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Abstract: Recently, few-shot object detection based on fine-tuning has attracted much attention in the
field of computer vision. However, due to the scarcity of samples in novel categories, obtaining posi-
tive anchors for novel categories is difficult, which implicitly introduces the foreground–background
imbalance problem. It is difficult to identify foreground objects from complex backgrounds due to
various object sizes and cluttered backgrounds. In this article, we propose a novel context informa-
tion refinement few-shot detector (CIR-FSD) for remote sensing images. In particular, we design a
context information refinement (CIR) module to extract discriminant context features. This module
uses dilated convolutions and dense connections to capture rich context information from different
receptive fields and then uses a binary map as the supervision label to refine the context information.
In addition, we improve the region proposal network (RPN). Concretely, the RPN is fine-tuned on
novel categories, and the constraint of non-maximum suppression (NMS) is relaxed, which can obtain
more positive anchors for novel categories. Experiments on two remote sensing public datasets show
the effectiveness of our detector.

Keywords: convolutional neural network (CNN); few-shot object detection; remote sensing images;
context information

1. Introduction

The code is available at https://github.com/Li-ZK/CIR-FSD-2022 (accessed on 29
June 2022). Object detection has always been a research hotspot in remote sensing and
computer vision fields. In the past few years, object detection has made significant progress
due to the rapid development of deep convolutional neural networks (CNNs). A series
of excellent object detection algorithms based on CNN have emerged in natural scene
images [1,2]. The object detection frameworks are generally divided into two main types
according to whether they contain region proposals, i.e., one-stage and two-stage detectors.
One-stage detectors, represented by the You Only Look Once (YOLO) series [3–7], directly
generate class-related bounding boxes and their probabilities at each spatial location. In
contrast, two-stage detectors, represented by the region-based CNN (R-CNN) series [8],
including Fast R-CNN [9] and Faster R-CNN [10], adopt a region proposal algorithm to
improve the performance of object detection.

Compared with natural scene images, remote sensing images (RSIs) have the charac-
teristics of arbitrary directions, different object sizes and complex backgrounds. To deal
with the problems mentioned above, researchers have proposed many excellent solutions
based on CNN [11]. Wu et al. [12] proposed an Optical Remote Sensing Imagery de-
tector (ORSIm detector) that incorporates feature extraction, feature learning, fast image
pyramid matching, and boosting strategies. Qian et al. [13] incorporated a multi-level
feature fusion module into the existing hierarchical deep network, which can fully use
the multi-level features. Cheng et al. [14] proposed a two-stage oriented detector for de-
tecting arbitrary-oriented objects in RSIs. They generated high-quality oriented proposals
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through an oriented RPN, and refined these proposals through an oriented R-CNN head.
Yang et al. [15] proposed a sampling fusion network to improve sensitivity to small objects.
They use a supervised multi-dimensional attention network to attenuate the noise in remote
sensing images and highlight object information. Zheng et al. [16] proposed a multitask
learning network that treats each small-scale training dataset as a task. They utilize shared
branches to extract shared features across tasks to better adapt to remote sensing images.

Although the object detection method based on CNN has achieved great success,
training a deep detector usually requires sufficient annotation data. Collecting annotated
data in the real world is time-consuming and expensive, which makes it difficult to ob-
tain enough annotated data. This raises considerable attention about learning efficient
detectors with limited training samples. Chen et al. [17] proposed a low-shot trans-
fer detector for object detection in few-shot cases, which transfers rich source domain
knowledge to the target domain. Xu et al. [18] designed a cross-domain ship detec-
tion method, which can transfer labeled optical ship images to unlabeled SAR images.
Wu et al. [19] designed a multi-source active fine-tuning network to achieve vehicle detec-
tion without the requirement for well-annotated samples. Few-shot object detection (FSOD)
has gradually become an effective mechanism to address this issue, which can learn new
concepts from limited training samples.

Currently, FSOD is mainly divided into three categories: meta-learning-based, metric-
learning-based, and fine-tuning-based approaches [20,21]. Meta-learning [22–25] usually
utilizes many episodes to learn task-agnostic notions (e.g., meta-parameters), which might
be meaningful for quickly adapting to a new session. Kang et al. [22] used a meta feature
learner to extract meta-features from the query images and designed a reweighting module
to acquire the global features of the support images. Li et al. [23] designed a meta-learning
model with multiscale architecture to solve the inherent scale fluctuations in remote sensing
images by introducing feature pyramid network (FPN) [26]. Cheng et al. [25] designed
a prototype learning network (PLN) to obtain the prototypes of each class, and used
the prototypes to guide a region proposal network to generate higher-quality proposals,
which can more effectively choose foreground objects from complicated backgrounds in
RSIs. Meta-learning approaches divide so many small tasks and design a complex episodic
training scheme, which can cause a lot of training time and more memory with an increasing
number of categories in the support set.

Metric-learning [27–29] focuses on learning a robust encoding function and a rating
function that measure the similarity of a query image’s embedding vectors to each cate-
gory prototype. Karlinsky et al. [28] proposed a novel metric-learning-based method for
representing each category that uses a mixed model with multiple modes, and they take
the centers of these modes as the category’s representative vectors. During the training
process, the method concurrently learns the embedding space, the model weights and the
representative vectors for each category. Yang et al. [29] found that negative proposals,
especially hard negative ones, are essential for learning an embedding space. Therefore,
they introduced a new metric learning framework inference scheme based on negative
and positive representations. The embedding space representing the positive and neg-
ative vectors in both methods is learned by utilizing a triplet loss [30]. Metric-learning
approaches require the use of training data to learn a robust collection of class prototypes
as task-specific parameters, which makes building robust class prototypes problematic
when the dataset contains numerous outliers (such as occlusion).

