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Abstract: As an effective approach to obtaining agricultural information, the remote sensing technique
has been applied in the classification of crop types. The unmanned aerial vehicle (UAV)-based
hyperspectral sensors provide imagery with high spatial and high spectral resolutions. Moreover,
the detailed spatial information, as well as abundant spectral properties of UAV-based hyperspectral
imagery, opens a new avenue to the fine classification of crops. In this manuscript, multiscale
superpixel-based approaches are proposed for the fine identification of crops in the UAV-based
hyperspectral imagery. Specifically, the multiscale superpixel segmentation is performed and a
series of superpixel maps can be obtained. Then, the multiscale information is integrated into image
classification by two strategies, namely pre-processing and post-processing. For the pre-processing
strategy, the superpixel is regarded as the minimum unit for image classification, whose feature is
obtained by using the average of spectral values of pixels within it. At each scale, the classification is
performed on the basis of the superpixel. Then, the multiscale classification results are combined to
generate the final map. For the post-processing strategy, the pixel-wise classification is implemented
to obtain the label and posterior probabilities of each pixel. Subsequently, the superpixel-based voting
is conducted at each scale, and these obtained voting results are fused to generate the multiscale voting
result. To evaluate the effectiveness of the proposed approaches, three open-sourced hyperspectral
UAV-based datasets are employed in the experiments. Meanwhile, seven training sets with different
numbers of labeled samples and two classifiers are taken into account for further analysis. The results
demonstrate that the multiscale superpixel-based approaches outperform the single-scale approaches.
Meanwhile, the post-processing strategy is superior to the pre-processing strategy in terms of higher
classification accuracies in all the datasets.

Keywords: crop classification; hyperspectral imagery; multiscale superpixel; UAV

1. Introduction

Agriculture is the foundation of the national economy, and crop production affects the
quality of human life. Specifically, obtaining the spatial distribution and growing status of
crops is crucial for agricultural monitoring and policy development [1,2]. However, the
traditional field measurement, investigation and statistic methods are time-consuming and
labor-intensive, making it difficult to obtain the agricultural information of a large area in
the required time [3,4].

Thanks to the development of earth observation technology, the remote sensing ap-
proach has been widely applied in agriculture for years, as it is able to achieve a large area
of farmland with higher data collection frequency and lower costs [5–7]. In this context, the
researchers pay attention to the interpretation of remote sensing images for achieving crop
information. Moreover, state-of-the-art machine learning methods are utilized and evalu-
ated for the agricultural crop classification in remote sensing images. Ok et al. [8] analyzed
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the performance of the random forest and maximum likelihood classification methods for
crop recognition with multispectral SPOT 5 images. Zhao et al. [9] compared three deep
learning models for early crop classification on Sentinel-1A imagery. Piedelobo et al. [10]
explored the high-resolution crop mapping in big areas by fusing the open-source remote
sensing data from Sentinel-2 and Landsat-8 satellites. Moreover, Chakhar et al. [11] com-
bined Landsat-8 and Sentinel-2 information for irrigated crop classification and assessed
the performance of 22 nonparametric algorithms for classifying crops. Kussul et al. [12]
proposed a multilevel deep learning architecture for crop type classification based on the
images acquired by Landsat-8 and Sentinel-1A RS satellites. Sonobe et al. [13] used the
data provided by Sentinel-1A C-SAR and Sentinel-2A MultiSpectral Instrument for the
identification of six crop types. Kumar et al. [14] viewed the Resourcesat-2 as a highly suit-
able satellite for crop classification studies owing to its improved features and capabilities
and compared the classification performance given by several algorithms performed on
this imagery.

In recent years, the unmanned aerial vehicle (UAV) opens a new avenue to precision
agriculture owing to its flexibility and intelligence [15,16]. To extract the crop distribution
from UAV-based imagery, a lot of research has been conducted. Senthilnath et al. [17]
investigated the application of a UAV imaging platform for vegetation analysis based on
spectral-spatial methods. In this study, vertical take-off and landing (VTOL) quadcopters
and fixed-wing were used to acquire images for vegetation analysis, and experiments
illustrated the effectiveness of the spectral-spatial methods. Ye et al. [18] used a UAV
equipped with a five-band multi-spectral sensor to capture imagery for the identification
of banana fusarium wilt using supervised classification algorithms. Moreover, the UAV-
based hyperspectral imagery shows abundant spectral properties as well as detailed spatial
information [19,20], making it a satisfactory data source for the accurate recognition of
crops [21,22]. A survey focused on the combination of UAV and hyperspectral sensors was
proposed, in which the hyperspectral sensors, inherent data processing and applications
focusing both on agriculture and forest were investigated [23]. Ishida et al. [24] used a liquid
crystal tunable filter to select the optimal combination of spectral bands for vegetation
classification. Wei et al. [25] proposed a spectral-spatial-location fusion method based on
conditional random fields, in which the spectral information, the spatial context, the spatial
features, and the spatial location information were integrated into the conditional random
field for crop recognition. Zhong et al. [26] built a UAV-borne hyperspectral dataset with
high spectral and spatial resolution and proposed a deep convolutional neural network
with a conditional random field for precise crop identification.

