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Abstract: Currently, it is a great challenge for remote sensing technology to accurately map mangrove
forests owing to periodic inundation. A submerged mangrove recognition index (SMRI) using two
high- and low-tide images was recently proposed to remove the influence of tides and identify
mangrove forests. However, when the tidal height of the selected low-tide image is not at the lowest
tidal level, the corresponding SMRI does not function well, which results in mangrove forests below
the low tidal height being undetected. Furthermore, Spartina alterniflora Loisel (S. alterniflora) was
introduced to China in 1979 and rapidly spread to become the most serious invasive plant along
the Chinese coastline. The current SMRI has failed to distinguish S. alterniflora from submerged
mangrove forests because of their similar spectral signatures. In this study, an SMRI-based mangrove
forest mapping method was developed using the time series of Sentinel-2 images to mitigate the two
aforementioned issues. In the proposed method, quantile synthesis was applied to the time series of
Sentinel-2 images to generate a lowest-tide synthetic image for creating SMRI to identify submerged
mangrove forests. Unsubmerged mangrove forests were classified using a support vector machine,
and a preliminary mangrove forest map was created by merging them. In addition, S. alterniflora
was distinguished from the mangrove forests by analyzing their phenological differences. Finally,
mangrove forest mapping was performed by masking S. alterniflora. The proposed method was
applied to the entire coastline of the Guangxi Province, China. The results showed that it can reliably
and accurately identify submerged mangrove forests derived from SMRI by synthesizing low- and
high-tide images using quantile synthesis, and the differentiation of S. alterniflora using phenological
differences results in more accurate mangrove mapping. This work helps to improve the accuracy
of mangrove forest mapping using SMRI and its feasibility for coastal wetland monitoring. It also
provides data for sustainable management, ecological protection, and restoration of vegetation in
coastal zones.

Keywords: mangrove forests; vegetation index; Google Earth Engine; Sentinel-2 imagery; mangrove
map

1. Introduction

Mangrove forests play a critical role in coastal protection and ecosystem function-
ing worldwide [1–3]. They provide a high diversity of services and a wide variety of
goods to coastal communities [4–6]. During the past 50 years, mangrove forests have
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experienced rapid losses owing to anthropogenic activities and natural changes to the
environment [7,8]. One-third of mangrove forests nearly disappeared globally due to con-
version to aquaculture, sea level rise, urban development, overexploitation for timber, and
natural disasters [9–11]. Therefore, the rapid and accurate mapping of mangrove forests is
necessary for natural resource supervision, protection, and restoration in coastal zones.

Mangrove forests situated in intertidal zones are inaccessible to traditional field-
surveying technology. Currently, optical remote sensing and long-term observations are
widely used to map coastal mangrove forests [6,12,13]. Numerous classification methods
for mangrove forest mapping using remotely sensed imagery have been proposed [3,14–16].
For example, Conchedda et al. [14] proposed an object-based approach using SPOT XS
data to distinguish mangrove forests in Low Casamance, Senegal, and achieved an overall
accuracy of 86%. Wang et al. [15] applied a clustering-based neural network classifier to
the IKONOS data to discriminate mangrove forests in Punta Galeta on the Caribbean coast
of Panama. The results showed that the overall accuracy of mangroves was 96%, and the
kappa coefficient was 0.88. Although the aforementioned studies achieved mangrove forest
mapping, the effect of tides on mangrove forests remains to be determined. Mangrove
forests are periodically inundated by tides, especially in regions with low-height mangrove
forests and high-fluctuation tides [17]. This periodic inundation results in difficulties for
accurately and timely identification of submerged mangrove forests [13,18,19]. To overcome
this limitation, it is necessary to obtain remotely sensed images at the lowest tidal heights.
Such images are difficult to obtain because the local tidal heights vary continuously, and the
time of the local tidal low may not correspond to the time of a satellite transit. Numerous
studies have indicated that tides may affect the results of mangrove forest mapping from
remotely sensed images [10,20–22]. For example, Zhang et al. [22] proposed a decision
tree-based approach using multi-tidal Landsat 5 data and a digital elevation model to map
mangroves. The results show that considering the effect of tides on mangrove forests can
greatly improve the accuracy of mangrove forest mapping.