Recently, Two-stage Fine-tune Approach (TFA) has shown great potential in the
field of FSOD [31]. Compared to meta-learning and metric-learning approaches, TFA
can yield competitive performance through a simple fine-tuning strategy. TFA utilizes
a simple two-stage treatment on Faster R-CNN, which freezes the pre-trained weights
in the first stage and fine-tunes the last layers in the second stage. Wu et al. [32] pro-
posed a scale-aware network based on TFA to distinguish positive–negative exemplars
by combining the FPN with object pyramids. Zhang et al. [33] proposed a novel data
hallucination-based approach to address the problem of lack of variety in training data,
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which efficiently transfers common patterns of within-category variation from base cate-
gories to novel categories. Zhao et al. [34] designed a path-aggregation multiscale few-shot
detector for remote sensing images (PAMS-Det), which can mitigate the scale scarcity
in novel categories by adding a path-aggregation module. In addition, PAMS-Det de-
signed an involution backbone to improve the classification ability of the object detector
in remote sensing images. Huang et al. [35] designed a shared attention module and
a balanced fine-tuning strategy to cope with large size variations and improve the clas-
sification accuracy. Li et al. [36] designed a few-shot correction network to eliminate
false positives caused by class confusion. This can improve the limitation of TFA for
classifier rebalancing. Sun et al. [37] introduced contrastive learning into TFA to learn
contrastive-aware object proposal embeddings, which is helpful to classify the detected
objects. Sun et al. observed that the positive anchors for novel objects received relatively
low scores from region proposal network, resulting in fewer positive anchors passing non-
maximum suppression (NMS) and becoming proposals. The low-score positive anchors for
novel objects are mostly regarded as background noise, which introduces the problem of
foreground–background imbalance.

Due to various object sizes and cluttered backgrounds, it is still a challenging problem
to identify foreground objects from complex backgrounds in remote sensing images, even
with the help of the aforementioned FSOD methods. Firstly, the receptive field of FPN
is insufficient to capture rich context information for objects of different sizes since the
effective receptive fields of CNN are substantially smaller than the expected receptive
fields [38,39], which may lead to the failure of FPN to detect objects correctly. Yang et al. [40]
proposed Densely connected Atrous Spatial Pyramid Pooling (DenseASPP) for semantic
segmentation of street scenes and achieved remarkable success. They used the dilated
convolution to obtain different receptive fields and used the dense connections to aggregate
multiple atrous-convolved features as the final feature representation. In addition, due to
the complexity of RSIs, excessive background noise might override the target information,
and the boundary between the targets will become blurred, which will lead to missed
detection. Wang et al. [41] designed a multiscale refinement FPN and nonlocal-aware
pyramid attention to suppress background noise and focus more on the valuable object
features. Finally, because of the scarcity of samples in novel categories, it is difficult to
obtain the positive anchors for novel categories, which implicitly introduces the foreground-
background imbalance problem. In this article, to tackle the above challenges, we introduce
a fine-tuning-based method for few-shot object detection, which designs a novel context
information refinement few-shot detector (CIR-FSD) for remote sensing images. In order to
better extract discriminative context features, we devise a context information refinement
(CIR) module. In CIR, firstly, the dilated convolutions and dense connections are used
to capture rich context information from different receptive fields. Then, a binary map
is used as supervision labels to refine context information, which can suppress the noise
and enhance the object information. In addition, baseline TFA usually needs to freeze all
parameters trained on base categories and fine-tune only the box classification layer and
regression layer on novel categories, which prevents RPN from learning the features related
to novel categories. In our method, in addition to the box classifier and regressor, RPN is
also fine-tuned on base and novel categories, which can increase the confidence of positive
anchors for novel categories. Further, we relax the constraint of NMS on the confidence of
anchors. Fine-tuning RPN and relaxing NMS can obtain more positive anchors for novel
categories, which can alleviate the imbalance between the foreground and background.
Our main contributions are highlighted as follows:

(1) We design a novel context information refinement few-shot detector for remote sensing
images, which can effectively detect objects of different scales and cluttered objects in
complex backgrounds with a few annotated samples.

(2) A CIR module is designed to obtain rich context information from different receptive
fields and refine it at the same time, which can learn discriminative context features.
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(3) Our proposed method increases the confidence of positive anchors for novel categories
by fine-tuning RPN, and relaxes the constraint of NMS on the confidence of anchors,
which can obtain more positive anchors for novel categories to alleviate the imbalance
between the foreground and background.

2. The Proposed RSI Few-Shot Object Detection Framework
2.1. Overall Architecture

Depending on the high accuracy and recall, a two-stage detector is widely employed
for object detection in the remote sensing of images, such as various improved algorithms
based on the popular Faster R-CNN [10]. Shivappriya et al. [42] applied the Additive
Activation Function (AAF) to Faster R-CNN to improve the efficiency of object detection.
In the mainstream detection frameworks (i.e., Detectron2 [43] and MMDetection [44]),
two-stage object detector generally includes multiple modules, such as Backbone, FPN [26],
RPN and Roi Feature Extractor. These detectors usually generate region of interests (RoIs)
using independent RPN, and then further classify these RoIs and accurately regress them
as the final results. As shown in Figure 1, our proposed network architecture is built upon
the popular detector Faster R-CNN. First, the images in the training set are fed into the
Backbone for basic feature extraction. Then a CIR module is implemented for extracting
discriminative context features. Next, these features are processed by a top-down module
and lateral connections in FPN to generate multi-scale feature maps for objects of various
sizes. These multi-scale feature maps are fed into the RPN for RoIs generation. Finally,
these RoIs are pooled to a uniform scale and perform the final classification and regression
tasks. The total loss function of the network is as follows:

Loss = LRPN + Lcls + Lreg + λLCIR, (1)

where the first term denotes RPN loss, the second term represents classifier loss, the third
term expresses regression loss, and the fourth term denotes CIR loss. The equilibrium pa-
rameter lambda represents the coefficient of CIR loss, which is taken as 0.35 in experiments
and more details are described in Section 3.2.

Figure 1. The overview architecture of the proposed few-shot RSI object detector.

2.2. Two-Stage Fine-Tuning Strategy

Usually, the dataset of the experiment is divided into a training set Dtrain and a test
set Dtest. Under the few-shot detection scenario, the categories in the Dtrain are divided
into base categories Dbase and novel categories Dnovel , Dbase ∩ Dnovel = ∅. To train a
robust model, the basic categories require as many samples as feasible, whereas the novel
categories usually contain several annotated samples. To make full use of the rich prior
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knowledge embedded in large-scale samples and transfer this knowledge to a few novel
samples, the training of our CIR-FSD is divided into two stages: base training stage and
few-shot fine-tuning stage.

