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Abstract: For bridges with surface foundations, scour is one of the main reasons for bridge failures.
In regard to structural health monitoring, vibration-based scour detection techniques have received
increasing attention over the past two decades. Scour occurs below the water surface in rivers
or sea, leading to difficulty in equipment installation and maintenance. Recently, the concept of
“drive-by” SHM using the indirect measurement of passing vehicle responses has been developed
rapidly due to its convenience and low cost. This paper proposes a method to detect scour using
the vehicle responses under an operational vehicle speed. The wavelet transform was applied to
vehicle accelerations to obtain the wavelet energy. It was found that the wavelet energy increases
with the increase in the scour damage level. However, the wavelet energy may also be affected by
the on-site operating environments, such as sensor noise and other variabilities, which interferes
with the identification of scour in practice. Hence, in this work, a statistical-wavelet-based approach
was presented to effectively detect the presence of scour and even its location. The feasibility of the
proposed approach is verified in both numerical simulation and lab experiments. The results show
that the proposed method has a good potential to detect scour using indirect measurements.

Keywords: bridge scour; indirect measurement; wavelet energy; vibration; SHM; vehicle and
bridge interaction

1. Introduction

Wardhana and Hadipriono [1] studied more than 500 bridge failures in the US from
1989 to 2000 and pointed out that the most common cause of bridge failure was attributed
to scour. Scour is the engineering term for the soil erosion surrounding a bridge founda-
tion [2]. Scour erosion causes a local reduction in soil elevation around the foundation,
resulting in reduced foundation stiffness, which affects the carrying capacity of the bridge
foundation system [3]. Bridge failures caused by scouring are characterized as sudden and
catastrophic. As one of the unprevented natural hazards, major floods often yield peaks in
the frequency of bridge failures [4]. In addition, the destroyed bridges in flooding result in
traffic interruption and thus block the delivery of relief supplies. It is noted that with the
increasing number of bridges across rivers or seas, the issue of bridge scour has become
increasingly prominent [5]. Therefore, how to maintain the safe operation of bridges under
scouring has become an urgent problem to be solved. Since foundation scour occurs below
the water surface, the bridge scour is concealed, and it is difficult to detect and diagnose
directly. Traditionally, diving inspection is adopted, but it has some disadvantages, namely
that it is labor-intensive, subjective, and dangerous to undertake during flooding [6]. In
addition, vision-based diving inspections are challenged because scour holes tend to refill
with sediment after floodwaters recede [4].

Remote Sens. 2022, 14, 3106. https://doi.org/10.3390/rs14133106 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14133106
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1106-7943
https://orcid.org/0000-0002-6867-1009
https://orcid.org/0000-0002-2727-6037
https://doi.org/10.3390/rs14133106
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14133106?type=check_update&version=1


Remote Sens. 2022, 14, 3106 2 of 21

With the development of sensor technology, bridge inspection research based on the
concept of structural health monitoring (SHM) has increasingly attracted attention. In
general, there are two methods for scouring detection using SHM: direct measurements
and indirect measurements. Methods based on the direct measurements use the bridge
responses, e.g., accelerations, displacements, and strains to detect scour [7–14]. Bridge scour
causes changes in foundation stiffness, which result in changes in bridge boundaries [15].
Therefore, for direct measurements, the changes in frequencies are often extracted to assess
the bridge scour conditions. For example, Prendergast, Hester, Gavin, and O’Sullivan [9]
experimentally showed that when a single pile of a bridge is affected by scour, the natural
frequency of the bridge changes significantly. In addition, they proposed a method for
estimating the scour depth based on a given observed pile frequency. However, indicators
based on frequency variation cannot directly reflect the scour location of bridges with
multiple foundations. Furthermore, the natural frequency of bridges is also affected by
temperature variations [16], which may interfere with the determination of scour.

In order to address it, as a relatively recent development, the extracted modal shape
was represented as a scouring indicator [17,18]. Scozzese et al. [19] numerically demon-
strated that Operational Modal Analysis could be used to monitor scour in masonry
multi-arch bridges and even reflect the extent of the damage. In order to detect scour
locations, two modes are usually compared at different health states of the bridge [20].
Technically, the modal shape-based methods imply that a large number of sensors need to
be installed on the bridge structure [15]. In order to reduce the number of sensors, some sig-
nal processing-based mode shape extraction methods were proposed, e.g., multi-setup and
decentralized techniques [21,22]. However, these methods obviously reduce the resolution
of extracted modal shapes or increase the amount of repetitive work.

Compared to direct measurement, indirect measurement means that there are no
sensors installed on the bridge. The analyzed signals are from a moving vehicle as it passes
over the bridge, which is referred to as a “drive-by” bridge monitoring system [23]. Yang
et al. [24] first proposed the concept of “drive-by” bridge SHM and verified its feasibility by
extracting the natural frequencies of the bridge from the accelerations of passing vehicles.
The theoretical background of “drive-by” is that when a vehicle travels over the bridge, the
induced vehicle responses under the vehicle–bridge interaction contain information about
the dynamic parameters of the bridge. Regarding bridge SHM, the indirect measurements
show many advantages in terms of economy, mobility, equipment necessity, specialist
personnel on-site, simplicity, and efficiency [25].

