can thereafter be used for unsupervised and supervised
classification.
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erboard background was only imaged in the absence of filters. Hence, the illumination 
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Figure 4. Illumination falloff correction procedure for 1000 by 1000 pixel images (except (e,f),
which are subset of 650 by 650 pixels, centered on image), showing (a) background checkerboard;
(b) intensity averaged background (i.e., Gaussian filter—10 pixel radius); (c) curve-fitting pixel
intensity profile at center of illumination; (d) original checkerboard background corrected for illumi-
nation falloff; (e) uncorrected raw image with noticeable light intensity falloff; (f) illumination falloff
corrected image where background is mostly uniformized in its intensity.

3. Results
3.1. Image Normalization

The image normalization process was efficient in noticeably reducing illumination
falloff effect in spectral response images. However, it must be mentioned that the checker-
board background was only imaged in the absence of filters. Hence, the illumination
falloff correction shows better results in the reflectance images, that is, when no filters
were in use, than for other filters (Figures 5–7). This effect is more noticeable due to an
open-diameter reduction by the filter “border ring”, and under-correction is due to this on
image borders but especially the corners where the effect is more noticeable. Figures 5–7
may also have been altered for their intensity or contrast and de-speckled (i.e., outliers),
only for revealing certain image details and overall spectral response. When undergoing
spectral analysis (e.g., statistical, classification), these should remain unmodified in all
cases, except for optical effects normalization which is the same process for each image.
Although it is adequate to bring such corrections when conducted appropriately, in an
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ideal setting, none would be required, but this is untrue for most radiometric sensors or
remote sensing instruments.
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Figure 5. Images recorded through spectral response of macroalgae and species from excitation at
450 nm (top row) from left, reflectance at 450 nm without filter, 450 nm with bandpass filter, emission
at 490 nm, 520 nm, 580 nm, and 685 nm; excitation at 490 nm (middle row) from left, reflectance
at 490 nm without filter, 490 nm with bandpass filter, emission at 520 nm, 580 nm, and 685 nm,
and excitation at 520 nm (bottom row) from left, reflectance at 520 nm without filter, 520 nm with
bandpass filter, and emission at 580 nm and 685 nm.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 24 
 

 

 
Figure 6. Images recorded through spectral response of macroalgae and coral species from excita-
tion at 450 nm (top row), and from left, reflectance at 450 nm without filter, 450 nm with bandpass 
filter, emission at 490 nm, 520 nm, 580 nm, and 685 nm; excitation from left, at 490 nm (middle row), 
and from left, reflectance at 490 nm without filter, 490 nm with bandpass filter, emission at 520 nm, 
580 nm, and 685 nm, and excitation from left at 520 nm (bottom row), and from left, reflectance at 
520 nm without filter, 520 nm with bandpass filter, and emission at 520 nm, 580 nm, and 685 nm. 

 
Figure 7. Images recorded through spectral response of macroalgae and coral species, from excita-
tion at 450 nm (top row), from left with reflectance at 450 nm without filter, reflectance with band-
pass filter, and emission at 490, 520, 580, and 685 nm; excitation at 490 nm (middle row), and from 
left with reflectance at 490 nm without filter, reflectance with bandpass filter, and emission at 520, 
580, and 685 nm, and excitation at 520 nm (bottom row), and from left with reflectance at 520 nm 
without filter, reflectance with bandpass filter, and emission at 580 and 685 nm. 

Figure 6. Images recorded through spectral response of macroalgae and coral species from excitation
at 450 nm (top row), and from left, reflectance at 450 nm without filter, 450 nm with bandpass filter,
emission at 490 nm, 520 nm, 580 nm, and 685 nm; excitation from left, at 490 nm (middle row),
and from left, reflectance at 490 nm without filter, 490 nm with bandpass filter, emission at 520 nm,
580 nm, and 685 nm, and excitation from left at 520 nm (bottom row), and from left, reflectance at
520 nm without filter, 520 nm with bandpass filter, and emission at 520 nm, 580 nm, and 685 nm.
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Figure 7. Images recorded through spectral response of macroalgae and coral species, from excitation
at 450 nm (top row), from left with reflectance at 450 nm without filter, reflectance with bandpass
filter, and emission at 490, 520, 580, and 685 nm; excitation at 490 nm (middle row), and from left
with reflectance at 490 nm without filter, reflectance with bandpass filter, and emission at 520, 580,
and 685 nm, and excitation at 520 nm (bottom row), and from left with reflectance at 520 nm without
filter, reflectance with bandpass filter, and emission at 580 and 685 nm.