In the first stage, the network is trained on the base categories with abundant labels
to learn prior knowledge. For each sample (Xtrain, Ytrain) in Dbase, Xtrain is an image
(Xtrain ∈ RH×W×3) and Ytrain is the label of the image Xtrain. It is generally considered that
such prior knowledge is stored in the feature extraction modules, such as Backbone, CIR,
FPN, RoI feature extractor, etc., so that the parameters of these models are usually frozen.

In the second stage, both prior knowledge learned from base categories and new
knowledge related to novel categories are utilized to detect the targets of novel classes.
For several instances (Itrain, Ytrain) in Dbase ∪ Dnovel , Itrain is the instances of the image
(Itrain ∈ Xtrain), Ytrain is the label of the instances Itrain, and the maximum number of
instances per category was set to k (k is generally no more than 20).

In our CIR-FSD, RPN acts as a binary classification network responsible for filter-
ing out possible foreground objects from the background. If the RPN parameters are
kept frozen, novel categories can easily be taken as background due to their low confi-
dence. Different from the feature extraction module that is only responsible for extracting
category-independent features, RPN needs to extract category-related features. To have the
discriminative ability to identify novel categories from complex backgrounds, RPN needs
to learn the knowledge of novel categories. Therefore, we improve RPN to enhance the
confidence of novel categories in the fine-tuning stage. More novel categories are separated
from the background and treated as foreground. In addition, the box classifier and regressor
in the first stage are designed for base categories, and we also fine-tune them in the second
stage to adapt to novel categories.

In the process of fine-tuning, the base categories often introduce catastrophic forgetting
problems as it receives less attention, and there is a great deal of research examining this
difficulty. Wang et al. [45] proposed a new online continual learning dataset and evaluation
metrics, which can sufficiently evaluate catastrophic forgetting. Fan et al. [46] proposed a
novel fine-tuning method, called Retentive R-CNN, which avoids catastrophic forgetting by
combining pretrained RPN and fine-tuned RPN. Guirguis et al. [47] propose a constraint-
based fine-tuning approach to mitigate catastrophic forgetting. To prevent catastrophic
forgetting, we used a few images from the base categories for fine-tuning, which preventing
the model from overfitting the novel categories. For model testing, we test our CIR-FSD
method on the test set Dtest. Algorithm 1 depicts the whole training and testing process.

Algorithm 1 Process of Training and Testing for the CIR-FSD

1: Create a large-scale training set Dbase out of base classes, and a small-scale training set
Dnovel out of novel classes, Dbase ∩ Dnovel = ∅.

2: Construct a testing set Dtest for evaluation.
3: Initialize the parameters ψ, θ, φ, χ in the Backbone module, CIR module, FPN module,

and RoI Feature extractor module.
4: for each sample (Xtrain,Ytrain) ∈ Dbase do
5: Base training.
6: end for
7: Keep the network parameters ψ, θ, φ, χ fixed.
8: for k instances per class (Itrain,Ytrain) ∈ Dnovel ∪ Dbase do
9: Few-shot fine-tuning.

10: end for
11: for each sample (Xtest,Ytest) ∈ Dtest do
12: Generate bounding boxes and category scores on each image.
13: Calculate the accuracy and recall of all correctly identified objects.
14: end for
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2.3. Context Information Refinement

It is generally believed that a large receptive field can capture richer contextual in-
formation. However, the receptive field of the feature pyramid network is insufficient to
capture the contextual information for objects of different sizes. In particular, excessive
background noise in complex remote sensing images can result in an overabundance of
object data and a blurring of object boundaries. To address these problems, we designed a
new CIR module to learn the discriminative context features, which can classify objects
correctly and localize objects precisely. Specifically, as shown in Figure 2, we adopt the
backbone of Faster R-CNN (i.e., Resnet-101 [48]) to implement the feature extractor . Then,
the output feature maps of the backbone network are fed into our CIR, which is composed
of multi-path dilated convolutional layers with rates of 3, 6, 12, 18, and 24 to obtain multiple
receptive fields.

Figure 2. The diagram of the context information refinement module.

After applying multi-path dilated convolution to ResNet-101, the multiple feature
maps in various receptive fields can be derived. In particular, deformable convolutions are
introduced into each path, which can adapt to different scales and shapes of RSI objects. In
addition, in our CIR, dense connections are adopted between each dilated convolutional
layer, which can fuse better multi-scale context information. Finally, the output of the last
dilated layer is sent into a 1 × 1 convolutional layer to fuse the multi-scale features. The
structural details of the CIR implementation are described in Section 3.2.

To better refine context information, the output of the last dilated layer is also sent
into two 1 × 1 convolutional layers to learn a two-channel saliency map, which indicates
the foreground and background scores, respectively. Then, the value of the saliency map
is normalized to between [0,1] by executing the Softmax function. We take a binary map
obtained from ground truth as the supervision label, and then calculated the CIR loss
between the binary map and the saliency map to suppress noise and enhance object
information. In our method, CIR loss is essentially cross-entropy loss, and it is calculated
as follows:

LCIR =
λ

h× w

h

∑
i

w

∑
j

Latt

(
u′ij, uij

)
, (2)

where h and w denote the feature map’s width and height, u′ij and uij denote the prediction
of mask’s pixel and label respectively, and Latt is pixelwise Softmax cross-entropy.
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2.4. Improved RPN

RPN is considered to be a category-independent network, which uses foreground–
background classifier to select RoIs without considering their exact category, as shown
in Figure 3. To prevent over-fitting, most prior studies believed that a pre-trained RPN
could produce high-quality suggestions for a new assignment. As a result, they tended
to freeze all parameters of such an RPN. We found that this strategy prevents RPN from
learning features related to the novel categories, resulting in low confidence of the positive
anchors for novel classes. Meanwhile, NMS in RPN tends to treat the novel categories as
background, resulting in foreground–background imbalance. To alleviate the imbalance
between the foreground and background, the RPN is fine-tuned in the fine-tuning stage
and the constraint of NMS is relaxed on the confidence of positive anchors.