With a bridge–vehicle–wave interaction model, Kong and Cai [26] numerically studied
the effect of scour on bridge responses and vehicle responses. They noted that both
responses of bridge decks and passing vehicles were able to detect the presence of scour
by finding the change in the extracted natural frequency of the bridge. This suggests that
the “drive-by” bridge SHM is also one of the potentially effective methods to detect scour.
Fitzgerald et al. [27] numerically investigated the feasibility of using train accelerations to
detect scour damage in railway bridges. They proposed a damage indicator based on the
difference in wavelet coefficients of train accelerations between the scour and non-scoured
bridge conditions.

In bridge SHM, wavelet transform, as a robust signal processing tool, is frequently
used to detect damage and even damage location [23,27–32]. For example, Chatterjee
et al. [33] applied continuous wavelet transform (CWT) on responses of an instrumented
bridge to improve the axle identification of a moving vehicle in the bridge weigh-in-motion
system. Hester and Gonzalez [34] applied CWT on the acceleration of a traveling vehicle to
detect the bridge crack and its location. It was also found that the indirect measurement, i.e.,
vehicle acceleration is more effective than the direct measurement, i.e., bridge acceleration,
at detecting small cracks. For scour detection, OBrien et al. [35] developed a method to
detect scour location using wavelet-based Operating Deflection Shape (ODS) amplitudes.
Direct measurements, i.e., bridge acceleration measurements at each support location, were
used to generate the damage indicator based on the ODS differences between non-scoured



Remote Sens. 2022, 14, 3106 3 of 21

and scoured conditions. The feasibility of the proposed method was numerically verified by
a bridge model with four simply supported spans resting on piers. As previously described,
Fitzgerald, Malekjafarian, Cantero, OBrien, and Prendergast [27] proposed a wavelet-based
approach to detect scour on railway bridges through indirect measurements. The validity
of this method is also only verified by numerical models.

Drive-by/indirect measurement bridge SHM has potential applications in detecting
scour, which has the advantage of low cost and convenience. Since the “drive-by” bridge
SHM is a relatively recent development, the study on the application of scouring detection
using indirect measurements is very limited so far. This paper proposes a drive-by scour de-
tection method based on wavelet transform. A lab experiment was carried out to verify the
proposed method in addition to numerical models. In this paper, the feasibility of indirect
measurement in scours detection was first verified by laboratory experiments. Furthermore,
the sensitivity of the sensor location was investigated in laboratory experiments.

Most bridge SHM applications with CWT use its characteristic of signal discontinuity.
In contrast, this paper applied the CWT to vehicle accelerations to measure the wavelet
energy at a scale/pseudo frequency, which is related to the bridge’s natural frequency.
It was found that the measured energy increased when the bridge scour occurred. In
numerical simulations, sensor noise and environmental variables were considered in this
work. The environmental variables were introduced by setting different road profiles
in the vehicle–bridge interaction model. Due to the influence of the on-site operating
environment, a few test results have certain variability and cannot correctly reflect the
real situation of bridge scour. Therefore, this paper proposes a statistical-based method
to detect the presence of scour. In addition, because wavelet energy has no localization
information, this paper also proposes an index to locate the scour pier using the component
wavelet energy. Both numerical simulation and lab experiments showed that the proposed
method has a good potential to detect scour with indirect measurements.

2. Numerical Modelling

Erosion of the soil under and around the bridge foundation can reduce its stiffness.
Therefore, a simple bridge model with reduced foundation stiffness was used to simulate
bridge scour caused by soil erosion. Figure 1 shows the numerical model of the vehicle–
bridge interaction (VBI) system. This bridge scour model has been adopted in many
studies [3,4,15,27,35,36].
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Figure 1. The VBI system.

2.1. Vehicle Model

A quarter-car model with 2 degrees of freedom (DOF) was adopted in this study. The
vehicle masses were modeled with a sprung mass ms, and un-sprung mass ma, which
are represented by the vehicle body mass and wheel mass, respectively. Their bouncing
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degrees of freedom are labeled as us and ua, respectively. The wheel stiffness and damping
are represented by ka and ca, respectively. The vehicle suspension stiffness and damping
are represented by ks, and cs, respectively. The dynamic equation of the vehicle is described
by Equation (1).

[Mv]
{ ..

yv
}
+ [Cv]

{ .
yv
}
+ [Kv]{yv} = { fv}, (1)

where Kv, Cv, and Mv are represented by the matrix of the vehicle stiffness, damping,
and mass, respectively; yv denotes the vertical displacement of the vehicle, including the
translations of body mass (us) and wheel (ua). The external force vector fv is a function of
the bridge displacements and the road profile. The properties of the vehicle model in this
study are listed in Table 1, based upon the work of [37,38]. Under these parameters, the
two frequencies of the vehicle are 0.57 Hz and 9.89 Hz.

Table 1. Properties of the quarter-car model.