3.1.1. Macroalgae Fluorescence Imaging Scenario

Fluorescence imaging results were in accordance with certain known fluorescence
characteristics in macroalgae of the three color classes [30]. Red macroalgae can be singled
out by their response at 580 nm emission (a wavelength within a certain fluorescence re-
sponse range), especially from 490 nm excitation, but also at 520 nm (Figure 5). Fluorescence
response was not as intense from 450 nm excitation. Comparatively, green macroalgae
showed the most fluorescence response at 685 nm, from excitation at 490 nm, compared
to brown macroalgae which were also expected to emit fluorescence in this wavelength
range, both resulting in chlorophyll-a fluorescence emission. This fluorescence intensity in
green and brown macroalgal response is somewhat mirrored at 450 nm excitation but overall,
less intense than after excitation at 490 nm. However, the fluorescence intensity response
difference seemed lessened between brown and green macroalgae at 520 nm. On another
note, overall fluorescence in red macroalgae at 580 nm appears fainter in images than that
of other algal color types at 685 nm, and was more difficult to threshold from background
illumination and highlight in post processing (i.e., for visual purposes). This may simply
suggest a lessened physiological response in these red specimens ([30], where more laser
source power (if the algae are not overwhelmed by the increased intensity) or receiver gain
is needed while keeping the same imaging parameters. It is also possible that we are not
observing at the optimal emission wavelength, although we have observed the range to quite
broad from excitation from 450 nm to 550 nm in other red macroalgae [30]. Other emitter
wavelengths could potentially generate more fluorescence but must remain in the range of
laser diodes manufactured. Filter transmission could also affect observed signal intensity.

3.1.2. Macroalgae + Coral Fluorescence Imaging Scenario

In a mixed macroalgae + coral scenario (Figure 6), macroalgae showed the same
fluorescence patterns as when imaged without coral. Macroalgae placement in this 2nd
scenario is slightly different from the 1st since some specimens partially detached over
the course of 1–2 days in the slow-moving current and were (or not) replaced by similar
specimens. Coral did show typical fluorescence response as expected in the literature
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through the 490 nm, 520 nm, 580 nm, and 685 nm fluorescence channels from excitation
in the 450 to 520 nm range (Figure 6). While these will not be discussed in detail, cer-
tain species show drastic difference in fluorescence response from others. For example, a
Montipora capricornis specimen in the image center, at excitation 450 nm excitation (top
row), strongly fluoresces at 490 nm, and decreasingly so towards 580 nm. Comparatively, a
Montipora digitata specimen, slightly right from center, shows a very strong fluorescence
response near 580 nm from excitation at 490 nm, more so than at shorter emission wave-
lengths. The specimen also fluoresces considerably more than other imaged species (except
Psammocora stellata, located halfway from center to top left image corner). The soft-bodied
corals Nephthea sp. and Xenia umbellata, located approximately half-way and three-quarter
ways from center, respectively, appear to emit fluorescence near 685 nm only, and the fluores-
cence response does not seem much influenced by excitation wavelength. While some species
or genus may show undifferentiable spectral response, these spectral characteristics in coral as
well as macroalgae are the basis for building an automated spectral response classifier.

3.2. Illumination Falloff Correction

To counteract this vignetting of mechanical (i.e., partial obstruction) but also of pixel
(i.e., dependent of incident angle of light onto the light sensor) nature [31], observed in
all images produced so far, we provide images for which the exterior border was cropped
uniformly (Figure 7), effectively resizing images from 1000 × 1000 to 650 × 650 pixels. The
optical effect is hence noticeably reduced in these cropped images, allowing for more appropriate
pixel intensity-based spectral response classification. A similar method might be used in a situation
where images acquired by an optical sensor through a special lens (e.g., camera, scanning LiDAR)
would be cropped during the process of writing the image/data to file.

3.3. Fluorescence Intensity Thresholding for Pixel Segmentation

With the objective of processing the spectral response datasets automatically during
or following acquisition while performing an AUV survey, fluorescent substrate pixels of
macroalgae and corals needed to be identified by the signal intensity, per specific spectral
response channel. To accomplish this programmatically, a threshold value was used to
identify and apply a binary mask (Figure 8a) to the original images, keeping the spectral
response signal intensities intact for analysis and providing background-subtracted images
(Figure 8b). By this method, it was possible to efficiently identify fluorescent vs. background
non-fluorescing pixels and drastically reduce dataset size. This is essential for simplifying
and perhaps having the ability to tailor subsequent substrate-specific spectral response
analyses by accessing only required parts of the dataset (e.g., macroalgae only).