Figure 3. The diagram of the relaxed region proposal network module.

As shown in Figure 4, for the convenience of presentation, we utilize the original image
to replace the input feature map. The yellow cross in the picture depicts the feature map’s
stride relative to the original image, and the green box represents the anchor generated by
the RPN. Let the size of the ith feature map generated by FPN be Hi ×Wi × Ci, where W
and H denote the feature map’s width and height, respectively, and C denotes the number
of the feature channels.

In each feature map, Hi ×Wi × k anchor boxes are first generated by anchor generator,
corresponding to the anchors around the yellow cross in the figure. For visualization, we
do not draw all the anchors around the yellow cross. Usually, there are nine different
anchors around each yellow cross, consisting of three sizes and three ratios. These anchors
perform classification and regression tasks via 3 × 3 convolution and 1 × 1 convolution,
respectively. Then, RPN randomly selects the top m positive anchors that may contain
objects in each level, and Pm denotes their probability of containing objects. Usually, an
intersection over union (IoU) threshold t is set to distinguish foreground and background.
If an anchor satisfies Pm > t, it is treated as foreground, otherwise as background.

Figure 4. The proposals generated by RPN and improved RPN.

To retain more positive anchors for novel categories, we improve the RPN. Specifically,
we double the preset m and propose a relaxed NMS (R-NMS). The IoU threshold t is
slightly reduced to allow more anchors to be selected, and more potential targets will be
relieved of inhibitions. Finally, these anchors are fine-tuned into RoIs, and RPN selects the
top n RoIs to the subsequent networks for a more refined bounding box regression and
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multi-classification. To compensate for positive anchors, we slightly increase the value of n.
In RPN, the loss is a sum of the classification and bounding box regression losses, where
the classification loss is calculated by cross-entropy and the regression loss is as follows:

Lloc = ∑
u

∑
n∈x,y,w,h

smoothL1(un(Pt)− un(Gt)) (3)

smoothL1(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise,

(4)

where u denotes the foreground anchors, Pt denotes the prediction, Gt denotes the ground
thuth, and the positions of the boxes are denoted by x, y, w, h. Fine-tuning RPN and relaxing
NMS can obtain more positive anchors for novel categories, thus improving the ability of
RPN to adapt to novel classes with fewer samples.

3. Experiments and Results
3.1. Datasets and Evaluation Metrics

DIOR [49]: A dataset consists of 23,463 images and 192,472 instances, with the training
set having 5862 images, the evaluation set having 5863 images, and the test set having
11,738 images. The spatial resolution in this dataset varies from 0.5 to 30 m, and the picture
size is 800 × 800 pixels. DIOR contains 20 common object categories, including airplane,
tennis court, baseball field, bridge, windmill, airport, harbor, chimney, ground track field,
expressway service area, dam, golf course, expressway toll station, overpass, stadium, ship,
storage tank, vehicle, train station, and basketball court.

NWPU VHR-10 [50]: An open Level 10 geographic remote sensing dataset with a
resolution of 0.5–2.0 m for multicategory object detection, with 10 categories of objects,
including airplane, tennis court, harbor, storage tank, baseball diamond, basketball court,
bridge, ground track field, vehicle, and ship. The images are rectangles of approximately
500 to 1200 pixels on the long side and are separated into two sets: negative image set
and positive image set. The negative image set has 150 photos without any item cate-
gories provided, while the positive image set has 650 photos, each containing at least one
detectable target.

Our experimental settings are exactly the same as that in [23], i.e., three novel categories
in NWPU VHR-10 dataset, and five novel categories in DIOR dataset, with the rest of the
categories in the dataset being regarded as base categories. Specifically, the three novel
categories in the NWPU VHR-10 dataset are airplane, tennis court, and baseball diamond,
and the five novel categories in the DIOR dataset are airplane, tennis court, baseball field,
windmill, and train station. K-shot novel instances from the novel categories are randomly
picked for few-shot training, where K is set to 3, 5, 10, 20, 30. To obtain relatively stable
results, we set 10 random seeds and calculate average over the 10 random seeds. We take
the mean average precision (mAP) as evaluating metric, and evaluate the performance of
the detector through PASCAL VOC2007 development kit. The fraction of true positives
(TP) is used to calculate the precision, and the detection area overlap between ground truth
and detection is generally considered to be greater than the defined IoU threshold, such as
0.5. The recall formula is used to measure the fraction of correctly identified positives.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

APc =
∫ 1

0
Pc(R)dR (7)

Usually, the AP of the c-th category APc is calculated by Formula (7), which is also
considered as the area under the P-R curve. To more accurately evaluate the few-shot
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object detection approaches, the mAPs for novel categories with different K values is
calculated as:

mAPk =
1
k

k

∑
c=1

APc, (8)

where k denotes the amount of shots selected for the training set and mAPk denotes the
average accuracy of the K-shot model.

3.2. Experiment Settings

We use two RTX 2080Ti GPUs for model training, each with a batch size of two. The
stochastic gradient descent (SGD) optimization algorithm is employed in the base training
stage, and the initial learning rate is set to 0.005. We train 8000 iterations on the NWPU
VHR-10 dataset, where the learning rate is divided by 10 at 4000 and 6000 iterations,
respectively. On the DIOR dataset, we train 7000 iterations, in which the learning rate is
divided by 10 at 3000 and 5000 iterations, respectively. In the fine-tuning stage, the same
initial learning rate and optimization algorithm are adopted. Training the model up to 3000
iterations on two datasets is sufficient to achieve good performance. The proposed method
is implemented by the Detecron2 [43], which is a free and open-source object detection
framework developed and maintained by Facebook AI Research.

For our CIR, we use dilated convolutions and dense connections to obtain global
context information, and use 1 × 1 convolutions and binary maps to refine the context
information. Specifically, in CIR, we first reduce the F5 from 2048 channels to 512 channels,
and then utilize several 3 × 3 deformable convolution layers with different dilated rates to
obtain various receptive fields. Finally, 1 × 1 convolutions are used to reduce the channel
to 256 for feeding into the top-down structure of the FPN, and further reduce the channel
to 2 to calculate the loss using binary mapping. The network architecture of our proposed
CIR module is shown in Table 1.