In recent years, some mangrove-specific vegetation indices have been proposed to
eliminate the influence of tidal dynamics using various remotely sensed images [23]. Tide
fluctuation can only submerge seaward, low-height mangrove species, such as the pioneer
species Avicennia marina, low-height Aegiceras corniculatum, or a small part of high-height
mangrove species. Numerous indices have been proposed to distinguish mangrove forests
in single-tide images. Winarso et al. [24] proposed a mangrove index (MI) using near-
infrared (NIR) and shortwave infrared (SWIR) bands from Landsat-8 OLI images (Table 1).
However, MI has been applied in one or two case studies, and its feasibility in different
regions remains to be verified. Jia et al. [10] proposed a mangrove forest index (MFI) using
Sentinel-2 data. MFI is effective for distinguishing submerged mangrove forests utilizing
red-edge and NIR bands; however, the applicability of MFI is limited because of the absence
of a red-edge band for most remote-sensing sensors. Additionally, a combined mangrove
recognition index (CMRI) was proposed by Gupta et al. [25], in which the presence of
vegetation was expressed by the normalized difference vegetation index (NDVI), and
water information of mangrove forests was expressed by the normalized difference water
index (NDWI). CMRI has the same problem as MI. The application of CMRI and MI for
mangrove forest mapping should be studied further, especially considering the different
sites. However, the common issue here is that these indices have little or no ability to
describe tidal variations using a single-tide image.

Some studies have been conducted on mangrove-specific vegetation indices using
multi-tide images. Zhang et al. [26] proposed the mangrove recognition index (MRI)
using multi-temporal Landsat data with different tidal heights and observed that the MRI
provided a sensitive response to changes in wetness and greenness. However, because
site-specific vegetation information and land moisture at different tidal heights was not
available from remotely sensed images, mangrove forest mapping derived from MRI on
a global scale was limited. Xia et al. [27] proposed a submerged mangrove recognition
index (SMRI) using high- and low-tide images based on NDVI and NIR bands, which
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expressed the presence of vegetation and water, respectively. Compared with the existing
mangrove-specific vegetation indices, SMRI is specially designed to distinguish submerged
mangrove forests. The calculation of SMRI only involves three bands that are commonly
acquired in most sensors, and it does require a large amount of auxiliary information (e.g.,
field data and moisture information).

Table 1. Mangrove-specific vegetation indices (refers to Yang et al. [23]).

Index Name Author Formula Satellite Image
Used

Mangrove recognition
index (MRI) Zhang et al. [26]

MRI = |GVIL − GVIH| × GVIL × (WIL + WIH)
where GVI is the green vegetation index; WI is the

wetness index; subscript L indicates low tide; subscript H
indicates high tide

Landsat

Mangrove index (MI) Winarso et al. [24] MI = (NIR − SWIR/NIR × SWIR) × 1000 Landsat

Normalized difference
mangrove index (NDMI) Shi et al. [28]

NDMI = (RSWIR2 − RGreen)/(RSWIR2 + RGreen)
where RSWIR2 and RGreen are the reflectance values of

SWIR2 and green bands, respectively
Landsat

Mangrove probability
vegetation index (MPVI) Kumar et al. [29]

MPVI = n ∑n
i=1 Riri−∑n

i=1 Ri ∑n
i=1 ri√

n ∑n
i=1 Ri

2−(∑n
i=1 R)2

√
n ∑n

i=1 ri
2−(∑n

i=1 ri)
2

where n is the total number of bands; Ri is the reflectance
value of i band; ri is the reflectance value of i band for a

“candidate spectrum” of mangrove forest

EO-1 Hyperion

Combine mangrove
recognition index

(CMRI)
Gupta et al. [24] CMRI = NDVI—NDWI

where NDWI is the Normalized Difference Water Index. Landsat

Submerged mangrove
recognition index

(SMRI)
Xia et al. [26]

SMRI = (NDVIl − NDVIh)·(NIRl − NIRh)/NIRh
where NDVIl—NDVI values at low tide; NDVIh–NDVI

values at high tide; NIRl represents the reflectance values
of NIR band at low tide; NIRh represents the reflectance

values of NIR band at high tide.

GaoFen-2

Mangrove forest index
(MFI) Jia et al. [10]

MFI = [(ρλ1 − ρBλ1) + (ρλ2 − ρBλ2) + (ρλ3 − ρBλ3) + (ρλ4
− ρBλ4)]/4

where ρλ is the reflectance value of the band center of λ,
and i ranged from 1 to 4; λ1, λ2, λ3, and λ4 are the center
wavelengths at 705, 740, 783, and 865 nm, respectively.