Vehicle Parameters Symbol Unit Value

Body mass ms kg 14,300
Wheel mass ma kg 700

Suspension stiffness ks kN/m 200
Suspension damping cs kN s/m 100

Wheel stiffness ka kN/m 2500
Wheel damping ca kN s/m 10

2.2. Bridge Model

As shown in Figure 1, a four-spans single-lane bridge was modeled. Each span was
simulated as a 1D finite element, consisting of 20 Euler–Bernoulli beam elements. Both
ends of the bridge rest on non-deformable supports modeled as pins and rollers. Adjacent
spans are connected with hinged supports, which rest on deformable piers, modeled as a
single DOF sprung mass in the vertical direction. mpier and kpier represent the pier mass and
stiffness, respectively. It is noted that each pier is modeled with the same parameters. Each
pier rests on a shallow pad foundation, which is represented by a spring with a stiffness of
k f . The length, L, and width, B, of the shallow pad foundation, are assumed of 4 and 2 m,
respectively. Based on these pad dimensions, k f can be determined using the approach in
FEMA [39] as follows:

k f =
GB

1− v

[
1.55

(
L
B

)0.75
+ 0.8

]
, (2)

where G represents the operational shear modulus of the soil; v represents the small-strain
Poisson ratio. The soil shear modulus G is calculated using the expression G = E/(1 + v)/2,
where E = 100, 000 kPa [9]. Note that Equation (2) is a semi-empirical calculation, and
there are some similar expressions available in Refs. [40,41]. The properties of the bridge
system are listed in Table 2. In this paper, a reduction in stiffness of the vertical foundation
spring, k f , was used to model bridge scour. The damage level was defined as the reduction
percentage of k f . More detail of the bridge sour model is given in Refs. [3,15,27].

Table 2. Properties of bridge model [15].

Bridge Property Symbol Unit Value

Span length L m 20
Beam depth D m 1

Beam second moment of area Ib m4 0.33
Beam mass per unit length mb kg·m−1 9.6× 103

Beam modulus of elasticity Eb kN·m−2 35× 106

Pier mass mpier kg 42× 103

Pier stiffness kpier kN·m−1 12.5× 106

Stiffness provided by foundation k f kN·m−1 344.12× 106
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An approach with 50 m was adopted to ensure the equilibrium of vehicle dynamic
behavior before it enters the bridge. In this study, the road surface profile with “class A”
was randomly generated according to the power spectral density curve, as described in ISO
8608 [42]. The bridge dynamic equation due to the time-varying forces was modeled as:

[Mb]
{ ..

yb
}
+ [Cb]

{ .
yb
}
+ [Kb]{yb} = [L]{ fb}, (3)

where Mb, Cb, and Kb are the mass, damping, and stiffness matrixes of the bridge system
(including beams and foundations), respectively, and yb represents the bridge displacement.
.
yb and

..
yb denote the first and second derivatives of yb, respectively, with respect to time,

which represent the bridge’s vertical velocity and acceleration responses, respectively.
Damping is considered in the bridge system using the Rayleigh type with a damping ratio
of 3%. The vector fb is the time-varying interaction forces between the vehicle and the
bridge in a VBI system. Those interaction forces were distributed to the relevant DOFs
of beams utilizing a location matrix L, which took into account the wheel location at
each moment. Vehicle–bridge interaction is a coupled system and can be represented by
Equation (4).[

Mv 0
0 Mb

]{ ..
yv..
yb

}
+

[
Cv Cv,b

Cb,v Cb

]{ .
yv.
yb

}
+

[
Kv Kv,b

Kb,v Kb

]{
yv
yb

}
= {F}, (4)

where F is the force vector applied to the coupled system. The method of the Wilson–
Theta integration was used to solve the coupled system [43]. The MATLAB programming
environment was applied to mimic the numerical vehicle–bridge interaction and post-
processing.

3. Scour Detection Approach
3.1. Wavelet Analysis

Wavelet analysis is a robust signal processing technique that has been widely used
in SHM [31]. Mathematically, the wavelet transform is similar to the Fourier transform in
that a given signal or function f (t) is approximated using a family of functions constructed
from a single function (mother wavelet) by dilation and translation. Unlike the Fourier
transform, which only performs as a signal-converting tool from the time domain to the
frequency domain, the wavelet transform exhibits outstanding localization properties in
both the time and frequency domains. Equation (5) provides the mathematical definition of
the wavelet transform.

WT(a, b) =
∫ +∞

−∞
f (t)

1√
a

Ψa,b(t)dt, (5)

where WT(a, b) is the wavelet transforms and Ψa,b(t) is given as follows:

Ψa,b(t) =
1√
a

Ψ(
t− b

a
), (6)

Ψa,b(t) is called the daughter wavelet derived from the mother wavelet Ψ(t), which
satisfies the properties of

∫ +∞
−∞ Ψ(t)dt = 0 and

∫ +∞
−∞ |Ψ(t)dt| < ∞; a and b denote the

parameters of the scale and translation, respectively.
When CWT is applied to a signal, it produces a series of wavelet coefficients at each

scale in the time domain. The scale is related to signal frequency. For a small value of scale,
a, the corresponding wavelet coefficients are implied to have a high-frequency content.
While for a large value of scale, a, it means that the given signal is approximated using a
stretched wavelet function, so the wavelet coefficients have low-frequency components. In
mathematics, the relationship between scale and wavelet frequency is defined as follows:

Fs =
Fc

a∆
, (7)
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where Fs is called wavelet pseudo-frequency, a is the scale of wavelet transforms, ∆ is the
sampling period of the signal, and Fc is the central frequency of the mother wavelet.