Table 1. Network architecture of the CIR module.

Module Module Details Input Shape Output Shape

CIR_3_1×1 Conv (2048, w, h) (512, w, h)

CIR_3_3×3 DeformConv(dilate=3) (512, w, h) (256, w, h)

CIR_concat_1 Concatenation(C5, CIR_3_3×3) (2048, w, h)⊕(256, w, h) (2304, w, h)

CIR_6_1×1 Conv (2304, w, h) (512, w, h)

CIR_6_3×3 DeformConv(dilate=6) (512, w, h) (256, w, h)

CIR_concat_2 Concatenation(CIR_concat_1,
CIR_6_3×3) (2304, w, h)⊕(256, w, h) (2560, w, h)

CIR_12_1×1 Conv (2560, w, h) (512, w, h)

CIR_12_3×3 DeformConv(dilate=12) (512, w, h) (256, w, h)

CIR_concat_3 Concatenation(CIR_concat_2,
CIR_12_3×3) (2560, w, h)⊕(256, w, h) (2816, w, h)

CIR_18_1×1 Conv (2816, w, h) (512, w, h)

CIR_18_3×3 DeformConv(dilate=18) (512, w, h) (256, w, h)

CIR_concat_4 Concatenation(CIR_concat_3,
CIR_18_3×3) (2816, w, h)⊕(256, w, h) (3072, w, h)

CIR_24_1×1 Conv (3072, w, h) (512, w, h)

CIR_24_3×3 DeformConv(dilate=24) (512, w, h) (256, w, h)

CIR_concat_5
Concatenation(CIR_3_3×3,
CIR_6_3×3, CIR_12_3×3,

CIR_18_3×3, CIR_24_3×3)

(256, w, h)⊕(256, w, h)⊕(256, w, h)⊕
(256, w, h)⊕(256, w, h) (1280, w, h)

CIR_golobal_context_reduce_1×1 Conv (1280, w, h) (256, w, h)

CIR_context_refine_reduce_1×1 Conv (256, w, h) (2, w, h)
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In addition, to explore the optimal parameters of CIR in our detector, we conducted
a comparison experiment on the selection of the parameter λ in LCIR on the DIOR [49]
dataset. When the value of the parameter λ is 0, it means that the LCIR is not used,
as demonstrated in Table 2. When the parameter λ is 0.35, the 5-shot, 10-shot, and
20-shot all achieve the best performance. As a result, we choose λ = 0.35 as the CIR’s
equilibrium parameter. During the fine-tuning stage, we conducted a comparison ex-
periment with hyperparameters in the model. Specifically, the fine-tuning stage mainly
involves three hyperparameters, namely m, n, and t, where m represents the number of
positive anchors selected, n represents the number of ROIs selected, and t represents the
IoU threshold. We take 5 shot results on the DIOR dataset as the evaluation metric, and
set m and n between 1500 and 3500, and the threshold between 0.2 and 0.7. To choose
appropriate hyperparameters, we choose two strategies, the first is to fix the IoU threshold,
compare m and n. The second is to fix m and n, compare the IoU threshold. As is shown in
Figures 5 and 6, when the IoU threshold is fixed, the model has the best value when both m
and n are 3000. When m and n are set to 3000 and fixed, the model achieves the best value
at the IoU threshold of 0.4. Therefore, we take m, n, and the IoU threshold as 3000, 3000,
and 0.4, respectively, as the optimal hyperparameters.

Table 2. Equilibrium parameter λ of LCIR.

λ 5 Shot 10 Shot 20 Shot

0 0.301 0.360 0.400
0.10 0.302 0.362 0.405
0.20 0.312 0.366 0.413
0.25 0.311 0.366 0.414
0.30 0.313 0.370 0.417
0.35 0.325 0.375 0.427
0.40 0.315 0.372 0.420

Figure 5. Equilibrium parameter m and n.
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Figure 6. Equilibrium parameter IoU threshold.

3.3. Comparing Methods

We compare our proposed few-shot detector with the state-of-the-art (SOTA) FSOD
methods such as meta-learning-based FSRW [22] and FSODM [23], metric-learning-based
RepMet [28], fine-tuning-based TFA [31] and PAMS-Det [34]. In addition, we also choose
the two-stage detector Faster R-CNN [10] algorithm and one-stage detector YOLO v5 [7]
algorithm for comparison, which does not belong to FSOD method. For a fair comparison,
most of the methods adopt the Faster R-CNN [10] as the base architecture, which uses the
same pre-trained feature extraction network, ResNet-101 [48], on the ImageNet dataset.
Exceptionally, FSRW [22] and FSODM [23]are based on the YOLO v3 [5] architecture with
DarkNet53 as the feature extractor.

For the DIOR dataset, we validate the mAPs of the five novel categories at 5, 10, and
20 shots, respectively. Similarly, for the NWPU dataset, we validate the mAPs of the three
novel categories at 3, 5, and 10 shots, respectively. In addition, we also validate the results
of these methods for the base classes, except for the RepMet [28] method, which is based
on metric-learning and cannot be validated for the base categories alone.

3.4. Results on DIOR

The detection performance of our and the comparison methods on different shots of
the DIOR dataset is reported in Table 3. The proposed method significantly outperforms all
previous works in any shots, as shown in Table 3. Due to training directly on few novel
samples, the detection performance of YOLO v5 [7] and Faster R-CNN [10] are obviously
inferior to that of FSOD methods. Compared with baseline TFA [31], PAMS-Det [34]
increases mAP by 3%, 3% and 1% in 5-shot, 10-shot, and 20-shot settings, respectively.
However, our proposed method is still the best to obtain detection performance. Specifically,
compared with PAMS-Det, our method increases mAP by 5%, 5%, and 5% in 5-shot, 10-shot,
and 20-shot settings, respectively, demonstrating the method’s effectiveness.