Meanwhile, the concept of superpixel has been introduced in hyperspectral image in-
terpretation. A superpixel can be regarded as a region consisting of several spatial-coherent
pixels with similar properties. It is able to avoid outliers and preserve the boundary of ob-
jects in the image [27,28]. The researchers viewed the superpixel as the minimum processing
unit for image classification. Li et al. [29] developed a superpixel-level sparse representation
classification framework with multitask learning for hyperspectral imagery. Fang et al. [30]
proposed a superpixel-based discriminative sparse model for spectral-spatial classification
of hyperspectral images, where pixels within each superpixel were represented via a joint
sparse regularization and the label of superpixel was determined by the recovered sparse
coefficients. Cui et al. [31] proposed a hyperspectral image classification method on the
basis of superpixel and multi-classifier fusion, which made use of the spectral information
of superpixels and the spatial information of hyperspectral images. Li et al. [32] combined
the probability outputs of the pixel-level and superpixel-level classification in a maximum
a posteriori estimation model. The aforementioned research illustrated the superiority of
superpixel-based approaches compared to the conventional pixel-based ones. However,
few works have paid attention to the superpixel-based crop fine classification. Meanwhile,
the performance of superpixel-based approaches relys on the segmentation result, and it is
difficult to select optimal parameters for the description of different kinds of objects in the
agricultural hyperspectral image.
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In this manuscript, multi-scale superpixel-based approaches are developed for the fine
classification of crops in UAV-based hyperspectral imagery. On the basis of the spectral
similarity and spatial relationship among pixels, the image is segmented as a series of super-
pixels. To exploit the multiscale information of remote sensing image, several segmentation
maps with different numbers of superpixels are generated. The superpixel information
can be introduced in classification by two different approaches, namely the pre-processing
method and the post-processing method. Specifically, the pre-processing method regards
each superpixel as a minimum processing unit instead of a pixel, and the post-processing
method combines the superpixel segmentation maps with pixel-wise classification results
by using a voting strategy. For the pre-processing method, the classification is performed
on superpixels, and the feature of a superpixel is calculated based on the pixels located in
it. For each scale, both the crisp and soft classification outputs can be obtained. Therefore,
label-based and probability-based approaches are proposed to fuse the multiscale informa-
tion. For the post-processing method, pixel-wise classification is first performed to obtain
the label and probability information of each pixel. Based on the superpixel segmentation
map at each scale, label-based and probability-based voting can be implemented. Then, the
multiscale information is fused by combining the voting results obtained at different scales.
To test the effectiveness of the proposed method, three UAV hyperspectral images obtained
by UAV over agricultural areas are adopted in the experiments.

The rest of this paper is organized as follows: The multiscale superpixel-based classi-
fication approaches are introduced in Section 2. Sections 3 and 4 show the experimental
results and discussions. The conclusions are drawn in Section 5.

2. Methodology
2.1. Superpixel Segmentation

To obtain the superpixel segmentation result, the entropy rate superpixel (ERS) al-
gorithm is employed in this research. For the ERS algorithm, superpixel segmentation is
regarded as a clustering problem. An image can be as mapped as an undirected graph
G = (V, E), where V is the vertex set and E is the edge set. The vertices denote the pixels
in the image, and the edge weights denote the similarity between vertices given in the form
of a similarity matrix. To segment an image into K superpixels, we search for a subset of
edges A ⊆ E that makes the resulting graph G = (V, A) contain K connected subgraphs.
The superpixel segmentation result can be obtained via optimizing the following objective
function with respect to the edge set

max
A

H(A) + λB(A)

subject to A ⊆ E
(1)

where H(A) represents the entropy rate of a random walk on graph G = (V, A) and B(A)
denotes the balancing function. λ ≥ 0 is the weight of the balancing term. Specifically,
the entropy rate of the random walk is employed as a criterion to achieve compact and
homogeneous clusters, which encourages the division of images on perceptual boundaries
and favors superpixels overlapping with only one object. While the balancing function
is used to encourage clusters with similar sizes and reduce the number of unbalanced
superpixels. By combining the entropy rate and the balancing function, the objective
function favors compact, homogeneous, and balanced clusters.

Note that, since the inclusion of any edge will increase the uncertainty of a jump of
the random walk, the entropy rate is monotonically increasing. On the other hand, the
balancing function is also a monotonically increasing and submodular function under the
given graph construction. Therefore, as a linear combination with non-negative coefficients,
the objective function is submodular and monotonically increasing that can be optimized
by a Greedy algorithm. Starting with an empty edge set, the algorithm adds edges to the
set sequentially. At each iteration, the edges that yield the largest gain in the objective
function are selected. With the update of the edge set, the number of connected graphs is
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also changed. When the number of connected graphs reaches the preset K, the iterations
are stopped and the superpixel segmentation result is achieved. More detailed information
about the objective function and the resulting algorithm of ERS segmentation can be found
in [33].

2.2. Superpixel-Based Classification

A superpixel is composed of several spatial adjacent pixels with similar spectral
properties that should be assigned to the same label. Thus, the classification can be
performed on the basis of the superpixel instead of the original pixels, where the superpixel
is used as a minimum processing unit to avoid the salt-and-pepper noises and preserve the
boundary of objects. Specifically, to describe the properties of each superpixel, we take the
average value of spectral responses of pixels within it into account. The spectral properties
of the superpixel are input into the pre-trained classifier to predict its label information,
and then a classification map can be generated.