Energy is one of the unique measurements of a given signal. The energy of the wavelet
coefficients at scale a and location b is expressed by:

E(a, b) = |WT(a, b)|2, (8)

Then the total energy of the function at a particular scale, a, is expressed as:

Etol(a, b) = ∑N
b=1|WT(a, b)|2, (9)

where N is the total number of wavelet coefficients. Gao and Yan [44] pointed out that
for a given signal, if there are dominant frequency components, the energy of its wavelet
coefficients shows higher magnitudes at the corresponding scales. Thus, the energy plot
can reflect the dominating frequencies in the signal.

Figure 2a shows the vehicle acceleration response at a speed of 14 m/s (around 50
km/h) using the VBI model described above. The vehicle response was applied to CWT
using the wavelet function of “db2”, and the percentage of energy at each scale is illustrated
in Figure 2b. The wavelet function of “db2” was chosen because it was verified to be effective
in bridge SHM [45]. Unless otherwise mentioned, CWT adopts the wavelet function of
“db2” in this paper. As shown, the dominant frequency components appear near the 1st
natural frequency of the bridge. First, it demonstrates the feasibility of the concept of “drive-
by” SHM since the passing vehicle contains information on bridge parameters. Second,
the identified frequency is not exact with the bridge frequency, but this phenomenon
is consistent with the findings of Cantero et al. [46]. They presented that the different
suspension properties with the same vehicle mass cause different frequency shifts in the
natural frequencies of the bridge.
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Figure 2. Vehicle response and wavelet energy; (a) vehicle acceleration; (b) percentage of energy at
different frequencies (scales) (Note: f 1

b represents the bridge’s 1st natural frequency).

Figure 3 shows a comparison of the total energy plots at two different conditions of
the bridge. The solid line represents the case in Figure 2, i.e., no damage, while the stippled
line represents the situation where the bridge scours at Pier 3 with a damage level of 25%.
In this comparison, all others were kept the same except for bridge conditions. As shown,
the change in the first natural frequency of the bridge is weak and imperceptible, but the
wavelet energy peak significantly increases as scour damage occurs. This may be because
the reduction in the stiffness of the foundation amplifies the vibration of the moving vehicle
so as to increase the wavelet energy of the vehicle acceleration. The results reflect that the
change in bridge frequencies is not a robust indicator for scouring detection in this model.
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Wavelet-based energy is more reliable as a damage indicator for detecting bridge scour. It
is numerically demonstrated that the proposed wavelet-based method has the potential to
detect scour damage using indirect measurements.
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3.2. Addition of Environment Variable to Vehicle Acceleration

In order to detect bridge scour, the proposed method requires baselines in health
conditions for comparison. In practice, the environment may be different for each vehicle
traveling, including sensor noise. This difference may also cause a change in the total
energy of the wavelet, which interferes with the identification of bridge scour. In order to
investigate it, sensor noise was considered in this study. The random noise was added to
the vehicle acceleration using Equation (10) [46].

{S} = {Scalc}+ Ep{Nnoise}σ, (10)

where S is the polluted response to the vehicle acceleration, Ep represents the level of
the noisy signal, Nnoise represents a standard normally distributed vector with a unit
standard deviation, Scalc represents the generated clean response of acceleration, and σ is
its standard deviation. In this study, the noisy level, Ep, was arbitrarily chosen to be 5%,
which is consistent with that in Refs. [27,47,48]. In addition, to further mimic the difference
in the environment, in the VBI model, a “class A” road roughness was also randomly
generated for each run. In other words, in the simulation, each run has a different road
profile, but all at the “class A” level.

3.3. A Statistical-Wavelet-Based Scour Detection Method

In this section, five bridge scour conditions were simulated in the VBI model. The
scour was located at Pier 3, and the damage levels are 0%, 15%, 25%, 35%, and 45%,
respectively. For each scenario, 50 runs were simulated at the same vehicle speed of 14 m/s.
As aforementioned, the sensor noise and road surface profile were randomly generated
on each run. Figure 4 illustrates all those wavelet energies for 250 runs with a boxplot. In
this boxplot, it gives information about the median, minimum, maximum, first quartile,
third quartile, and individual outlying points underlying statistical distribution. As shown
in Figure 4, some wavelet energies at different scour levels overlap each other due to
different environments, especially at lower scour levels. Thus, it is not feasible to achieve
high-accuracy scour detection by testing a few times.
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Therefore, this paper proposed a method based on statistical wavelet energy to detect
bridge scour. A batch of runs was used to characterize bridge scour conditions. First, a
normal probability distribution was fitted on the first batch, with the mean value of µ and
the standard deviation value of σ. This probability distribution represents a baseline for
the bridge condition. For bridge scour monitoring, a new run substituted the oldest run of
that batch, and the normal probability distribution was updated, with the mean value of
µ1 and the standard deviation value of σ1. Although the parameters of the distribution are
updated, two distributions may share a large number of areas. Many damage detection
approaches use µ± σ to solve the problem of shared areas [49]. The confidence interval
of µ± σ has a confidence level of almost 70%. This paper also used a confidence level
of around 70% to represent the bridge condition. Considering the fact that the wavelet
energy increases rather than decreases due to bridge scour, µ + σ/2 was used to quantify
the baseline bridge condition because the confidence interval of

[
−∞ µ + σ/2

]
has a

confidence level of almost 70%. Similarly, the reference line was represented as µ1 − σ1/2
in the updated distribution, because the confidence interval of

[
µ− σ/2 +∞

]
was also

with a confidence level of almost 70%. In other words, this paper determined the presence
of scour occurrence when the value of µ1 − 0.5σ1 was more than the values of µ + 0.5σ.