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 24 
 

 

be used in a situation where images acquired by an optical sensor through a special lens 
(e.g., camera, scanning LiDAR) would be cropped during the process of writing the im-
age/data to file. 

3.3. Fluorescence Intensity Thresholding for Pixel Segmentation 
With the objective of processing the spectral response datasets automatically during 

or following acquisition while performing an AUV survey, fluorescent substrate pixels of 
macroalgae and corals needed to be identified by the signal intensity, per specific spectral 
response channel. To accomplish this programmatically, a threshold value was used to 
identify and apply a binary mask (Figure 8a) to the original images, keeping the spectral 
response signal intensities intact for analysis and providing background-subtracted im-
ages (Figure 8b). By this method, it was possible to efficiently identify fluorescent vs. back-
ground non-fluorescing pixels and drastically reduce dataset size. This is essential for sim-
plifying and perhaps having the ability to tailor subsequent substrate-specific spectral re-
sponse analyses by accessing only required parts of the dataset (e.g., macroalgae only). 

 
Figure 8. Fluorescent substrate pixel isolation and extraction from background non-fluorescent pix-
els via thresholding: (a) Left: A composite of fluorescence at 685 nm is used here to create a binary 
mask to select green + brown macroalgae, 580 nm for red macroalgae, and 520 nm for coral (but 
other wavelengths also can identify “coral” pixels); (b) Right: Fluorescent pixel image obtained from 
extracting 685 nm fluorescent pixels from non-fluorescing background pixels via thresholding.  

3.4. Contrast-Related Image Quality Metrics 
3.4.1. Resolution 
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cence scale on the elastic response images (Figure 9). Since the real-life scanned dimen-
sions are approximately 900 × 900 mm, and the black and yellow alternating lines near the 
ruler upper extremity are 1 mm thick each, resolution is therefore in the vicinity of 0.9 mm 
in the elastic images. Since it is a fluorescent scale, and that the inelastic fluorescence pro-
cess is generally more diffuse (i.e., Lambertian) than an elastic, resolution is generally re-
duced in the inelastic images albeit appears to remain within the 1.0–1.5 mm range. 

 

Figure 8. Fluorescent substrate pixel isolation and extraction from background non-fluorescent pixels
via thresholding: (a) Left: A composite of fluorescence at 685 nm is used here to create a binary
mask to select green + brown macroalgae, 580 nm for red macroalgae, and 520 nm for coral (but
other wavelengths also can identify “coral” pixels); (b) Right: Fluorescent pixel image obtained from
extracting 685 nm fluorescent pixels from non-fluorescing background pixels via thresholding.
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3.4. Contrast-Related Image Quality Metrics
3.4.1. Resolution

The smallest and most accurately measurable and resolvable feature is in the fluores-
cence scale on the elastic response images (Figure 9). Since the real-life scanned dimensions
are approximately 900 × 900 mm, and the black and yellow alternating lines near the ruler
upper extremity are 1 mm thick each, resolution is therefore in the vicinity of 0.9 mm in the
elastic images. Since it is a fluorescent scale, and that the inelastic fluorescence process is
generally more diffuse (i.e., Lambertian) than an elastic, resolution is generally reduced in
the inelastic images albeit appears to remain within the 1.0–1.5 mm range.
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Figure 9. Fluorescent scale for resolution verification. White and black squares represent 10 mm
segments. In the left image (a), the white and black lines visible in the upper left square represent
1.0 mm markings from 490 excitation and 490 emission (i.e., elastic), and in the right image (b),
fluorescence at 580 emission from excitation at 490 nm.