On the other hand, inspired by the object-based voting strategy [34], the superpixel-
based voting strategy is also developed. Firstly, a pixel-wise classification is conducted
on the original image to obtain a classification map. Then, the superpixel segmentation
result is introduced to improve the classification performance. For the superpixel-based
voting strategy, the pixels located in the same superpixel should be assigned to the same
class of the superpixel. In this work, we use two methods to obtain the label of superpixels.
Specifically, the label of a superpixel can be determined using the dominated class of pixels
within it, where the most frequently occurred class is used as the label of the superpixel.
On the other hand, the probability outputs can also be used to determine the label of the
superpixel. The posterior probabilities of pixels belonging to different classes are given
by the classifier. For a superpixel, its class-specific probabilities are calculated using the
mean probabilities of the pixels within it. Then, the probabilities of the pixel located in the
superpixel are modified and can be described as

p(x) =
1

Nsp
∑

x∈sp
p(x) (2)

where p(x) is the probability output of pixel x given by the pixel-wise classification, sp
is the superpixel that pixel x belongs to, and Nsp is the number of pixels contained in
the superpixel sp. Then, the label of the pixel is assigned to the class with the highest
probability. Therefore, the pixel-wise classification map is refined by tuning the label of
pixels according to the superpixel-voting strategy.

2.3. Multiscale Superpixel-Based Classification

The objects in remote sensing images always show different characteristics in different
scales, making it difficult to select the optimal scale to represent different kinds of objects.
Hence, the multiscale superpixel-based approaches are proposed for the fine classification
of crops in the UAV-based hyperspectral image. Similar to the traditional superpixel-based
classification approaches, the proposed approaches can be divided into the pre-processing
and post-processing methods. The flow chart of multiscale superpixel-based approaches is
shown in Figure 1.

For the pre-processing method, the average value of the spectral feature of the pixels
within a superpixel is used to represent its characteristics at each scale. Subsequently, a
classifier is used to give the posterior probabilities and the label output of superpixels.
Moreover, each pixel obtains the label and the probability information according to the
superpixel it belongs to. Therefore, two approaches are developed to mine the multiscale
information of hyperspectral images according to the label and probability outputs. Specif-
ically, the multiscale label fusion (MLF) approach regards the dominant label of a pixel
obtained at a different scale as its final class label. Moreover, the multiscale probability
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fusion (MPF) combines the posterior probabilities obtained at a series of scales to generate
a probability output, which can be described as

pMPF(x) =
1
S

S

∑
s=1

ps(x) (3)

where x is the average value of feature of the pixels within the superpixel that pixel x is
located in, ps(x) is the corresponding probability output obtained at s-th scale, S is the
number of scales, and pMPF(x) is the fused probability output of pixel x. For a pixel, the
class with the highest fused probability is assigned as its label.
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For the post-processing method, the pixel-wise classification is performed on the
original hyperspectral image to obtain the label and probabilities of each pixel. Based
on the superpixel segmentation maps with different scales, superpixel-based voting is
conducted and a series of voting results are generated. Moreover, the label-based and
probability-based voting strategies are developed in this work. In the multiscale label
voting (MLV) strategy, the superpixel-based voting result is calculated using the label
information of pixels at each scale. Then, the voting results generated at a series of scales
are fused, where the class occurred with the highest frequency is selected as the final
label of pixel. Meanwhile, in the multiscale probability voting (MPV) strategy, the initial
pixel-wise posterior probabilities are modified using probability voting on the basis of the
superpixel segmentation map at each scale. Then, for a pixel, the average of the fused
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probabilities obtained at several scales is leveraged to represent its membership belonging
to a different class.

pMPV(x) =
1
S

S

∑
s=1

ps(x) (4)

where ps(x) is the modified output obtained by probability voting at s-th scale. The final
label of pixel is assigned as the class with the highest multiscale fused probabilities.

3. Experiments and Discussion
3.1. Dataset

In the experiments, the Wuhan UAV-borne hyperspectral image (WHU-Hi) dataset
was employed to test the effectiveness of the multiscale superpixel-based methods for
the fine classification of crops, which was collected and shared by the Intelligent Data
Extraction, Analysis and Applications of Remote Sensing (RSIDEA) research group of
Wuhan University. For the WHU-Hi dataset, the preprocessing, including radiometric
calibration and geometric correction, was conducted with the HyperSpec software provided
by the instrument manufacturer. In the radiometric calibration, the raw digital number
values were converted into radiance values with the laboratory calibration parameters of
the sensor. Specifically, this dataset was acquired over farming areas in Hubei province,
China, by a Headwall Nano-Hyperspec sensor equipped on a UAV platform, including
three individual UAV-borne hyperspectral datasets, namely LongKou, HanChuan, and
HongHu datasets. An overview of these datasets is provided in Figures 2–4 and Tables 1–3.

Figure 2. The LongKou dataset: (a) Hyperspectral image; (b) Ground truth; (c) Typical crop photos
in the study area.

Table 1. Ground truth classes for the LongKou dataset and the corresponding sample number.