Sentinel-2

Mangrove vegetation
index (MVI) Baloloy et al. [11] MVI = (RNIR − RGreen)/( RSWRI1 − RGreen)

where RSWIR1 is the reflectance value of SWIR1 band
Sentinel-

2/Landsat

Normalized intertidal
mangrove index (NIMI) Xu et al. [30]

NIMI = (3 × R4 − (R6 + R7 + R8))/(3 × R4 + R6 + R7 + R8)
where R4, R6, R7, and R8 is the reflectance values of bands

4, 6, 7, and 8 of Sentinel, respectively
Sentinel-2

Optical and synthetic
aperture rada (SAR)

images combined
mangrove index

(OSCMI)

Huang et al. [31]

OSCMI = WI/(NIRB + SWIRB + VV)
where WI is the sum of NDWI and MNDWI; NIRB is the
sum of the reflectance values of Sentinel-2 B6, B7, B8 and

B8A; SWIRB is the sum of the reflectance value of
Sentinel-2 B11 and B12; VV is the backscatter coefficient of

Sentinel-1 VV polarization mode

Sentinel-1/2

The SMRI was designed on the basis of two images with different tidal heights.
However, two issues must be resolved. The first issue regards the selection of a low-tide
image that well approximates the lowest possible tidal height. Tides vary with time, and the
variation changes daily. If the tidal height of the selected low-tide image is not a satisfactory
approximation to the lowest possible tidal height, mangrove forests inundated under low
tidal heights cannot be fully detected. In addition, when multiple images are stitched to
map national- or global-scale mangrove forests with SMRI, it is difficult to obtain different
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images with the same high and low tidal heights. This would reduce the accuracy of
mapping submerged mangrove forests.

The second issue regards the methodology to distinguish Spartina. alterniflora from the
submerged mangrove forests derived from SMRI. S. alterniflora is a perennial salt marsh
grass native to North America that was introduced in China in 1979 [32]. It has very strong
root systems and prefers to grow with pioneer mangrove species in seaward low-elevation
tidal flats [33–35]. Because S. alterniflora is characterized by rapid spread and high density, it
has become the most predominantly invasive plant along the Chinese coastline [36]. Many
S. alterniflora species can be found on the fringe of seaward mangrove forests and have a
strong disturbance when mapping mangrove forests. SMRI was proposed by analyzing
spectral signature differences for submerged vegetation, including that vegetation with
chlorophyll absorption characteristics in aquatic environments (i.e., S. alterniflora), resulting
in poor performance for distinguishing S. alterniflora from mangrove forests.

Time series remotely sensed images can provide more tidal variation information for
mangrove forest mapping [37–39]. In addition, they can describe the phenological features
of S. alterniflora and submerged mangrove forests to enhance their spectral separability [40].
There are two prominent phenological periods for S. alterniflora: the green and senescence
periods. These phenological features were observed across a specific Sentinel-2 image.
Visually, the color of mangrove forests is much greener than that of S. alterniflora during
the senescence period, and this color difference results in their being more distinguishable.
The NDVI values of the mangrove forests were much higher than those of S. alterniflora.
This phenomenon resulted in spectral separation of S. alterniflora. Thus, phenological
features derived from the time series of Sentinel-2 data were incorporated to eliminate the
distribution of S. alterniflora in the submerged mangrove forest zone. With the increase in
time series data (e.g., Sentinel sensor) and cloud computation resources, some of which are
free of charge, such as Google Earth Engine (GEE), a new method based on SMRI using
time series images could be developed for effective and accurate mangrove forest mapping.

To mitigate the issues hindering mangrove forest characterization, this study proposes
an SMRI-based method for rapid and accurate mapping of mangrove forests using a time
series of Sentinel-2 data and GEE. Experiments were conducted to verify the advantages
and effectiveness of the proposed method. Specifically, we will (1) apply quantile synthesis
to generate high-tide and low-tide synthetic images and discuss the ability of synthetic
images to distinguish submerged mangrove forests, (2) utilize phenology-based differences
to identify and remove S. alterniflora along with discussing the effectiveness of phenology-
based differences for removing S. alterniflora, and (3) compare the proposed results with
those of the existing mangrove forest products.