3.4.2. Contrast Ratio (CR) and Contrast Signal-to-Noise-Ratio (CSNR)

Contrast Ratio and Contrast Signal-to-Noise-Ratio were evaluated for calibrated re-
flectance standards, green, brown, and red macroalgae, as well as for various coral speci-
mens (see pixel subsample locations, Figure 10). A subset of 10 × 10 pixels from individual
algal specimens of the three different color classes, as well as coral specimens, were used to
calculate a series of 2 pi steradian average quantum yield of fluorescence values. Subset
locations were selected on Spectralon™ reflectance standard targets, and where only coral
(irrespective of species) or only one color class of macroalgae were present. A wide range
of CSNR and CR values (i.e., quality = better contrast and higher SNR) in reflectance and
fluorescence responses is seen in spectral response datasets (Figure 11). CSNR and CR for
Spectralon are only shown in elastic response as any signal at other emission wavelengths
would be considered as filter leakage (however, see Figure 6, 490520), eventually correctable
by notch filter and better bandpass filter transmission cutoff values. Since reflectance targets
are so much more reflective than nearby fluorescence-capable biological substrates and
fluorescence is a much weaker signal, fluorescence-based spectral response analysis is
unlikely to be “tainted” by the elastic/reflectance component. Additionally, CSNR and CR
in elastic images are lower than other emission wavelengths for macroalgae, in comparison
to coral.
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Figure 10. Contrast Ratio (CR) and Contrast Signal-to-Noise-Ratio (CSNR) macroalgae and coral
subsample locations (large yellow squares), as well as reflectance standard subsets (small yellow
squares. Macroalgae and coral specimen subsets are shown vertically to the left and top of the main
center image. To the right of the main image, coral subsets (top right) are shown, with binary selection
filter (from image pixel fluorescence threshold value) (middle right), and programmatically (binary
fluorescence filter) selected fluorescent (to right of main image, left subset) and non-fluorescent
background (to the right of main image, right subset).

By using fluorescence intensity thresholding to identify algal pixels, “fluorescence-
capable” pixels are correctly identified, however, they score low in CSNR and CR index
ratios because of a similarly reflective surrounding background. Further, using fluorescence
emission at 580 nm for identifying red macroalgae rather than at 685 nm did not show
substantial change or improvement in the contrast-related index ratios, but would be a
useful approach in generating “fluorescence-capable pixels” map, as it would be for other
potential emission wavelengths for other substrates of interest.
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select spectral response image subsets of macroalgae and coral specimens, from excitation at 450 nm
(left column), from top to bottom with (a) reflectance at 450 nm with bandpass filter, and emission at
(b) 490, (c) 520, (d) 580, and (e) 685 nm; excitation at 490 nm (middle column), from at top to bottom
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excitation at 520 nm (right column), from top to bottom with (j) reflectance at 520 nm with bandpass
filter, and emission at (k) 580 and (l) 685 nm.
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3.5. Fluorescence-Related Imaging System Variance Measure

Opto-mechanical instrument and biological-related image acquisition stability shows
low overall variance between replicated images. The results, however, show several loca-
tions with higher replicate-wise pixel intensity variability. In several instances, gammarids
were observed moving in the water column and nearby some algal specimens. These or-
ganisms moving within the algae, the latter which emit fluorescence, during imaging may
be the reason higher values are observed at x–y locations 650–500 and 850–350. However,
the main observable feature is represented by 2 soft coral species capable of movement
within the timeframes between replicate images (x–y: 700 to 950–500 to 700). Moreover,
fluorescence variability does not appear to be any more important than in the background
when looking at the un-denoised image (Figure 12a).
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Figure 12. Pixel intensity variance between image replicates (a) not denoised; (b) denoised using
3 × 3 median filter) generated by laser excitation at 490 nm, and corresponding fluorescence at
685 nm in various macroalgae and coral species. Note an area of high variance that can be attributed
to soft coral-associated structure and polyp contraction between image takes (i.e., approx. 30 min).

3.6. Irradiance on the Pixel-Photon Model for CW Line Scan

Laser diode beam spot sizes were measured on target surface and were 1.5 ± 0.1 mm
for 450 nm and 490 nm laser diodes, whereas the 520 nm laser diode spot size on target
measures 2.0 ± 0.1 mm. Since laser scan speed was set to 20,000 mm/s, effective dwell
times for 450 nm and 490 nm laser diodes on target were 75 µs, whereas dwell time for the
520 nm laser diode was more in the range of 75 µs (Supplementary Materials Table S2). Us-
ing water IPO values from [32], estimate values were calculated for the wavelengths under
study (Supplementary Materials Table S3), and used to provide an estimate calculation of
photons per unit area (Supplementary Materials Table S4).