No. Class Name Samples

C1 Corn 34,511
C2 Cotton 8374
C3 Sesame 3031
C4 Broad-leaf soybean 63,212
C5 Narrow-leaf soybean 4151
C6 Rice 11,854
C7 Water 67,056
C8 Roads and houses 7124
C9 Mixed weed 5229

The LongKou dataset was acquired over a simple agricultural scene in Longkou Town,
Hubei province, China. The size of the image is 550 × 400 pixels, with 270 bands from 400
to 1000 nm. The UAV flew at an altitude of 500 m, and the spatial resolution of the image
is about 0.463 m. The Hanchuan dataset was acquired over a rural-urban fringe zone in
Hanchuan City, Hubei province, China. The size of the image is 1217 × 303 pixels, with
274 bands from 400 to 1000 nm. The UAV flew at an altitude of 250 m, and the spatial
resolution of the image is about 0.109 m. The Hanchuan dataset was acquired over a
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complex agricultural scene in Hanchuan City, Hubei province, China. The size of the image
is 940 × 475 pixels, with 270 bands from 400 to 1000 nm. The UAV flew at an altitude of
100 m, and the spatial resolution of the image is about 0.043 m.

Figure 3. The HanChuan dataset: (a) Hyperspectral image; (b) Ground truth; (c) Typical crop photos
in the study area.

 
Figure 4. The HongHu dataset: (a) Hyperspectral image; (b) Ground truth ; (c) Typical crop photos 
in the study area. 
 
Table 9. OAs (%) and Kappa coefficients obtained by different methods for the Honghu dataset 
using RF with different numbers of training samples per class. 

Figure 4. The HongHu dataset: (a) Hyperspectral image; (b) Ground truth; (c) Typical crop photos in
the study area.
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Table 2. Ground truth classes for the HanChuan dataset and the corresponding sample number.

No. Class Name Samples

C1 Strawberry 44,735
C2 Cowpea 22,753
C3 Soybean 10,287
C4 Sorghum 5353
C5 Water spinach 1200
C6 Watermelon 4533
C7 Greens 5903
C8 Trees 17,978
C9 Grass 9469

C10 Red roof 10,516
C11 Gray roof 16,911
C12 Plastic 3679
C13 Bare soil 9116
C14 Road 18,560
C15 Bright object 1136
C16 Water 75,401

Table 3. Ground truth classes for the Honghu dataset and the corresponding sample number.

No. Class Name Samples

C1 Red roof 14,041
C2 Road 3512
C3 Bare soil 21,821
C4 Cotton 163,285
C5 Cotton firewood 6218
C6 Rape 44,557
C7 Chinese cabbage 24,103
C8 Pakchoi 4054
C9 Cabbage 10,819

C10 Tuber mustard 12,394
C11 Brassica parachinensis 11,015
C12 Brassica chinensis 8954
C13 Small Brassica chinensis 22,507
C14 Lactuca sativa 7356
C15 Celtuce 1002
C16 Film covered lettuce 7262
C17 Romaine lettuce 3010
C18 Carrot 3217
C19 White radish 8712
C20 Garlic sprout 3486

3.2. Experimental Setup

To test the performance of the proposed multiscale superpixel-based classification
approaches, two classifiers, namely the support vector machine (SVM) and random forest
(RF), are utilized. For SVM, the radial basis kernel is used, and 5-fold cross-validation is
employed to select the optimal value of bandwidth and penalty factor. For RF, the number
of trees is set to 500. Meanwhile, the superpixel-based classification with a single scale
is also taken into consideration. The number of scales is set as 12, and the number of
superpixels for each scale is related to the number of pixels contained in the image. In the
s-th scale, the number of superpixels is set as 2blog2 Nc−s, where N is the total number of
image pixels. The training set is provided by the RSIDEA group, which contains seven sets
with 25, 50, 100, 150, 200, 250, and 300 labeled samples per class. All of the experiments
are implemented using Matlab/Simulink on a personal computer with Intel(R) Core(TM)
i7-8700K CPU and 32 GB RAM.

In this work, overall accuracy (OA), Kappa coefficient and class-specific accuracy are
employed to evaluate the performance of different approaches [35]. OA represents the
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probability that an individual sample will be correctly recognized by a classifier, that is,
the number of corrected predicted samples divided by the total number of testing samples.
Kappa takes both the omission and commission errors into account, which is a more robust
evaluation measurement than OA. The value of Kappa ranges from −1 to 1. Specifically, a
value of 0 indicated that the classification is equal to a random classification. A negative
number indicates the classification is worse than random, and a value close to 1 indicates
that the classification is significantly better than random. For the class-specific accuracy,
the F-score is utilized, which can be expressed as

F =
2 · PA ·UA
PA + UA

(5)

where PA and UA are the producer’s accuracy and user’s accuracy, respectively. The pro-
ducer’s accuracy represents the probability of reference samples being correctly predicted,
and the user’s accuracy indicates the probability that a predicted sample in the classification
map actually represents the class on the ground.