As shown in Table 3, TFA freezes the pre-trained network parameters to ensure that
the prior knowledge is preserved, resulting in higher accuracy for the base categories than
metric-learning- and meta-learning-based methods. However, the improvement of TFA
for the novel categories is reduced, the results under the settings of 5-shot, 10-shot, and
20-shot settings are close to the meta-learning-based FSODM. This is due to the scarcity
of samples in novel categories, introducing a foreground–background imbalance. Our
proposed method fine-tunes RPN and relaxes NMS, which obtains more positive anchors
for the novel categories and makes better use of contextual information in fewer samples,
so the mAPs for novel categories are significantly improved.

We select two current mainstream few-shot algorithms for visual comparison: one is
the FSODM algorithm based on meta-learning, and the other is the baseline TFA algorithm
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based on fine-tuning. The two comparison methods and our proposed CIR-FSD are
visualized on DIOR and NWPU VHR-10 datasets. The results of the novel and base classes
are visualized in the two datasets, respectively.

Figures 7 and 8 show the qualitative inference results of the novel and base classes on
the DIOR dataset. In Figure 7, we visualize the detection results for each novel category,
and in Figure 8, we select three representative categories from the base categories for
analysis. As shown in Figure 7, our proposed method can obtain outstanding detection
results compared to FSODM [23] and TFA [31]. For airplane, both FSODM and TFA have a
lot of missed objects, especially in such complex remote sensing scenarios, and our method
hardly misses any.

As shown in Figure 8, when facing dense and small objects, such as vehicle and storage
tank, CIR-FSD uses contextual information to obtain the correlation between objects and
uses the fusion of different scale features in FPN to detect these challenging objects. FSODM
and TFA are difficult to identify all foreground objects in the images. Our CIR-FSD uses
a binary map for the refinement of these objects at the instance level, which can better
distinguish object boundaries and achieve accurate localization.

Table 3. Comparison of the base and novel classes results on the DIOR dataset.

Class Shot YOLO v5 Faster R-CNN RepMet ‡ FSRW † FSODM † TFA ? PAMS-Det ? Ours ?

Base Classes Results

airport 0.59 0.73 - 0.59 0.63 0.76 0.78 0.87
basketball court 0.71 0.69 - 0.74 0.80 0.78 0.79 0.88

bridge 0.26 0.26 - 0.29 0.32 0.52 0.52 0.55
chimney 0.68 0.72 - 0.70 0.72 0.66 0.69 0.79

dam 0.40 0.57 - 0.52 0.45 0.54 0.55 0.72
expressway service area 0.55 0.59 - 0.63 0.63 0.66 0.67 0.86
expressway toll station 0.45 0.45 - 0.48 0.60 0.60 0.62 0.78

golf course 0.60 0.68 - 0.61 0.61 0.79 0.81 0.84
ground track field 0.65 0.65 - 0.54 0.61 0.77 0.78 0.83

harbor 0.31 0.31 - 0.52 0.43 0.50 0.50 0.57
overpass 0.46 0.45 - 0.49 0.46 0.50 0.51 0.64

ship 0.10 0.10 - 0.33 0.50 0.66 0.67 0.72
stadium 0.65 0.67 - 0.52 0.45 0.75 0.76 0.77

storage tank 0.21 0.21 - 0.26 0.43 0.55 0.57 0.70
vehicle 0.17 0.19 - 0.29 0.39 0.52 0.54 0.56
mean 0.45 0.48 - 0.50 0.54 0.63 0.65 0.74

Novel Classes Results

airplane
5 0.02 0.03 0.09 0.09 0.09 0.13 0.14 0.20

10 0.08 0.09 0.13 0.15 0.16 0.17 0.17 0.20
20 0.09 0.09 0.14 0.19 0.22 0.24 0.25 0.27

baseball field
5 0.09 0.09 0.19 0.33 0.27 0.51 0.54 0.50

10 0.27 0.31 0.33 0.45 0.46 0.53 0.55 0.55
20 0.30 0.35 0.34 0.52 0.50 0.56 0.58 0.62

tennis court
5 0.10 0.12 0.11 0.47 0.57 0.24 0.24 0.50

10 0.12 0.13 0.24 0.54 0.60 0.41 0.41 0.50
20 0.20 0.21 0.29 0.55 0.66 0.50 0.50 0.55

train station
5 0.00 0.00 0.01 0.09 0.11 0.13 0.17 0.24

10 0.00 0.02 0.01 0.07 0.14 0.15 0.17 0.23
20 0.02 0.04 0.03 0.18 0.16 0.21 0.23 0.28

wind mill
5 0.01 0.01 0.01 0.13 0.19 0.25 0.31 0.20

10 0.10 0.12 0.01 0.18 0.24 0.30 0.34 0.36
20 0.12 0.21 0.03 0.26 0.29 0.33 0.36 0.37

mean
5 0.04 0.05 0.08 0.22 0.25 0.25 0.28 0.33

10 0.11 0.13 0.14 0.28 0.32 0.31 0.33 0.38
20 0.15 0.18 0.16 0.34 0.36 0.37 0.38 0.43

† marks meta-learning based methods. ‡ marks metric-learning based methods. ? marks the average of the
experiments on 10 random seeds.
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(a) (b) (c) (d) (e)

Figure 7. Qualitative inference results of novel categories on the DIOR dataset. (a) airplane,
(b) baseball field, (c) tennis court, (d) train station, (e) wind mill.

(a) (b) (c)

Figure 8. Qualitative inference results of base categories on the DIORdataset. (a) storage tank,
(b) vehicle, (c) harbor.

3.5. Results on NWPU VHR-10

To further validate the advantages of our CIR-FSD, we conducted experiments on
the NWPU VHR-10 dataset. Table 4 lists the detection accuracy of the proposed CIR-FSD
and comparison methods on three novel categories of the NWPU dataset. Our method
shows obvious advantages over the metric-based learning and meta-learning methods, as
indicated in the table. Compared to baseline TFA [31], our method improves it by 25%,
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9%, and 5%, respectively, in 3-shot, 5-shot, and 10-shot settings. In addition, compared
with PAMS-Det, our method improves mAP by 17% in 3-shot, 9% in 5-shot and 4% in
10-shot settings.

Table 4. Comparison of the base and novel classes results on the NWPU VHR-10 dataset.