2. Materials and Methods
2.1. Study Area

The study area was situated in Guangxi Province (107◦58′–109◦40′N and 22◦00′–21◦40′E)
(Figure 1). The datum for the Geographic Coordinate System of the China map was
WGS-1984. All images and maps were obtained using the WGS-1984 Geographic Coor-
dinate System. The total coastline of Guangxi Province is approximately 1595 km long
and the area covered by mangroves per kilometer is the largest in China [41]. The study
area has a tropical monsoon-type climate, and the annual average temperature and rainfall
are 16 °C–23 °C and 1694 mm, respectively. The major species in the area are Bruguiera
gymnorrhiza, Rhizophora stylosa, Avicennia marina, Aegiceras corniculatum, and Kandelia candel.
The tidal type is regularly diurnal, and some mangrove forests are submerged by the sea
due to a large tidal range and seaward low-height mangrove forests.
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Figure 1 

Figure 1. Study area; (a) China map; (b) detailed map of the study area in the Guangxi Province.

2.2. Pre-Processing for Sentinel-2 Data

Sentinel-2 multispectral images were downloaded from the European Space Agency
(https://scihub.copernicus.eu/dhus/#/home, accessed on 1 January 2019), with three
spatial resolutions of 10, 20, and 60 m. Top-of-atmosphere reflectance and surface reflectance
data were obtained from Sentinel-2 images. Images with less than 20% cloud cover were
selected for analysis. To reduce the effect of clouds, the images were masked using the QA60
band [42]. The surface reflectance data for the Sentinel-2 images with spatial resolutions
of 10 m were obtained using GEE. The complete coverage of the surface reflectance data
of the study area was 1160 images obtained between January 2019 and December 2020.
Through consultation with local experts and government authorities, it was confirmed
that the mangrove forests in the study area did not undergo any changes during the
observation period. Mangrove forests are periodically inundated by the tide, and the key to

https://scihub.copernicus.eu/dhus/#/home


Remote Sens. 2022, 14, 3112 6 of 19

describing tidal status is to identify open surface water. In previous studies, the modified
normalized difference water index (mNDWI) has been widely used to identify open surface
water [43–45]. The mNDWI value varies with land cover types. The mNDWI of open
surface water area will tend toward positive values, whereas other land cover types will
be represented by negative values. The Normalized Difference Vegetation Index (NDVI)
closely related to green vegetation is a good indicator of vegetation. The NDVI can describe
phenological variation for S. alterniflora and mangrove forests, and the NDVI values of
mangrove forests are higher than those of S. alterniflora in the senescence period [36]. Time
series for NDVI and mNDWI were used to provide indicative information on phenological
variations and tidal inundation.

We surveyed the study area in October 2019 and recorded the location of the sample
points (including mangrove forests, non-mangrove forests, S. alterniflora) using a handheld
GPS device with a 5 m positional accuracy. The positional accuracy of GPS is accurate
enough for the Sentinel-2 images with a spatial resolution of 10 m. Additionally, a high-
resolution image from Google Earth was used to collect inaccessible sample points. A total
of 1200 sample points comprising mangrove (n = 600, 400 for unsubmerged and 200 for
submerged mangrove forests) and non-mangrove forests (n = 600) were collected. A total
of 800 (400 for mangrove and 400 for non-mangrove forests) and 400 (200 for mangrove
and 200 for non-mangrove forests) sample points were used for training and validation,
respectively (Table 2, Figure 2).

Table 2. Number and type of sample points in the study area.