3.4. Detecting Scour Location

In order to detect scour locations, this study proposed a pier index using the compo-
nent energy associated with each span. For the sake of clarity, it was assumed here that
the scour is identified at the distribution, where the mean value is µd and the standard
deviation value is σd. The previous distribution (corresponding to a health condition) has
the mean value and standard deviation value of µh and σh, respectively. Those distribution
parameters were obtained from the whole vehicle acceleration responses, S, when the
vehicle travels across the entire bridge. In this study, the bridge had four spans. Thus, the
entire acceleration, S, could be equally divided into four parts, and each part represents
the responses when the vehicle passes over the corresponding span, labeled as Si (i = 1, 2,
3, and 4, represents the span No.). For a batch of Si, a normal probability distribution can
also be fitted on them. For the health condition, the mean and standard deviation values
of the distributions were labeled as µi

h and σi
h, respectively. For the scoured condition,

those values were labeled as µi
d and σi

d, respectively. The pier index is then defined as
Equation (11).

IDi
pier = ∆i+1 − ∆i (i = 1, 2, and 3), (11)

where
∆i = (µi

d − µi
h)/(µd − µh) (i = 1, 2, 3, and 4), (12)
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Theoretically, when scour occurs on Pier i, all wavelet energy components change to
some extent due to the integrity of the bridge structure. This study found that ∆j≤i did
not change much in most cases, but ∆j>i increased significantly to some extent. Therefore,
scour occurs on the Pier i, resulting in a maximum value of IDi

pier among ID1∼3
pier . The

effectiveness of the proposed pier index was verified by both numerical analysis and lab
experiments as follows. Thus far, this paper proposed a statistical wavelet-based method
that utilizes vehicle responses to detect bridge scour and even uses component wavelet
energy to identify scour locations. In practice, once a bridge scour is detected during the
monitoring process, manual inspections can be triggered to obtain more damage detail
and identify the source of damage. The flowchart of bridge scour detection with indirect
measurements is expressed as shown in Figure 5.
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4. Numerical Verification
4.1. Scour Detection on Different Piers

In order to verify the feasibility of the proposed approach, the case with five bridge
conditions in Figure 4 was studied. First, for each bridge condition, a normal probability
distribution was fitted on the batch of those 50 runs. Figure 6a shows the fitted distribution
under the non-scoured condition. Admittedly, it did not quite fit the normal distribution,
but that is not surprising given the small sample size. All fitted distributions for five bridge
conditions are plotted in Figure 6b. As shown, there are apparent shifts for those fitted
distributions due to scours. In addition, as the scour level increases, the shift distance also
increases. Figure 6c illustrates the range of mean value ± standard deviation/2 for each
fitted distribution. Compared to the non-scoured condition, each level of bridge scour can
be detected because all the reference lines for the scoured distributions (mean value −
standard deviation/2) are greater than the baseline (mean value + standard deviation/2)
for the non-scoured condition. Moreover, the reference lines for all higher scour damage
levels are also larger than the corresponding baselines for lower scour levels, reflecting the
feasibility of detecting scour levels. It notes that, in this case, the degree of shift in the fitted
distribution approximates a parabolic growth as the level of bridge scour increases.

In order to identify the scour location, the proposed pier indexes were calculated
based on Equation (11), and the results are plotted in Figure 6d. It should be noted that, in
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this case, scour occurs on Pier 3. As shown in Figure 6d, except for the scour level of 15%,
the pier index ID3

pier is the highest value among ID1∼3
pier . The result indicates that the pier

index can successfully detect the scour location if the scour level is greater than 15%. This
pier index fails at the scour level of 15% because the proposed approach is not sensitive to
the lower level of scour damage at Pier 3, as shown in Figure 6c.
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Figure 6. Results of scour detection on Pier 3; (a) a normal probability distribution fitted on 50 runs
without scour; (b) probability distributions for different scour levels; (c) ranges of µ± 0.5σ for each
distribution; (d) pier index, IDi

pier, i = 1, 2, 3.

In the following study, bridge scour was set at Pier 2 in the VBI model. All others were
consistent with previous studies. The scour detection results are illustrated in Figure 7.
As shown, in this case, bridge scour can be clearly detected using the proposed approach
(Figure 7a). For the Pier 3 bridge scour, the growth rate of the shift extent increases with
an increase in the scour level. In contrast, this growth rate decreases for the Pier 2 bridge
scour. Figure 7b shows the identification of the bridge scour location. As expected, ID2

pier

has maximum value among ID1∼3
pier for all scour levels. The results validate the effectiveness

of the proposed pier index for detecting bridge scour locations. Unlike scour that occurs on
Pier 3, the pier index is also effective even at a low scour level on Pier 2. This is because the
proposed method is sensitive to detecting bridge scour that occurs at Pier 2.
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Figure 7. Scour detection on Pier 2; (a) ranges of µ± 0.5σ for each distribution on different scour
levels; (b) the scour location indicator on piers, IDi

pier, i = 1, 2, 3.