3.3. Results

To analyze the superpixel-based classification method, we compare the performance
of the single-scale approaches that only use one superpixel segmentation map for the crop
classification. The classification results obtained using SVM are shown in Figures 5–7 for
Longkou, Hanchuan, and Honghu datasets, while the results with RF are presented in
Figures 8–10 for the three datasets. In each figure, the vertical axis donates the OA obtained
by different approaches, and the horizontal axis represents the superpixel segmentation
scale. Meanwhile, with the increase in scale, the number of superpixels included in the
segmentation map decreases. From all of the figures, it can be found that the OAs increase
steadily at the first few scales, then it reaches the best accuracy and begins to decrease.
This phenomenon can be attributed to the fact that, in the first few scales, the image is
over-segmented, and one object may be divided into several superpixels. Moreover, the
superpixel number is much less in the last few scales, resulting in the under-segmentation
phenomenon that different objects may be included in one superpixel. Both the over-
segmentation and under-segmentation are unfavorable for the fine classification of crops.
Notably, the single-scale superpixel-based approaches also show different performances.
The superpixel-based classification approach which views the superpixel as the minimum
unit gives an unsatisfactory result. On one hand, its best classification accuracy is lower
than that of the other approaches. On the other hand, the OA curve decreases rapidly with
the increase in scale. Especially on a larger scale, its OA is even lower than the pixel-wise
classification. For this reason, the number of superpixels on a larger scale is small, and a
superpixel may contain lots of objects belonging to different crop types. The inclusion of
different kinds of objects distorts the average spectral feature of the superpixel, resulting
in the misclassification of the superpixel and unsatisfactory performance. Moreover, the
accuracy curves of voting approaches decrease as the scale increases, but the descent rate is
much slower. The classification accuracy given by the superpixel-based approaches is better
than the original pixel-wise classification since the employment of the superpixel introduces
spatial information for the crop classification that avoids the isolated misclassified noises.
In particular, the highest accuracies of the single-scale approaches are all given by the
post-processing methods. Among the 21 results obtained on 3 datasets with 7 training
sets using SVM, the probability-based and label-based voting methods give 16 and 5 best
performances, respectively. Specifically, the best results achieved with 25, 50, 100, 150,
200, 250, and 300 training samples per class are 97.77%, 98.56%, 98.45%, 98.53%, 98.45%,
98.68%, and 98.77% in the Longkou dataset, respectively. In the Hanchuan dataset, the
highest OAs provided by the single-scale approach are 67.19%, 76.17%, 85.20%, 87.52%,
88.84%, 88.52%, and 88.85% with different training sets, respectively. As for the Honghu
dataset, the optimal accuracies are 85.31%, 84.77%, 88.04% 88.81%, 89.92%, 90.68%, and
90.85% obtained with different training sample numbers, respectively. When using RF,
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17 of the optimal 21 results with different datasets and training sets are provided by the
probability-based voting method, and the rest are given by the label-based voting method.
For the Longkou dataset, the best results provided by the single-scale approach are 95.44%,
96.41%, 95.07%, 96.83%, 97.99%, 97.27%, and 97.99% using 25, 50, 100, 150, 200, 250, and 300
training samples per class, respectively. In the Hanchuan dataset, the highest OAs achieved
with the seven predefined training sets are 69.32%, 79.22%, 81.06%, 81.76%, 84.48%, 84.51%,
and 85.13%, respectively. As for the Honghu dataset, the optimal accuracies obtained are
81.57%, 82.68%, 85.10%, 84.37%, 85.13%, 85.71%, and 87.07% with different numbers of
training samples per class, respectively.

Figure 5. Accuracies given by the single-scale approaches with (a) 25, (b) 50, (c) 100, (d) 150, (e) 200,
(f) 250, and (g) 300 training samples per class for the Longkou dataset using SVM, where the vertical
axis represents the OAs, and the horizontal axis represents the superpixel segmentation scale.

Figure 6. Accuracies given by the single-scale approaches with (a) 25, (b) 50, (c) 100, (d) 150, (e) 200,
(f) 250, and (g) 300 training samples per class for the Hanchuan dataset using SVM, where the vertical
axis represents the OAs, and the horizontal axis represents the superpixel segmentation scale.
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Figure 7. Accuracies given by the single-scale approaches with (a) 25, (b) 50, (c) 100, (d) 150, (e) 200,
(f) 250, and (g) 300 training samples per class for the Honghu dataset using SVM, where the vertical
axis represents the OAs, and the horizontal axis represents the superpixel segmentation scale.

Figure 8. Accuracies given by the single-scale approaches with (a) 25, (b) 50, (c) 100, (d) 150, (e) 200,
(f) 250, and (g) 300 training samples per class for the Longkou dataset using RF, where the vertical
axis represents the OAs, and the horizontal axis represents the superpixel segmentation scale.

Figure 9. Accuracies given by the single-scale approaches with (a) 25, (b) 50, (c) 100, (d) 150, (e) 200,
(f) 250, and (g) 300 training samples per class for the Hanchuan dataset using RF, where the vertical
axis represents the OAs, and the horizontal axis represents the superpixel segmentation scale.
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Figure 10. Accuracies given by the single-scale approaches with (a) 25, (b) 50, (c) 100, (d) 150, (e) 200,
(f) 250, and (g) 300 training samples per class for the Honghu dataset using RF, where the vertical
axis represents the OAs, and the horizontal axis represents the superpixel segmentation scale.