Types Number Total Number

Training and
validating

Mangroves Submerged 150 600
Non-submerged 450

Non-mangroves

S. alterniflora 90

600
Tidal flats 80

Water 200
Offshore ponds 150
Built-up land 80

Training
Mangroves Submerged 100

400Non-submerged 300

Non-mangroves 400 400

Validating
Mangroves Submerged 50

200Non-submerged 150

Non-mangroves 200 200

2.3. SMRI-Based Method for Mangrove Forests Mapping

First, we visually interpreted the coastal boundary zone covering the mangrove forests.
Second, we generated high-tide and low-tide synthetic images using quantile synthesis
based on the time series of Sentinel-2 data and the GEE platform. Quantile synthesis uses
quantiles at each pixel of the time-series images to estimate the tidal datum from the pixel.
Here, the low and high tidal data were characterized using the 10th and 90th quantile,
respectively. The 10th quantile was determined to describe the low tidal datum due to the
removal of poor-quality images affected by clouds and shadows. The 90th quantile is suffi-
cient to represent high tidal data based on our visual interpretation, without an assumption
about the transit time of satellites. Subsequently, the submerged mangrove forest areas
were distinguished using SMRI. Non-submerged mangrove forests were classified using
a support vector machine (SVM) classifier, and a preliminary mangrove forests map was
obtained by merging them. Finally, S. alterniflora was distinguished by analyzing pheno-
logical differences, and a final mangrove forest map was created by masking S. alterniflora
(Figure 3).
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Figure 2 

 

Figure 3 

Figure 2. Location map of sample points derived from seven land cover types.

2.3.1. Coastal Boundary Zone

Mangrove forests typically grow in intertidal areas. We digitized the entire Guangxi
Province’s coastal boundary zone in GEE by visually interpreting Sentinel-2 data from
January 2019 to December 2020. To ensure that all scattered patches of mangrove forests
were included, a 20 km radius buffer was generated along the boundary.

2.3.2. Generation of Low-Tide of and High-Tide Synthetic Images

The mNDWI image time series was obtained from the time series of Sentinel-2 images
(Figure 4). Following the method reported for generating tidal data in mangrove forest
mapping in China [13], we counted the mNDWI values at each pixel from the mNDWI
images to form a histogram and found the 10th and 90th quantiles at each pixel of the
mNDWI images (from January 2019 to December 2020). We subsequently calculated the
average mNDWI values at the 10th and 90th quantiles as the low- and high-tide quantile
synthesis results, respectively. The 10th quantile was selected as a threshold because it
is difficult for mangrove forests to be found in low-tide synthetic images with less than
the 10th quantile based on visual interpretation. Finally, submerged mangrove forests
were mapped with the criteria (SMRI > 0) based on the acquired synthesis of low-tide and
high-tide images, and the SMRI equation is as follows:

SMRI = (NDVIl −NDVIh)·
NIRl −NIRh

NIRh
(1)

where NDVIl is the NDVI value at low tide, NDVIh is the NDVI value at high tide, and
NIRl and NIRh are the reflectance values of the NIR band at low and high tide, respectively.
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Figure 2 

 

Figure 3 Figure 3. Overall study workflow.

2.3.3. Phenology-Based S. alterniflora Mapping

Submerged mangrove forest areas obtained from SMRI include underwater mangrove
forests and S. alterniflora because of their similar spectral signatures. As there are phe-
nological differences between S. alterniflora and mangrove forests, they provide a good
opportunity to separate them with spectral separability [46–49]. The NDVI is a widely used
indicator of mangrove forest classification [35]. Thus, we used NDVI as a key phenological
indicator to separate S. alterniflora from the submerged mangrove forest zones.

2.3.4. SMRI-Based Mangrove Forests Mapping Method

After generating high- and low-tide synthetic images, the SMRI was calculated, and
the SMRI index calculation resulted in a grayscale image. Otsu’s automatic thresholding
method was used to generate binary images for submerged mangrove forests (with values
of 1) and other land cover types (with values of 0) [50] (Figure 5a–c). The Otsu thresholding
method is a non-parametric approach, and this algorithm assumed that the grayscale
image contains two classes of pixels. The algorithm subsequently calculated the optimum
threshold separating the two classes so that their intra-class variance was minimal, or
their inter-class variance was maximal [51]. We then used an SVM classifier to map the
unsubmerged mangrove forests using the same sample points (Figure 5d). SVM is a fast
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and efficient machine-learning technique that is well adapted for solving non-linear, high
dimensional space classifications [52]. SVM utilizes a user-defined kernel function to
define a set of non-linear decision boundaries in the original dataset as linear boundaries
of a higher-dimensional construct. SVMs attempt to determine the optimal separating
hyperplane through an optimization approach utilizing Lagrange multipliers and quadratic
programming methods [53]. We used the radial basis function kernel to implement the
SVM algorithm because it is commonly used and exhibits good performance [54,55]. Two
parameters must be parameterized when applying the SVM classifier with the radial basis
function kernel: a regularization constant C and a kernel hyperparameter γ. The grid
search algorithm [50] was used to tune these parameters to the optimum values, that is,
C = 100 and γ = 0.059 in this study. A preliminary mangrove forest zone was mapped by
merging the unsubmerged and submerged mangrove forest zones (Figure 5e). Finally, a
mangrove forest zone was mapped by masking the S. alterniflora zone from the preliminary
mangrove forest zone (Figure 5f,g).