3.7. Reflectance and Practical Fluorescence Efficiency

Pixel reflectance values near 3% are also in agreement with reflectance measurements
for macroalgae in other studies [33–35]. Practical fluorescence efficiency in chlorophyll-a
present macroalgae fell within or near the few available published literature estimates [36],
as did values for coral (i.e., 4–6%) [37] (Table 1). Some variability is expected as the
substrates are of biological nature. Since the PMT QE at elastic wavelength of 490 nm
(11%) is slightly higher than inelastic fluorescence response at 685 nm (approx. 10.2%),
presented values are adjusted accordingly by correcting raw image pixel intensity values
before practical fluorescence yield calculation.
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Table 1. Substrate reflectance and practical fluorescence yield values, corrected for water column
attenuation effects.

Substrate Type Pixel Reflectance Practical Fluorescence Efficiency

Green macroalgae 0.0295 0.0219
Brown macroalgae 0.0287 0.0161

Red macroalgae 0.0302 0.0149
Coral-hard 0.0967 0.0260

4. Discussion

Emphasizing on laser serial imaging and detection of macroalgae and coral, applied
to large km-scale underwater biological surveys, our work expands on previous trials for
underwater imaging of living benthic substrates such as coral [13–18,23]. We aim to further
improve underwater remote sensing imaging means, with the objective of identification
and classification of benthic flora and sessile fauna. Our study also bridges the gap be-
tween laboratory [22,38] and more in situ experimentation in remote sensing detection and
classification of macroalgae, by working in the laboratory with yet realistic water column
volume and optical characteristics as well as AUV working distance conditions. Using
laser serial imaging techniques to generate and record spectral response in macroalgae as
well as coral, we demonstrate their potential for detection, quantification, and differentia-
bility in the context of future large-scale coastal ecology-driven benthic macroalgal and
coral surveys.

4.1. Generating Spectral Response with the Proposed Imager Design

While being able to provide high resolution benthic substrate images at an adaptable
distance of at least 2.3 m, the underwater multispectral laser serial imaging system we
designed is efficient in highlighting some of the main fluorescence response signatures
representative of macroalgae and coral. In algae, chlorophyll-a dominant green macroalgae
were identifiable as predicted via their strong fluorescence response at 685 nm. This
was also observed in brown macroalgae but to a lesser extent than the green specimens.
This fluorescence response appears to be excitation wavelength-dependent, where “bluer”
excitation at 450 nm and especially 490 nm was more efficient in generating fluorescence
in green macroalgae, whereas “greener” excitation wavelength appears to have narrowed
the gap in visible fluorescence response intensity between green and brown macroalgae. If
this trend continues further towards the green wavelengths, brown macroalgae could be
somewhat more differentiable by their higher fluorescence from excitation into the “far-
green” wavelengths (i.e., 532 nm), as supported by other works demonstrating fluorescence
in various macroalgae of the three color types [39]. Red macroalgae may be the easiest to
differentiate from other colored species by their fluorescence response in the 580 nm range,
where green and brown macroalgae color types do not show easily observable fluorescence
in this wavelength range. Fluorescence in the red macroalgae was somewhat less intense
comparatively to other color groups at 685 nm, and this may be due in part by the structural
nature of the selected algae. Selected and available reds were effectively thinner than greens
and browns, suggesting that thicker or more dense photosynthetic tissue could generate
more fluorescence for the same excitation energy given on its surface. Red macroalgae are,
however, known to vary in thickness between species, so this should not be considered a
trend in red macroalgae per se, but possible in macroalgae of different thicknesses.

In coral, high-resolution imagery is also possible from acquired data, and as for
macroalgae, quite dependent on laser beam diameter or spot size on the target surface.
For this study, all laser wavelengths and combined emission filters provided quality high-
resolution spectral response images for eventual classification. The 520 nm wavelength
emission filter was also important in the sense of allowing rapid differentiation between
coral and macroalgae, as the latter do not or emit very little at this wavelength. This
allows for potential rapid “first-step” segmentation or classification between these two
substrates occurring in a mixed coverage setting. Differentiation between genus, species,
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and structure (i.e., flat/erect, soft/hard) in coral is not easily visible in images at first, but
possibly for some coral specimens (i.e., soft coral species) which emit more specifically at
685 nm (or perhaps our imager, in its current configuration, only allows us to see limited
emission wavelength ranges), which is a response solely due to their symbiotic microalgae.
Machine learning-based spectral classification methods should provide better means for
differentiating between algal color types and coral genus/species, considering that multiple
spectral response parameters can be evaluated simultaneously.