In order to describe the accuracy of the detection, the probability of detection (POD)
method is usually used in non-destructive testing [50]. A POD curve can show the detection
probability for tested results. In this paper, the reference indicator was wavelet energy.
Therefore, a POD curve versus energy was approximated using a Logit function, defined
as in Equation (13) [51].

POD(Etol) =
e

In(Etol )−µ
σ

1 + e
In(Etol )−µ

σ

, (13)

where µ and σ are constant parameters that define the curve. All previous simulated data
were used to determine these two parameters. In these data, when the bridge scour occurs,
the probability of detection is 1, whereas that is 0 for non-scour conditions. These data
were plotted in Figure 8, as well as the fitted curve. This curve can be used to qualify the
reliability of the inspection system for the following bridge scour identification.
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4.2. Blind Simulation Tests

In this section, a test with continuous measurements is simulated to simulate the
real-world situation of scour detection using a passing vehicle. A total of 1400 runs were
generated using the described VBI model. Environment variables were also considered
for each run. In this test, each run was represented here as an event. These 1400 events
were measured in consecutive order. The bridge was first modeled under the non-scoured
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condition. Bridge scour was then introduced into the VBI model at some point in time. This
moment was randomly generated among 1400 events. Hence, every event that occurred
before this moment had a non-scoured bridge, and every event after this moment had a
scoured pier. The scoured pier and its damage level were also randomly generated. In other
words, in regard to those 1400 events, the user was only given 1400 responses of vehicle
accelerations without information on the scoured moment, the scoured location, and the
scoured severity. In the following, the proposed approach, as shown in Figure 5, was used
to detect bridge scour with a batch of 200 events. It should be noted that the actual scour
happens after the first 200 events.

First, a normal distribution was fitted on accelerations of the first 200 events, and the
mean value and standard deviation were labeled as µ200 and σ200, respectively. Second, the
event of 201 substitutes the first event to update the parameters on a normal distribution,
and they were labeled as µ201 and σ201, respectively. Then the event of 202 was used to
replace the second event, and so on. As already mentioned, if the value of µm+1 − σm+1/2
(m > 200) is greater than the minimum value of µn + σn/2 ( n = 200 ∼ m), the scour
was detected, and it can trigger a manual inspection in the real world. If not, the test
considers this event as “normal” and proceeds to the next test. In this case, the results are
shown in Figure 9a. The scour was detected at event 946 because µ946 − σ946/2 is greater
than the value of µ200 + σ200/2, where µ200 + σ200/2 is the minimum value of µk + σk/2
( k = 200 ∼ 945). It was noted that the actual scour occurs at event 893.
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As shown in Figure 9a, the range of µm+1 ± σm+1/2 varies smoothly before the scour
event and gradually increases after the bridge scour. Bridge scour cannot be detected
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immediately using the proposed method because each distribution is updated with only
one new event. The value of µm+1 ± σm+1/2 gradually increases as the number of runs
under scour conditions increases so that scour can be detected. In effect, the value of
µm+1 ± σm+1/2 still increases after bridge scour detection until all runs of the distribution
are under scour conditions. That is to say, the range of µm+1 ± σm+1/2 stops increasing
clearly around the event 1093 (=893 + 200). It is well understood that the jump in the values
of µm+1 ± σm+1/2 is a clearer indicator for bridge scour detection. However, more events
after bridge scours are required, indicating that detection is not timely. Once the scour
occurs, it would be risky to conduct extensive driving tests on this bridge. The sooner it is
detected, the better for traffic control and bridge maintenance. The proposed method can
successfully detect the bridge scour after only about 50 runs using a batch of 200.

Similarly, batch runs of 100, 50, and 20 were applied to detect the presence of bridge
scour. The results are shown in Figure 9b–d, respectively. As shown, all of them also
present a clear jump after the scour event. In addition, the magnitude of change in the
plots of µm+1 and µm+1 ± σm+1/2 increases with decreasing run batches. Both batches of
100 and 50 can successfully detect the presence of bridge scour in time, with recognitions
at events of 917 and 905, respectively. However, the proposed approach with batches of
20 fails in bridge scour detection due to the high-intensity vibrations of the distribution
parameters. It concludes that the less batch of runs can detect scour faster but has a greater
chance of making wrong decisions. It is suggested that the batch runs should not be less
than 50.

In this blind simulation, the scour location was also unknown. For those three success-
ful detection cases (batch runs of 200, 100, and 50), their corresponding pier indexes are
calculated based on Equation (11) in order to detect the scour location. It should be noted
that in this equation, µd uses the distribution parameters at the detected event while µh uses
the baseline values that have the minimum value of µn + σn/2 in the detection. The results
are illustrated in Figure 10. For all cases, ID2