In the meantime, the OAs and Kappa coefficients provided by the multiscale superpixel-
based approaches, including MLF, MPF, MLV, and MPV, as well as the pixel-wise spectral-
based approach based on SVM are reported in Tables 4–6 for Longkou, Hanchuan, and
Honghu datasets, respectively. The classification results obtained with RF are shown in
Tables 7–9 for the three datasets. Obviously, compared to the aforementioned single-scale
approaches, the multiscale approaches show more satisfactory classification performance.
The proposed multiscale approaches give similar and even better accuracies to the op-
timal result achieved by the single-scale approaches. The phenomenon reveals that the
employment of multiscale information benefits the recognition of crops, and the multiscale
superpixel-based method avoids the optimal scale selection problem in image analysis.
Comparing the result obtained with different sample sets, it can be observed that the
accuracy is improved as the number of training samples increases, which illustrates that
sufficient samples are conducive to the construction of a discriminative classification model.
Among the proposed multiscale superpixel-based methods, MLV and MPV show much
better results than MLF and MPF in terms of higher OAs and kappa coefficients. This
phenomenon is similar to the results of the single-scale approaches, demonstrating that
the post-processing strategy is more effective than pre-processing strategy in identifying
the crops in the hyperspectral image. It can be also found that MLF and MPF show similar
results, and the accuracies given by MLV and MPV are very close. Actually, the OAs
and Kappa coefficients of probability-based approaches are slightly higher than that of
label-based approaches, meaning the probability-based approaches may be more suitable
for crop classification. Moreover, the classification results obtained using SVM are better
than that using RF, especially for the pixel-wise spectral-based approach. Although SVM
and RF show different distinguishing abilities in recognizing the crops in hyperspectral
images, the accuracy improvements achieved by introducing the multiscale superpixel
information are still evident. Overall, the proposed multiscale superpixel-based approaches
give satisfactory results in the testing datasets, while MPV shows the most promising
performance as it obtains the highest accuracies in most cases.
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Table 4. OAs (%) and Kappa coefficients obtained by different methods for the Longkou dataset
using SVM with different numbers of training samples per class.

Training
Samples

Spectral MLF MPF MLV MPV

OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa

25 90.32 0.875 95.42 0.940 96.09 0.949 97.18 0.963 97.54 0.968
50 92.83 0.907 97.15 0.963 97.79 0.971 98.70 0.983 98.96 0.986
100 94.22 0.925 97.44 0.966 97.94 0.973 98.47 0.980 98.52 0.981
150 95.64 0.943 97.75 0.970 98.38 0.979 98.91 0.986 99.03 0.987
200 96.17 0.950 98.47 0.980 98.87 0.985 98.85 0.985 99.07 0.988
250 96.23 0.951 98.43 0.979 98.86 0.985 99.08 0.988 99.21 0.990
300 96.98 0.961 98.68 0.983 98.99 0.987 99.27 0.990 99.33 0.991

Table 5. OAs (%) and Kappa coefficients obtained by different methods for the Hanchuan dataset
using SVM with different numbers of training samples per class.

Training
Samples

Spectral MLF MPF MLV MPV

OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa

25 59.28 0.541 63.06 0.583 64.36 0.597 64.43 0.598 66.60 0.622
50 68.67 0.643 73.30 0.695 75.04 0.715 76.65 0.733 77.09 0.738
100 73.93 0.700 82.91 0.802 83.15 0.805 86.41 0.842 86.21 0.840
150 78.24 0.749 85.59 0.833 86.23 0.840 89.75 0.881 89.65 0.880
200 80.08 0.770 87.06 0.850 87.48 0.855 90.88 0.894 90.67 0.891
250 80.66 0.776 86.64 0.845 87.02 0.849 90.47 0.889 90.68 0.892
300 80.89 0.779 87.77 0.858 87.96 0.860 90.64 0.891 90.79 0.893

Table 6. OAs (%) and Kappa coefficients obtained by different methods for the Honghu dataset using
SVM with different numbers of training samples per class.

Training
Samples

Spectral MLF MPF MLV MPV

OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa

25 66.98 0.605 81.51 0.770 82.56 0.783 83.93 0.799 83.39 0.794
50 64.08 0.581 82.16 0.779 83.35 0.793 81.63 0.774 81.80 0.777
100 73.42 0.681 88.26 0.853 88.74 0.859 88.87 0.861 89.31 0.866
150 74.74 0.695 88.50 0.856 88.90 0.861 89.71 0.871 90.06 0.876
200 77.05 0.721 90.24 0.877 90.65 0.882 90.87 0.885 91.05 0.888
250 77.43 0.726 90.80 0.884 91.28 0.890 91.70 0.896 91.86 0.898
300 79.77 0.752 90.88 0.885 91.06 0.887 92.07 0.900 92.40 0.904

Table 7. OAs (%) and Kappa coefficients obtained by different methods for the Longkou dataset
using RF with different numbers of training samples per class.

Training
Samples

Spectral MLF MPF MLV MPV

OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa

25 79.79 0.746 86.10 0.823 87.17 0.837 91.08 0.886 91.31 0.888
50 84.14 0.799 85.10 0.812 87.14 0.837 92.02 0.898 94.69 0.931
100 86.03 0.823 89.84 0.870 91.60 0.892 93.80 0.920 95.33 0.940
150 89.15 0.861 94.32 0.926 94.54 0.929 97.07 0.962 97.13 0.963
200 90.67 0.880 94.41 0.927 94.85 0.933 97.47 0.967 97.42 0.966
250 89.64 0.867 94.38 0.927 94.77 0.932 96.83 0.959 97.14 0.963
300 90.76 0.881 94.02 0.922 94.74 0.932 97.48 0.967 97.75 0.971
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Table 8. OAs (%) and Kappa coefficients obtained by different methods for the Hanchuan dataset
using RF with different numbers of training samples per class.