 

Figure 4 

 

Figure 5 

Figure 4. Basic concept for generating high- and low-tide synthesis images.

To evaluate performance, an accuracy assessment was performed using sample points
from the field investigation. SVM-based classification requires training sets (800 sample
points: 400 for mangrove and 400 for non-mangrove forests) as reference signatures that
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are used to classify the whole population of pixels and validation sets (400 sample points:
200 for mangrove and 200 for non-mangrove forests) for verification.

 

Figure 6 Figure 5. Selected case study flowchart: (a) Synthetic low-tide Sentinel-2 image, (b) synthetic high-tide
Sentinel-2 image, (c) submerged mangrove forests derived from submerged mangrove recognition
index (SMRI), (d) unsubmerged mangrove forests derived from support vector machine (SVM),
(e) preliminary mangrove forest map, (f) S. alterniflora map, and (g) final mangrove forests map.

3. Results

A total of 1000 sample points for S. alterniflora (n = 500) and mangrove forests (n = 500
including submerged and non-submerged mangrove forests) were selected from the field
investigation and Google Earth. To capture the ideal annual phenological features of
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S. alterniflora and mangrove forests, we generated an average annual NDVI profile to
explore phenological differences using Sentinel-2 time series data (Figure 6). Two critical
phenological periods (green and senescence) for S. alterniflora were identified and separated
by analyzing the NDVI temporal profiles.

 

Figure 4 

 

Figure 5 Figure 6. NDVI temporal profile: (a) mangrove forests and, (b) S. alterniflora.

The mean NDVI values of mangrove forests were greater than 0.6 for the entire year
(Figure 4). Before April, the mean NDVI values of S. alterniflora were all less than 0.35,
whereas the values between June and October were much greater than 0.35. Thus, there is a
clear boundary separating the phenological periods of S. alterniflora, that is, the senescence
period from January to April and the green period from June to October. We used the mean
NDVI value < 0.35 from January to April to avoid the influence of S. alterniflora.

For comparison, an SVM classifier was used to generate a mangrove forest map.
Figure 7 illustrates the mapping results of the two methods, including the proposed method
(SMRI+ Quantile Synthetic images, SMRI + QS) and SVM classifier method (SVM). Based
on the SMRI + QS mapping results, submerged mangrove forests were effectively classified
as mangrove forests using the SMRI. Mangrove forests are mainly distributed in the Beilun
Estuary National Nature Reserve (BNNR), Shankou Mangrove Nature Reserve (SNNR),
and Maoweihai Mangrove Provincial Nature Reserve (MPNR). Some scattered patches of
mangrove forests are distributed along the coastline and estuaries. From the SVM mapping
results, mangrove forests above water were not identified. The total mangrove forest
areas from SMRI + QS and SVM were 9110.17 ha and 7616.94 ha, respectively. The area of
submerged mangrove forests using SMRI + QS was 1493.23 ha greater than that obtained
using SVM. This indicates that most submerged mangrove forests were accurately distin-
guished, which was attributed to the generation of high- and low-tide synthetic images
using quantile synthesis and the separation of S. alterniflora from submerged mangrove
forests using spectral separability.

With the increasing availability of open data (Sentinel-2) and open-source programs
(GEE), we successfully applied the proposed method to the study area and achieved
satisfactory accuracy (Table 3). The overall accuracies were 90.5% for SVM and 93.8% for
SMRI + QS. The kappa coefficient of 0.87 for SMRI + QS was greater than that of 0.81 for
SVM. The producer and user accuracies of mangrove forests were 91.5% and 89.7% for
SVM, and 94.5% and 93.1% for SMRI + QS, respectively. The proposed method increased
the accuracy of mangrove forest mapping derived from improved SMRI.
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Table 3. Accuracy assessment for the study area.