pier has the maximum value indicating that
scour is clearly identified to happen at Pier 2, which is consistent with the fact. Blind tests
further demonstrate the feasibility and effectiveness of the proposed approach in detecting
the presence of scour and identifying the scoured pier. In fact, the blind simulation depicts
how the proposed approach was implemented in the real world. The specific instrumented
vehicle owned by the bridge manager travels across the objective bridge with a routine
inspection. For each run, the measurement data were first used to check whether safety
limits were exceeded. If so, the possible scour piers were calculated, and manual inspec-
tions could be triggered for more scour details. If not, it was used to update the distribution
parameters.
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In addition, the previously fitted POD curve can be used to examine the reliability
of this bridge scour inspection. In general, for a POD method, an important indicator is
“90/95”, where “90” denotes the detection probability of 90%, with a confidence level of
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95%. For this blind test, Figure 11 illustrates the confidence level for scour detection at a
90% probability of each run. As shown, before the scour event, this confidence level was
very low (varies around 0.2). Therefore, these results are untrusted. In contrast, after the
scour event, most of the confidence levels were as high as over 95%, and this result means
that we found the bridge scour with a 90% chance, and we are over 95% sure about it.
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5. Lab Experiment Validation

In order to further verify the feasibility of the proposed approach, a laboratory experi-
ment was carried out at the University of Kyoto, as shown in Figure 12. In this laboratory
test, a scaled bridge was constructed, which has four simply supported spans. Both two
ends of the bridge have rigid support, and the three internal piers are supported on springs
to represent the vertical stiffness provided by pad foundations. Extra lengths were given
to allow the traveling vehicle to accelerate and decelerate. Table 3 lists the properties of
each span. By using the FDD (frequency domain decomposition) algorithm [7], the first
three natural frequencies of the bridge were identified as 9.77 Hz, 11.72 Hz, and 14.06 Hz,
respectively [36].
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model and sensor locations.
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Table 3. The properties of each span.

Property Unit Value

Span length m 1.3
Span width mm 300
Span depth mm 8.07

Second moment of area
(Rectangular cross section) m4 1.314 × 10−8

Young’s Modulus N m−2 2.05 × 1011

Density kg m−3 7850

As shown in Figure 12c, each pier was represented by four support springs. The
combined stiffness of each pier was calculated as 196 N mm−1 (=4 × 49 N mm−1) based on
a load–displacement test. This experiment used a static scaling criterion to choose the value
of the support stiffness appropriately. Thus, the reference indicator is the ratio of bridge
mid-span deflection (for a unit load applied on mid-span) to foundation deflection (for a
unit load directly applied above the support). This ratio is kept the same between a full-scale
benchmark case and the experimental case. The method of Adhikary et al. [52] was used to
calculate the foundation stiffness for the full-scale benchmark, where the pad foundation
was assumed to have dimensions of 2 m × 4 m. In order to simulate foundation scour,
the support springs were replaced with lesser stiffness ones. Two cases were considered.
For case I, each spring with 37 N mm−1 was used to support piers, whereas a spring with
27 N mm−1 was used for case II. Thus, two bridge scour levels (24.5% and 44.9%) were
simulated in this experiment compared to the non-scoured condition, and the scour was
located at either Pier 2 or Pier 3, as shown in Figure 12a.

Figure 12d shows the experimental vehicle with a tractor-trailer system. Both the
tractor and trailer have four sprung wheels with a steel plate resting on these springs. The
stiffnesses of the front and rear axle of the tractor are 3066 N m−1 (i.e., 2 × 1533 N m−1

springs) and 3506 N m−1 (i.e., 2 × 1753 N m−1 springs), respectively. The trailer has an
equal stiffness of 16,928 N m−1 on each axle (i.e., 2 × 8464 N m−1). The tractor and trailer
have total masses of 24.3 kg and 13.7 kg, respectively. By using FDD, the pitch and bounce
frequencies of the tractor were extracted as 4.7 Hz and 3.1 Hz, respectively, and those for
the trailer are 3.5 Hz and 6.6 Hz, respectively. Two acceleration sensors mounted on the
tractor are highlighted in Figure 12d. The accelerometers used for this experiment were
KYOWA AS-1GBZ1 small-capacity acceleration transducers with rated capacities of ±9.807
m/s2 (± 1 g). The frequency response given by the manufacturer is DC to 40 Hz at 23 ◦C.
One sensor is mounted on the steel plate (labeled as vehicle body sensor), while another is
mounted on a sprung wheel (labeled as vehicle axle sensor). These indirect measurements
were used for scour detection. Vehicle velocities of v1 =1.20 m/s and v2 = 1.26 m/s were
used in these experiments. In order to examine experimental variability, the tested vehicles
repeatedly passed over the bridge with these two velocities, and there were 30 times for
each scenario. The scanning frequency in this laboratory experiment was 200 Hz.