Initially, use of a 405 nm laser diode in series with the other laser sources was in-
tended for extended classification excitation range on coral (e.g., [24,40]), but unfortunate
difficulties (i.e., alignment issues, beam diameter properties, galvanometric mirror sur-
face coatings) during the tests prevented us from generating spectral response images for
which optical effects could be corrected for. Macroalgae would have also possibly bene-
fited from this additional excitation wavelength based on an absorbance curve shown in
literature [41], and from the images that were obtained during imaging trials (see
Appendix A Figure A1). Macroalgae spectral response would also have possibly ben-
efited from a 505 nm excitation source to provide further possibility of discrimination
between brown and green fluorescence response, but observation via the 520 nm imag-
ing source suggests this may not have provided as much benefit as from excitation at
longer wavelengths, such as 532 nm. The 505 nm wavelength is sitting close to the 490 nm
and the 520 nm, but the fluorescence response increase appears gradual from 490 nm to
520 nm. Literature also suggests relatively low differentiability in macroalgae by inde-
pendent reflectance measurements within this range [33–35,41], but could be of use in
differential reflectance measurements [34].

A potential additional value to underwater remote sensing biological surveys is the
addition of practical fluorescence yield as a proxy measure of macroalgal or coral health,
somewhat comparable to phytoplankton variable fluorescence measurements [42]. By itself,
the elastic signal acquired during imaging can provide high resolution images of these
biological substrates, but do not readily give their health status. Additionally, inelastic
fluorescence response can provide an indication of the nature of the imaged substrate, for
example, detecting fluorescent living substrates, algal or coral-like, but with less resolution.
A challenge thereby is in using both signal types to extract more information from the
image data. For this, an understanding of water column IOPs in a given survey location,
coupled with a thorough elastic and inelastic sensor calibration (i.e., image reflectance and
fluorescence intensity value “behavior” in different imaging situations) are required. In
situations where fluorescence is detected and imaged, but differences in intensity could be
associated with the substrate’s structure (e.g., kelp blade thickness) [30,39,43], fluorescence
yield in a healthy specimen should remain the same for a given species regardless of
structural variation. Importantly, measurement conditions should therefore be considered
as important for this type of evaluation.

4.2. Creating Radiometrically Correct Images for Spectral Analysis

While the objectives of our study were to evaluate multispectral imaging and de-
tection methods for the generation of spectral response data sets, the receiver optics we
used to record reflected light and emitted fluorescence were the source of additional
complications in the normalization of images for possible intensity-response use and sta-
tistical/classification analysis. In hindsight, additional steps could have been taken in
planning for the normalization procedures by background correction measures and the
effect that the filters may have in creating a drop-off in illumination. Additionally, in
preparing a more definite and “ready for use” version of such an imager, one would benefit
from a more thorough ray-tracing analysis to efficiently choose the optical receiver compo-
nents. Depending on intended field of view (e.g., 60 degrees (−30 to +30 centered on nadir),
90 degrees (−45 to + 45 centered on nadir), etc.) and therefore scan area width at expected
working distances underwater, collecting optics should be designed to receive as much
light and signal as possible while maintaining distortion effects to a minimum. These
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steps would in turn facilitate programmatic image correction and possibly provide better
results (e.g., [29]). In our present situation, in cropping images to an area size where the
illumination drop-off effect was sufficiently corrected for, we believe we have been able to
generate spectral response datasets adequate for fluorescence intensity response analysis.
In a subsequent version of such an imager, each laser source and emission filter pair would
require individual radiometric calibration to ensure optimally acquired images and/or
remote sensing spectral response data (e.g., [44]). Further, alternatives in filter dimensions
and characteristics, as well as a receiver-type front lens could alleviate and even eliminate
some of these optical effects. Optimizing filter optics, such as improving transmissivity,
and the addition of narrow passband notch filters to block elastic response leakage more
efficiently, could substantially improve fluorescence detection.

Difficulties in generating quality images may arise when surfaces or substrates of
different reflective index and/or fluorescent response are within the same image (e.g.,
Figure 10). Satellite imagery (e.g., Landsat) pixel saturation is, for example, frequent in
situations where forest fires are occurring [45], and useful in their detection. In our situation,
it was difficult to assess exactly how the detector would respond to these substrates in
terms of signal saturation. This situation resulted in some of our mixed substrate benthic
scene recreations to be more saturated on certain corals, reducing detail in areas of these
reflectance images while attempting to maximize fluorescence detection with increased
signal gain. By increasing laser power output, one could expect a certain increase in
fluorescence response. However, this also causes pixel saturation from highly reflective
surfaces. We show that highly detailed images can be made, at the cost of losing some
contrast or intensity in one end of the surface reflectivity/fluorescence spectrum or the other
(i.e., algae/coral vs. artificial surface). This could be remediated by optimizing each optical
receiver channel to the type of targeted substrate to characterize in a specific situation. For
example, a specific sensor could be reserved for highly reflective surface characterization,
by having a neutral density filter in place (i.e., verified to keep dynamic range and not
saturate the sensor) or more appropriate gain setting, while another sensor recording
reflectance at the same wavelength in a natural/biological substrate, or fluorescence at
another channel would not have the same neutral density filter to attenuate this light,
and/or not have the same gain/amplification settings if necessary.