Method Class

Reference
Producer
Accuracy

User
Accuracy

Overall
Accuracy

Kappa Area (ha)
Mangroves Non-

Mangroves

SVM
Mangroves 183 17 91.5% 89.7%

90.5% 0.81 7616.94Non-mangroves 21 179 89.5% 91.3%

SMRI + QS
Mangroves 189 11 94.5% 93.1%

93.8% 0.87 9110.17Non-mangroves 14 186 93.0% 94.4%

 

Figure 7 

 

Figure 8 

Figure 7. Mapping results of mangrove forests from SMRI + QS (red plus blue) and SVM (red).
BNNR, Beilun Estuary National Nature Reserve; MPNR, Maoweihai Mangrove Provincial Nature
Reserve; SNNR, Shankou Mangrove Nature Reserve. (a–c) are the detailed maps.

To validate the advantages of quantile synthesis, we selected the highest- and lowest-
tide images from the time series of Sentinel-2 images (2019.01–2020.12) and achieved two
mangrove forest mapping results using quantile synthetic (SMRI + QS) images and without
using quantile synthetic (SMRI + HL) images (Figure 8). SMRI + HL refers to the mangrove
forest mapping results with two randomly selected high- and low-tide images. Along the
entire Guangxi Province coastline, we selected three sub-study areas for comparison.

To quantitatively discuss the effect of S. alterniflora on mangrove forest mapping, the
initial mangrove forest results (before removing S. alterniflora using the proposed method,
called initial SMRI + QS), the final mangrove results (after removing S. alterniflora, called
SMRI + QS), and S. alterniflora results are mapped in Figure 9.
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Figure 7 

 

Figure 8 
Figure 8. Distribution of mangrove forests derived with SMRI using quantile synthesis images and
selected high- and low-tide images: (a) low-tide Sentinel-2 image, (b) synthesis low-tide Sentinel-2
images, (c) high-tide Sentinel-2 image, and (d) synthesis high-tide Sentinel-2 image.

Mangrove forest maps have already been published for our study area. Therefore, the
mangrove forest map generated in this study was compared with the following public data:
(1) The Chinese Academy of Sciences Mangroves (CASM), Jia et al. [12]; (2) The Mangrove
Forest Distribution Map (MFDM), Chen et al. [20]; and (3) The Global Mangrove Map
(GMW), Murray et al. [56]. These maps were generated using images from 2015, 2015, and
2019 for the CASM, MFDM, and GMW, respectively. A map of the four mangrove products
is shown in Figure 10.
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Figure 9 

 

Figure 9. Distribution of mangrove forests derived from SMRI using quantile synthesis and S. alterni-
flora. (a–c) present detailed results from initial SMRI + QS and SMRI + QS.
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Figure 10 

Figure 10. Comparison of four mangrove forest products ((a–c) present the detailed sub-map from
four results).

4. Discussion
4.1. Generation of Low-Tide and High-Tide Synthesis Images

Before identifying the submerged mangrove forest zone using SMRI, we tried to obtain
the lowest- and highest-tide images calculated by quantile synthesis using the time series
of mNDWI images (see Section 2.3.2). Subsequently, the SMRI index was calculated in
each pixel, and the calculated SMRI result was displayed in the form of a grayscale image.
Tidal dynamics are an important factor affecting the distribution of submerged mangrove
forests derived from SMRI. The sentinel sensor only captures one moment of the entire
tidal range at a fixed location, and it is difficult to capture the moment at extremely low
and high tides [57]. Using the time series of Sentinel-2 images during a given period, it is
possible to capture high- and low-tide images.
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From the SMRI + QS results (Figure 8), the synthetic high- and low-tide images can
be maximized close to the highest and lowest tidal heights, respectively. In addition, the
largest tidal difference can be obtained for more submerged mangrove forests. From the
results of SMRI + HL, mangrove forests under the low tidal height from the selected low-
tide image could not be detected, resulting in the loss of mangrove area. Quantile synthesis
results in a more effective separation of high- and low-tide images, and the submerged
mangrove forests derived from SMRI are more accurate. Thus, this is an advantage of the
proposed method when determining high-tide and low-tide images using SMRI to map
submerged mangrove forests. Furthermore, the generation of high- and low-tide synthetic
images using the quantile synthesis is more automatic and reliable because it leads to less
uncertainty for periodic inundation and overcomes the limitations of poor observations or
clouds.

In addition, one may obtain more images with different tidal heights using quantile
synthesis of satellite observations based on different application purposes. Zhao et al. [13]
tested the applicability of quantile synthesis using synthetic aperture radar (SAR) images
and extended the application of quantile synthesis to optical images (i.e., Sentinel sensor)
and verified its applicability.