In order to investigate the feasibility of the proposed approach, the drive-by concept
that a traveling vehicle contains bridge information was first examined. For a bridge health
condition, one run is randomly taken as an example. The indirect measurements of the two
sensors are shown in Figure 13. Figure 14 plots the comparison of wavelet energies versus
frequencies on these two signals. In this case, the speed of the vehicle is 1.20 m/s. As
shown, the vehicle body acceleration presents peak energy close to the bounce frequency
of the tractor (3.1 Hz), while the axle acceleration concentrates the energy at a frequency
close to the bridge’s first natural frequency. It is evident that it is difficult to extract the
bridge information from the vehicle body acceleration when the test vehicle passes over
the bridge. Those accelerations are not suitable for implementing indirect measurement.
In contrast, vehicle axle acceleration shows clear bridge frequency information when the
vehicle travels across the bridge. Therefore, only indirect measurements from the vehicle
axle sensor were used for the study in the following. A frequency shift between the first
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natural frequency of the bridge and the pseudo peak frequency of axle acceleration was
also observed due to the driving frequency, as shown in Figure 3.
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For the vehicle speed of v2, there were 30 runs for each of the three bridge conditions
on Pier 3, i.e., the health bridge, 24.5% scour damage, and 44.9% scour damage. Figure 15
shows the energy distributions for those three conditions with a boxplot. Similar to the
simulation results, it is difficult to successfully detect the presence of scour using one or
few runs due to the experimental variability. The proposed approach was then applied
to this case. Three normal probability distributions were fitted on those runs under three
bridge conditions. The mean values and ranges of µ± 0.5σ are plotted in Figure 16a. It
was shown that the mean value of the normal probability distribution increases with the
increase in scour damage level. In addition, the reference line (value of µ− 0.5σ) for a
higher scour level is greater than the baseline (µ + 0.5σ) for a lower scour level, indicating
that the presence of scour can be successfully detected using the proposed approach. In this
case, the scour location indicators on piers were calculated and illustrated in Figure 16b.
As expected, the scoured pier index of ID3

pier has the maximum value among ID1∼3
pier . It

experimentally demonstrates that the proposed approach can effectively detect the presence
of scour and identify the scour location.
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Similarly, the proposed approach was used to detect the scour on Pier 3 at the vehicle
speed of v1. The results are illustrated in Figure 17. The mean values of distributions
also clearly increase with the increase in scour damage level. However, in this case, the
reference line (value of µ− 0.5σ) of the scour damage level of 24.5% was not greater than the
baseline (value of µ + 0.5σ) for the health bridge. Therefore, the scour was not successfully
detected using the proposed approach. The possible reason for this is the fewer runs for
each scenario. There are only 30 runs for each scenario resulting in more uncertainty. It is
believed that more runs can improve the identified result. Figure 17b shows the calculation
of pier indexes. As shown, those pier indexes can still clearly reflect the scoured pier.
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Figure 18 illustrates the scour detection results on Pier 2 at two speeds of v1 and v2.
Compared to the health bridge, the presence of scour can be successfully detected using the
proposed approach for each case. However, for both velocities, it fails to reflect the change
in wavelet energy from the scour damage level of 24.5% to the scour damage level of 44.9%.
This is consistent with the phenomenon in the simulation. The change in wavelet energy is
not sensitive to the high scour damage level on Pier 2. This change gradually decreases
with the increase in the degree of scour damage. In addition, similar to the results in the
simulation, it was found that for the lower scour level, the proposed approach is more
sensitive to scour on Pier 2 than that on Pier 3. Figure 19 shows the results of detecting the
scour location for two velocities. All results can successfully and clearly indicate the exact
scoured pier.
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6. Conclusions

This paper proposed an approach to detect bridge scour and its location using indirect
measurements from a passing vehicle. The feasibility of indirect measurement in scours
detection was first verified by laboratory experiments in this study. The change in wavelet
energy was used to reflect the loss in foundation stiffness resulting from bridge scour
erosion. By considering the variability in the environment, a statistical-wavelet-based
approach was then proposed. A normal probability distribution was used to fit a batch
of test runs, and the distribution parameter (the mean value ± 0.5 times the standard
deviation) was used to represent the bridge scour conditions. It concludes that the less
batch of runs can detect scour faster but has a greater chance of making wrong decisions. It
is suggested that the batch runs should not be less than 50. In addition, this paper proposed
a pier index to identify the scoured pier. The effectiveness was validated by both simulation
and experiment.

From the experimental test, it was found that the vehicle axle sensor is more sensitive
to bridge information than that of the vehicle body sensor, which is more suitable for
indirect bridge SHM. For the scour of Pier 3, the change in wavelet energy increases with
the increasing degree of scour. While for the scour of Pier 2, this change gradually decreases
with the increasing degree of scour. In other words, the proposed approach is not sensitive
to the lower scour level on Pier 3, and it may be difficult to find the change in wavelet
energy for the higher scour level on Pier 2.

Blind testing in numerical analysis simulates the entire process of on-site scour detec-
tion using the concept of “drive-by” SHM. The speed of the instrumented vehicle is as high
as 14 m/s, which is an operational speed in practice. Compared to direct bridge SHM, the
“drive-by” bridge SHM has no installation, maintenance, and power supply issues and has
the advantages of low cost and convenience. The results in this paper will be of interest
to the ongoing development of the scour monitoring field with indirect measurements.
However, the development of scour detection using indirect measurements is relatively
recent. Some issues are not addressed in this paper, e.g., multiple piers scour, variability in
vehicle velocity, and field test demonstrations, which should be investigated in the ongoing
work. In addition, there is only one type of vehicle used in this paper. Therefore, the
proposed approach requires a specific instrumented vehicle for scour inspection. Mei [53]
developed the concept of using vehicles of random traffic over the bridge for the drive-by
bridge SHM. The smartphone inside the vehicles can be used as a sensor as well as an
acquisition system. The bridge conditions can be monitored by random traffic, which
significantly improves the efficiency of the proposed approach. Thus, further study on this
will be investigated in the future.
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