Class Shot YOLO v5 Faster R-CNN RepMet ‡ FSRW † FSODM † TFA ? PAMS-Det ? Ours ?

Base Classes Results

ship 0.80 0.88 - 0.77 0.72 0.90 0.88 0.91
storage tank 0.52 0.49 - 0.80 0.71 0.90 0.89 0.88

basketball court 0.58 0.56 - 0.51 0.72 0.91 0.90 0.91
ground track field 0.99 1.00 - 0.94 0.91 0.99 0.99 0.99

harbor 0.67 0.66 - 0.86 0.87 0.79 0.84 0.80
bridge 0.56 0.57 - 0.77 0.76 0.80 0.80 0.87
vehicle 0.70 0.74 - 0.68 0.76 0.81 0.89 0.89
mean 0.69 0.70 - 0.76 0.87 0.87 0.88 0.89

Novel Classes Results

airplane
3 0.06 0.09 0.19 0.13 0.15 0.12 0.21 0.52
5 0.10 0.19 0.20 0.24 0.58 0.51 0.55 0.67

10 0.18 0.20 0.22 0.20 0.60 0.60 0.61 0.71

baseball diamond
3 0.14 0.19 0.36 0.12 0.57 0.61 0.76 0.79
5 0.20 0.23 0.36 0.39 0.84 0.78 0.88 0.88

10 0.28 0.35 0.39 0.74 0.88 0.85 0.88 0.88

tennis court
3 0.12 0.12 0.12 0.11 0.25 0.13 0.16 0.31
5 0.15 0.17 0.14 0.11 0.16 0.19 0.20 0.37

10 0.15 0.17 0.18 0.26 0.48 0.49 0.50 0.53

mean
3 0.11 0.13 0.23 0.12 0.32 0.29 0.37 0.54
5 0.15 0.20 0.23 0.24 0.53 0.49 0.55 0.64

10 0.20 0.24 0.26 0.40 0.65 0.65 0.66 0.70

† marks meta-learning based methods. ‡ marks metric-learning based methods. ? marks the average of the
experiments on 10 random seeds.

For the airplane category, the mAPs of all methods do not exceed 21% in the three-shot
setting. In contrast, our approach can achieve an impressive 50%. It is clear that our
method performs well with fewer samples. Although the TFA-based PAMS-Det uses inner
convolution and PAM, it does not solve the foreground and background imbalance caused
by low confidence in the novel classes, so their approach remains limited compared to ours.

Figures 9 and 10 show the qualitative inference results of FSODM [23], TFA [31] and
our proposed method on the NWPU VHR-10 dataset. As shown in Figure 9a, the aircraft
rotation angles in the dataset are more pronounced and diverse, which makes it harder to
distinguish them from the background. Even with few samples, our method is able to use
rich contextual information and improved RPN to identify the airplanes well. When there
are some dense and small objects in the scene, as shown in Figure 10, such as storage tank,
vehicle and ship, CIR-FSD can still use the refinement of contextual information to locate
and classify them accurately. As can be seen from the figure, the detection performance of
our method is significantly better than that of the compared methods.
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(a) (b) (c)

Figure 9. Qualitative inference results of novel categories on the NWPU VHR-10 dataset. (a) airplane,
(b) baseball diamond, (c) tennis court.

(a) (b) (c)

Figure 10. Qualitative inference results of base categories on the NWPU VHR-10 dataset. (a) vehicle,
(b) ship, (c) storage tank.

3.6. Ablation Experiments

In order to further validate the effectiveness of the main components of our CIR-FSD,
we performed ablation experiments on the two datasets mentioned above. As shown in
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Tables 5 and 6, after adding CIR, our method achieves 3–5% improvement on the DIOR
dataset, and 1–11% improvement on the NWPU VHR-10 dataset, and achieves more
remarkable gain in fewer shots. By fine-tuning RPN and relaxing NMS, the mAPs for novel
categories increase by 1.5–3% on the DIOR dataset and 4.6–14% on NWPU VHR-10 dataset,
indicating that improved RPN alleviates the suppression for novel categories. In addition,
we separately validated the performance of CIR for base categories. As shown in Table 7,
after adding CIR, our method achieves significant improvement on both DIOR and NWPU
VHR-10 datasets.

Table 5. Ablation experiment on the DIOR Dataset.

TFA [31] CIR F-RPN R-NMS 5 Shot 10 Shot 20 Shot

X 0.250 0.310 0.370
X X 0.294 0.359 0.401
X X X 0.310 0.362 0.415
X X X X 0.325 0.375 0.427

Table 6. Ablation experiment on the NWPU VHR-10 Dataset.

TFA [31] CIR F-RPN R-NMS 3 Shot 5 Shot 10 Shot

X 0.290 0.490 0.650
X X 0.400 0.565 0.651
X X X 0.476 0.580 0.655
X X X X 0.539 0.641 0.697

Table 7. Ablation experiment of Base categories.

TFA [31] CIR mAP on DIOR mAP on NWPU VHR-10

X 0.630 0.870
X X 0.738 0.893

To evaluate the parameters and computational complexity of the proposed method
relative to the baseline, we use the number of model parameters and floating-point opera-
tions per second (FLOPS) as evaluation metrics. The calculation of parameters and FLOPS
are measured with the analysis tool of Detectron2 [43], and the experiments are performed
on two datasets, DIOR and NWPU VHR-10. The input size of the datasets is 800 × 600. As
shown in Table 8, our proposed method has only a small increase in model parameters
and computational complexity compared to baseline. It indicates that the performance
improvement brought by our method over the baseline is worth the few extra parameters.

Table 8. Model parameters and computational complexity.

Method DIOR NWPU VHR-10
#Params (M) FLOPS (G) #Params (M) FLOPS (G)

TFA 58.22 154.72 58.21 154.70
Ours 63.35 159.10 63.35 158.98

To more visually verify the effect of CIR, Figure 11 visualizes the feature maps and
detection results generated by the proposed method. Two types of detection objects in
complex scenarios are selected: storage tanks with small and dense characteristics and
airplanes with arbitrary orientation characteristics. As shown in the figure, CIR highlights
the foreground and suppresses noise in the complex background as seen in the feature
map of the two examples. It is seen that many potential objects that were missed in TFA
are re-identified by the proposed method according to the detection results. The accurate
detection of storage tanks and airplanes in the complex background demonstrates the
ability of our proposed CIR to learn discriminative context features.
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Figure 11. Feature map and the detection results of the proposed network under two examples. Top:
feature map and detection results without CIR. Bottom: feature map and detection results with CIR.
The green boxes are made by the detector and the red boxes are the areas we focus on.