4.3. Consideration for Wavelength-Dependent in-Water Differential Refraction Effects

With a multispectral imaging instrument comprised of multiple laser excitation
sources, great care must be taken to precisely align beams so they may follow the same
path to the target at intended operating distances. Additionally, a greater path length from
instrument to target increases this requirement for precise alignment. Failure to do this can
result in a slightly different start location at the beginning of a scan. This could also be more
noticeable as the scanning area is increased and more visible at the edges of the scanning
field. Higher resolution systems may also suffer more significantly from this problem as the
laser spot size is smaller and gives less opportunity for adjacent pixels to partially overlap.
In hindsight, our setup showed good alignment between laser sources for the distance at
which images were taken. Visualization of the spectral response layers’ pixel alignment
via a GIS software, used for preliminarily pixel segmentation analysis, showed relatively
low offset between spectral response layer pixels, except nearing image borders. This effect
can easily be minimized by precise alignment procedures when working on a final version
of the imager that has undergone optimal component selection through imaging trials.
Laser wavelength color deviation (i.e., refractive index-dependent) and absorption can
also be accounted for in later developmental stages of the imager. For example, imaging
a dot-matrix technical target at desired wavelengths, which allows calculation for beam
displacement in relation to evenly spaced markers in both x and y dimensions.



Remote Sens. 2022, 14, 3105 20 of 24

5. Conclusions

In creating a multispectral imager for an underwater AUV, optical and electronic
component choices must be made to coincide with the deployment platform operating
characteristics and requirements. Laser sources are an appropriate choice in preparing an
instrument for imaging in locations where scattering may be a restricting factor compared
to broader or less focused light sources (e.g., by flash lamp). Current laser technology
limits useable imaging wavelengths for macroalgae and coral to somewhere between
355 and 532 nm, but many CW laser diode options are available from 405 nm, 445 nm,
450 nm, 465 nm, 488 nm, 505 nm, 510 nm, 520 nm, and 532 nm (albeit more wavelengths
are becoming available in the 540–550 nm range). Comparatively, stable, powerful, and
high repetition-rate pulsed lasers are available in 355 nm, 473 nm, and 532 nm wavelengths.
In its current form, the emitter system remains simple in its design by having a low
number of excitation sources, which may be a challenge but still feasible to implement
(i.e., interweaving sequential timing of specific laser wavelength scanning and acquisition
process). This relatively unexplored approach could characterize spectral response in
the PAR (350–800 nm range via multiple near simultaneous multi-wavelength excitation–
emission processes in substrates of interest.

Our work shows the potential for detection and classification in biological benthic
substrates such as macroalgae and coral by their reflectance and fluorescence response.
The ideal working distance-to-target is in the range of 1 to 5 m for an optimal detection of
chlorophyll-a fluorescence, albeit this can possibly be extended to 10 m in clear waters [46].
Additionally, the observable signal range is dependent on the intensity of fluorescence
emitted, which depends on the laser source intensity and power density. This detec-
tion limitation is mainly due to the higher absorption coefficient of seawater for light at
685 nm (i.e., Chl-a fluorescence peak). Light absorption and scattering reference values for
the wavelengths used in this study suggest an attenuation of the fluorescence of nearly
0.5 m−1, or loss of 50% of the signal in only 1 m of pure seawater. This absorption (or
attenuation) is, however, much less at lower wavelengths, from 400 to 600 nm, 0.01 to
0.244 m−1, respectively, which facilitates light ‘delivery’ from source to imaging target,
as well as fluorescence and overall light detection in this lower range in which coral and
macroalgae also show spectral response. In the context of future environmental coastal
surveys, where optical condition may vary locally, it is best to optimize signal-to-noise
ratio of fluorescence via using the most powerful but practical laser sources possible, and
high transmission optical components, while adjusting parameters during the survey (e.g.,
detector gain, laser intensity). However, this imaging method is still subject to water optical
quality, as all other imaging methods, and surveys should be planned to fit with local water
optical conditions to optimize dataset and image quality. AUV-based surveys can reduce
many of these inconveniences by working as close as possible to the imaging substrate, and
wave/wind conditions that AUV vehicles which are already built to compensate for can
be minimized.