4.2. Separation of S. alterniflora

Phenological features are important for distinguishing S. alterniflora from mangrove
forests. Mangrove forests are marginally affected by seasonal changes, but S. alterniflora is
always influenced by seasonal changes. From the results in Figure 9, many S. alterniflora
patches were misclassified as submerged mangrove forests, resulting in the overestimation
of mangrove forest area. The separation of S. alterniflora using phenological differences
results in a more accurate mangrove forest mapping. However, it is extremely difficult for
some mixed pixels of S. alterniflora to be distinguished from submerged mangrove forests
because of the limited spatial resolution of the Sentinel-2 sensor [35,58].

Additionally, we only employed two phenological periods in this study rather than
stacking numerous phenological periods to reduce the demand for data. Theoretically, most
of the effective phenological information is accommodated by these two specific periods
and provides additional phenological information for S. alterniflora separation.

The areas of the initial SMRI + QS, SMRI + QS and S. alterniflora were calculated. The
total area of initial SMRI + QS prior to removing S. alterniflora was 9308.86 ha, and the
area of SMRI + QS after removing S. alterniflora was 9110.17 ha. The total area covered by
S. alterniflora was 1088.08 ha. The area prior to removing S. alterniflora was 198.69 ha larger
than that after removing S. alterniflora.

4.3. Comparison with Other Mangrove Forests Mapping Products

From the results in Figure 10, the differences between this map and other mangrove
forest products can be explained. Jia et al. [12] neglected tidal inundation by applying
single-phase Landsat data to map mangrove forests. Chen et al. [20] used the relationship
between specific mangrove indices and annual mean NDVI to map mangrove forests. The
study by Chen et al. was implicit in synthesized quantiles. Murray et al. [56] created a
global mangrove forest map using random forest classification with 30 m resolution Landsat
data. Comparing the map derived from this study with those from the three mangrove
forest products, the first advantage of this study is the removal of the S. alterniflora influence.
S. alterniflora near seaward mangrove forests flourish and have a significant impact on
mangrove forest mapping. If the effect of S. alterniflora is neglected, the area of mangrove
forests can be overestimated. The second advantage of this study is that it distinguishes
submerged mangrove forests. If tidal inundation was considered, the mangrove forest
area would be underestimated. We also calculated the area of the three products, and the
areas of mangrove forest mapping were 6621, 6849, and 6192 ha for the CASM, MFDM, and
GMW, respectively. The mangrove forest area in this study (9110.17 ha) was larger than that
obtained using the other products. The 10 m resolution from Sentinel-2 data contributes to
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finer mangrove forest identification, and more small, fragmented patches near landward
ponds or along a tidal river can be distinguished. Moreover, this map in Guangxi Province,
Chin, is the first mangrove forest map accessible to the public.

4.4. Limitations for the Proposed Method

The classification results presented the so-called “salt-and-pepper” level of characteri-
zation because the proposed method is conducted at the pixel level. In our future work,
object-based classification will be conducted to eliminate the “salt-and-pepper” effect of
the proposed method. Additionally, optical images are susceptible to clouds. For areas
with a rainy season in phenology, few or even no optical images are available for one or
two months because of cloud cover. This results in phenological feature losses for one or
two months of a year but does not affect the annual phenological features. The potential of
combining multi-source data (i.e., Landsat, Sentinel, and SAR data) to compensate for this
limitation with the proposed method merits future investigation.

5. Conclusions

In this study, an improved SMRI-based method for mangrove forest mapping was
developed using a time series of Sentinel-2 images and the GEE platform. The proposed
method generated high- and low-tide synthetic images using quantile synthesis of satellite
observations rather than selecting two images from available images, which removed the
disturbance of tidal dynamics during image acquisition. This resulted in more effective
and reliable determination of high- and low-tide images; consequently, the submerged
mangrove forests derived from SMRI were more accurate. In addition, the proposed
method removed the disturbance caused by S. alterniflora from the submerged mangrove
forest zone based on spectral separability. It can maximize the use of available images and
is more effective and accurate for mangrove forest mapping, especially in areas affected by
tides. The proposed method removed the disturbance of tidal dynamics and S. alterniflora
invasion and can accurately map mangrove forests. This study provides a mangrove forest
classification method that has the potential to be applied to coastal monitoring.
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