Training
Samples

Spectral MLF MPF MLV MPV

OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa

25 57.69 0.524 62.69 0.578 63.03 0.582 64.55 0.599 64.54 0.599
50 69.38 0.649 71.36 0.671 72.73 0.686 76.98 0.734 78.49 0.751
100 71.46 0.673 74.00 0.702 75.64 0.720 79.62 0.765 81.03 0.781
150 74.61 0.708 78.41 0.751 79.45 0.762 82.72 0.800 83.53 0.809
200 77.19 0.736 80.26 0.771 80.91 0.779 85.96 0.837 86.16 0.839
250 77.24 0.737 79.27 0.760 80.03 0.769 85.44 0.831 85.98 0.837
300 77.15 0.736 79.93 0.768 81.19 0.782 85.23 0.829 86.24 0.840

Table 9. OAs (%) and Kappa coefficients obtained by different methods for the Honghu dataset using
RF with different numbers of training samples per class.

Training
Samples

Spectral MLF MPF MLV MPV

OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa

25 62.79 0.559 76.74 0.713 78.15 0.730 79.50 0.745 78.56 0.736
50 59.99 0.537 77.75 0.727 78.69 0.738 78.57 0.739 78.47 0.739
100 67.28 0.612 80.64 0.760 82.53 0.783 83.63 0.797 84.08 0.803
150 68.60 0.626 81.69 0.773 82.43 0.782 84.47 0.807 84.48 0.808
200 69.96 0.640 82.12 0.778 82.46 0.782 84.75 0.810 85.69 0.822
250 70.44 0.646 83.16 0.791 84.05 0.802 85.32 0.817 86.45 0.832
300 72.08 0.664 83.76 0.798 84.42 0.806 86.60 0.833 87.71 0.847

4. Discussion

For further discussion and analysis, we compare the classification performances of
different approaches with 100 training samples per class in this subsection. Table 10 reports
the OAs, kappa coefficient, and class-specific accuracies given by SVM and RF for the
Longkou dataset. The spectral-based classification accuracy with SVM is 94.22%, which is
higher than 86.03% obtained by RF. By introducing the multiscale superpixel information
in crop classification, the MLF, MPF, MLV and MPV increase the accuracy by 3.22%, 3.72%,
4.25% and 4.30% with SVM. For RF, the accuracy improvements obtained by the proposed
methods are 3.81%, 5.57%, 7.77% and 9.30%, respectively. In this image, the sesame and
narrow-leaf soybean achieve the lowest accuracies, where the accuracies given by SVM are
73.64% and 72.65%, while the accuracies given by RF are 33.07% and 51.38%. However,
MPV with SVM gives 97.90% and 89.39% for sesame and narrow-leaf soybean, which is
a satisfactory result, and MPV with RF achieve 69.91% and 65.75% for these two crops,
which is much better than the original spectral-based result. The classification accuracies
for Huanchuan datasets obtained with 100 training samples are shown in Table 11. The
OAs given by MLF, MPF, MLV and MPV with SVM are 82.91%, 83.15%, 86.41%, and 86.21%,
while the OA of the spectral-based approach is only 73.97%. As for RF, the spectral-based
approach gives 71.46%, while MLF, MPF, MLV and MPV give 74.00%, 75.64%, 79.62%,
and 81.03%, respectively. In this dataset, the post-processing methods show much better
performance than the pre-processing ones, as the accuracies obtained by MLV and MPV
are 3% higher than that obtained by MLF and MPF. For the class-specific accuracy, all of
the approaches achieve unsatisfactory results in water spinach, watermelon, plastic and
bare soil with accuracies lower than 60%. Especially for the water spinach, the accuracies
given by MLF, MPF, MLV and MPV with RF are only 17.92%, 18.61%, 22.03%, and 25.00%.
The classification accuracies given by different methods for the Honghu dataset using
SVM and RF with 100 training samples per class are presented in Table 12. It can be
observed that the best result of the Honghu image is achieved by MPV whether using
SVM or RF. Specifically, the MPV with SVM gives an accuracy of 89.31%, which is 5.23%
higher than the accuracy of 84.08% given by MPV with RF. As for the pixel-wise spectral-
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based classification, the classification accuracies obtained with SVM and RF are 73.42%
and 67.28%. The comparison between the spectral-based and multiscale superpixel-based
approaches illustrates the effectiveness of the employment of spatial information. Moreover,
among the 22 classes, 7 classes achieve a satisfactory accuracy that is higher than 90% and
only 3 classes’ accuracies are lower than 60% in the result given by MPV with SVM. For
visual interpretation, the classification maps obtained with SVM for Longkou, Hanchuan,
and Honghu datasets are shown in Figures 11–13. Meanwhile, Figures 14–16 show the
classification maps given by different approaches on the testing dataset using RF. It is
observed that the pixel-wise spectral-based classification is subject to the salt-and-pepper
misclassification noises. While the superpixel-based approaches show satisfactory results
with less salt-and-pepper noises and more accurate object boundaries, which illustrate the
superiority of the proposed multiscale superpixel-based methods in identifying the crops
in hyperspectral imagery.

Table 10. Classification accuracies given by different methods for the Longkou dataset using SVM
and RF with 100 training samples per class.