A high-resolution multispectral receiver could be an integral part of such a multi
excitation wavelength system by having many (i.e., 16, 32, etc.) identical sensors record-
ing in parallel at different narrow wavelength bandwidths. This receiver would bring
the possibility of generating a more accurate and detailed spectral response signature
for spectral discrimination in target surfaces. Additionally, pulsed lasers in the 355 nm,
473 nm, and 532 nm range for pulsed LLS/serial LiDAR would give the advantage of range
resolution and 3D point cloud generation. Moreover, dual simultaneous (or near) pulsed
laser sources, such as 532 nm and a 473 nm blue laser, or a 355 nm would allow for work
on detection and spectral discrimination by fluorescence and differential reflectance, which
has shown some promise in obtaining additional spectral response classification measures.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14133105/s1.
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Appendix A

Table A1. Macroalgal and coral genus, species, and group names used during imaging trials (distri-
bution obtained from the World Register of Marine Species database [47].

Type Genus Species Color
Class Known Distribution

Macroalgae Codium sp. Green Eastern Florida Coast/Atlantic/Caribbean
Sargassum sp. Brown Eastern Florida Coast/Atlantic/Caribbean
Dictyota sp. Brown Eastern Florida Coast/Atlantic/Caribbean
Padina sp. Brown Eastern Florida Coast/Atlantic/Caribbean

Grateloupia sp. Red Eastern Florida Coast/Atlantic/Caribbean
Halymenia sp. Red Eastern Florida Coast/Atlantic/Caribbean

Type Genus Species Structure Shape Known distribution

Coral Acropora austera Hard Erect Indian Ocean/Pacific Ocean/Red Sea
cyatherea Hard Erect Indian Ocean/Pacific Ocean/Red Sea

nana Hard Erect Indian Ocean/Pacific Ocean/Red Sea
nasuta Hard Erect Indian Ocean/Pacific Ocean/Red Sea
nobilis Hard Erect Indian Ocean/Pacific Ocean/Red Sea
valida Hard Erect Indian Ocean/Pacific Ocean/Red Sea

Echinopora lamellosa Hard Flat Indian Ocean/Pacific Ocean/Red Sea
Montipora capricornis Hard Flat Indian Ocean/Pacific Ocean/Red Sea

confusa Hard Erect Indian Ocean/Pacific Ocean
digitata Hard Erect Indian Ocean/Pacific Ocean/Red Sea

spongodes Hard Erect Indian Ocean/Pacific Ocean/Red Sea
Nephthea sp Soft Erect Indian Ocean/Pacific Ocean
Pavona decussatus Hard Erect Indian Ocean/Pacific Ocean

frondifera Hard Erect Indian Ocean/Pacific Ocean/Red Sea
Pinnigorgia flava Soft Erect Indian Ocean/Pacific Ocean

Plexaura flexuosa Soft Erect Gulf of Mexico-Caribbean
Pocilliopora damicornis Hard Erect Indian Ocean/Pacific Ocean/Red Sea
Psammocora stellata Hard Erect Indian Ocean/Pacific Ocean/Red Sea
Seriatopora hystrix Hard Erect Indian Ocean/Pacific Ocean/Red Sea
Stylophora pistillata Soft Erect Indian Ocean/Pacific Ocean/Red Sea

Xenia umbellata Soft Flat Indian Ocean/Red Sea
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Figure A1. Laser-line-Scan images recorded through spectral response of macroalgae and species 
from excitation at 405 nm and (a) reflectance at 405 nm and (b) fluorescence emission at 685 nm on 
algal substrates only. Imaging parameters did not allow to use data provided by the 405 nm excita-
tion source since radiometric correction would prove difficult at best. 
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Figure A1. Laser-line-Scan images recorded through spectral response of macroalgae and species
from excitation at 405 nm and (a) reflectance at 405 nm and (b) fluorescence emission at 685 nm on
algal substrates only. Imaging parameters did not allow to use data provided by the 405 nm excitation
source since radiometric correction would prove difficult at best.
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