4. Discussion

The proposed CIR-FSD was evaluated in experiments and compared with the state-of-
the-art FSOD methods. Experimental results demonstrate the proposed method’s efficiency
on the DIOR and NWPU VHR-10 datasets.

According to the ablation experiments in Table 5, compared with the TFA [31],
TFA + CIR improves mAPs for novel categories on the DIOR [49] dataset by 4.4%, 4.9%, and
3.1% in 5-shot, 10-shot, and 20-shot settings, respectively, which fully indicates that CIR
extracts more robust context features conducive to object detection. After adding F-RPN,
the mAPs for novel categories in 5-shot, 10-shot, and 20-shot are improved by 1.6%, 0.3%
and 1.4%, respectively. Finally, after adding R-NMS, the mAPs of our proposed method
are improved by 1.5%, 1.3% and 1.2% for novel categories in 5-shot, 10-shot, and 20-shot,
respectively. With the above improvements, compared with the TFA, the proposed method
improves mAPs for novel categories on the DIOR dataset by 7.5%, 6.5% and 5.7% in 5-shot,
10-shot, and 20-shot settings, respectively. Therefore, CIR, F-RPN and R-NMS are efficient
and indispensable in the proposed method.

The comparison results of base classes are shown in Tables 3 and 4. Our method,
TFA and PAMS-det [34] are based on fine-tuning, while FSRW [22] and FSODM [23] are
based on meta-learning. For base categories, in most cases, the mAPs of the fine-tuning-
based few-shot methods are better than that of all meta-learning-based few-shot methods.
Especially on the larger dataset DIOR, the mAPs of the fine-tuning-based methods are
much better than that of all meta-learning-based methods. The above analysis shows that
compared with the meta-learning-based methods, the fine-tuning-based methods sacrifice
less accuracy on base categories.

As can be seen from Tables 3 and 4, our CIR-FSD exceeds all competitive methods. The
results of comparative experiments demonstrate the advantages of our proposed method,
which are discussed separately below.

First of all, it can be seen from Tables 3 and 4 that the performance of YOLO v5 [7]
and Faster R-CNN [10] without few-shot-based settings is much worse than that of the
few-shot-based methods. For the DIOR dataset, YOLO v5 and Faster R-CNN can only
achieve a mAP of 0.15 and 0.18 in the 20-shot setting, which is worse than the mAP of 0.33
obtained by our proposed method in 5 shots. Similarly, for NWPU VHR-10 [50] dataset,
YOLO v5 and Faster R-CNN can only achieve mAP of 0.20 and 0.24 in the 10-shot setting,
which is even lower than our proposed method’s mAP of 0.54 in the 3-shot setting. YOLO
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v5 and Faster R-CNN perform terribly in detecting objects of novel classes, demonstrating
that few-shot-based methods can effectively address the challenge of novel-class object
detection without a sufficient number of bounding box annotations.

Secondly, as can be seen from Tables 3 and 4, RepMet, FSRW and TFA are designed
for detecting common objects in optical pictures (such as bicycles, cars, and chairs), and
their performance is inferior than that designed for RSIs object detection in most cases.
The fundamental reason for this is that objects in RSIs have greater scale variation and
spatial resolution than that in optical images, which makes object detection with only a few
annotated samples more challenging. Compared with FSRW, FSODM designs a multi-scale
feature extraction module and a novel FSOD architecture to address the inherent scale
variances problem in RSIs. Compared with TFA, PAMS-Det improves classification by
using the involution operator and shape bias, and it creates a multi-scale module to better
localization in remote sensing images.

Thirdly, FSODM, PAMS-Det and our proposed method are specially optimized for
detecting objects in RSIs. PAMS-Det and our proposed CIR-FSD are based on fine-tuning,
while FSODM is based on meta-learning. As you can see from Tables 3 and 4, the fine-
tuning-based methods are superior to the meta-learning-based method. Compared with
two methods based on fine-tuning TFA and PAMS-det, our proposed method shows
superior performance. TFA and PAMS-Det only fine-tune box classifier and regressor,
while our proposed method fine-tunes RPN, finetune box classifier and regressor. More
importantly, the CIR module we designed extracts more robust context features, which
can capture rich context from different receptive fields and enhance the object information.
Take the three-shot setting as an example, the mAP of our CIR-FSD is 8% higher than TFA
and 5% higher than PAMS-Det on the DIOR dataset, while the mAP of our CIR-FSD is 25%
higher than TFA and 17% higher than PAMS-Det on the NWPU dataset.

To sum up, in this study, we design a novel context information refinement few-shot
detector for remote image object detection. Detailed experiments and analyses show the
advantages of the proposed method. Although our method can bring high improvement to
horizontal region detection, it cannot address the rotation detection boundary problem. In
the future, we will make our method solve the rotation detection boundary problem while
dealing with the horizontal region detection.

5. Conclusions

In this study, a novel context information refinement few-shot detector on remote
sensing images is proposed. We design a CIR module with the dilated convolutions and
dense connections in this method. It is found that the dilated convolutions can expand the
receptive fields of convolutional neural networks, and the dense connections can strengthen
feature reuse; therefore, CIR can capture rich context information from different receptive
fields. The designed CIR module also uses a binary map obtained from ground truth
as a supervision label to refine context information, so as to enhance the discriminative
capability of context features. In addition to the box classifier and regressor, we fine-tune
RPN on novel categories and relax the constraint of NMS on the confidence of anchors.
By fine-tuning RPN and relaxing NMS, more positive anchors for novel categories can be
obtained, thus alleviating the imbalance between foreground and background. Experiments
on two public benchmark data sets demonstrate that our proposed detector achieves state-
of-the-art object detection performance for objects of different scales and cluttered objects
in complex backgrounds.
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