No. SVM RF

Spectral MLF MPF MLV MPV Spectral MLF MPF MLV MPV

C1 97.66 99.51 99.54 99.53 99.55 93.28 99.14 99.48 99.44 99.55
C2 79.16 97.08 97.81 95.96 96.04 68.39 68.17 68.25 97.09 95.37
C3 73.64 97.31 99.00 97.49 97.90 33.07 45.04 56.06 52.03 69.91
C4 92.21 98.18 98.55 98.19 98.10 81.64 88.90 91.50 90.19 92.86
C5 72.65 71.20 75.02 90.04 89.39 51.38 43.89 44.52 63.97 65.75
C6 98.44 98.91 98.88 99.15 99.21 90.44 98.15 98.57 98.85 98.61
C7 99.96 99.96 99.96 99.96 99.96 99.95 99.96 99.96 99.95 99.95
C8 88.15 83.72 85.38 94.37 95.24 84.91 79.55 82.13 91.99 93.48
C9 85.16 84.71 90.89 91.84 93.89 59.24 67.55 77.62 86.38 87.67
OA 94.22 97.44 97.94 98.47 98.52 86.03 89.84 91.60 93.80 95.33

Kappa 0.925 0.966 0.973 0.980 0.981 0.823 0.870 0.892 0.920 0.940

Table 11. Classification accuracies given by different methods for the Hanchuan dataset using SVM
and RF with 100 training samples per class.

No. SVM RF

Spectral MLF MPF MLV MPV Spectral MLF MPF MLV MPV

C1 78.83 90.95 91.59 92.66 92.09 74.45 81.98 84.30 86.96 87.37
C2 60.19 72.79 73.71 81.51 78.99 44.52 41.14 42.44 55.55 60.12
C3 64.99 78.88 80.58 88.49 88.51 62.62 61.74 61.14 75.57 78.15
C4 87.91 91.43 91.66 91.61 92.67 82.06 92.27 94.86 93.52 95.45
C5 25.04 25.74 28.46 39.83 41.60 18.65 17.92 18.61 22.03 25.00
C6 28.57 51.90 53.21 55.93 55.84 23.28 36.14 42.73 40.11 42.44
C7 64.32 75.81 77.23 73.50 74.34 65.58 75.31 76.28 73.77 74.08
C8 60.59 73.35 75.93 78.77 80.09 61.74 67.70 68.87 71.71 73.01
C9 62.25 75.22 74.87 82.02 82.70 50.31 56.59 56.28 61.84 64.69
C10 85.52 88.78 90.34 92.38 92.16 79.61 85.34 86.64 84.57 86.17
C11 75.98 85.81 86.35 84.79 84.33 78.28 80.12 83.56 83.76 85.03
C12 33.12 55.45 50.31 65.09 58.88 32.32 37.47 38.62 50.22 49.86
C13 41.02 55.47 54.25 56.99 58.51 44.55 47.32 48.05 57.53 59.04
C14 68.35 69.45 68.90 78.00 78.99 66.54 60.62 64.03 69.07 73.31
C15 58.34 72.87 71.78 73.08 77.65 58.56 61.23 64.36 71.61 71.67
C16 95.70 97.96 97.84 98.06 98.08 97.05 96.53 97.46 98.54 98.69
OA 73.93 82.91 83.15 86.41 86.21 71.46 74.00 75.64 79.62 81.03

Kappa 0.700 0.802 0.805 0.842 0.840 0.673 0.702 0.720 0.765 0.781
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Table 12. Classification accuracies given by different methods for the Honghu dataset using SVM
and RF with 100 training samples per class.

No. SVM RF

Spectral MLF MPF MLV MPV Spectral MLF MPF MLV MPV

C1 92.20 96.01 95.90 96.73 97.37 85.09 91.06 90.74 93.78 94.31
C2 70.67 78.46 80.86 74.72 81.43 65.80 67.89 71.36 70.53 77.66
C3 83.69 87.96 87.61 91.34 91.68 80.79 82.25 84.30 90.16 91.08
C4 86.04 97.93 97.91 97.07 97.05 82.06 94.92 96.10 94.25 93.57
C5 34.13 72.91 78.04 67.70 69.78 26.02 50.26 60.04 50.97 47.77
C6 87.15 92.92 93.53 93.69 94.16 81.96 89.03 90.33 90.80 92.48
C7 68.43 77.39 77.86 80.53 81.07 56.80 62.95 61.55 67.51 70.17
C8 24.83 54.03 57.93 59.51 59.15 19.43 33.24 39.23 43.20 45.94
C9 94.55 95.58 95.49 95.87 96.13 92.11 94.73 94.99 95.94 96.15
C10 57.51 84.56 85.29 84.38 85.89 42.71 50.35 52.68 74.86 78.58
C11 41.06 73.91 73.23 73.82 72.99 33.37 52.18 57.80 67.53 64.05
C12 53.33 70.30 71.64 71.53 71.38 51.89 61.94 63.36 64.82 67.93
C13 59.75 70.38 72.71 72.08 74.06 58.60 68.62 72.61 69.54 72.22
C14 70.24 74.01 76.56 77.16 81.97 61.34 69.22 68.60 73.30 76.48
C15 13.66 63.98 63.89 78.17 76.22 13.62 32.29 31.13 80.04 63.29
C16 85.03 94.67 95.18 95.85 96.28 81.64 90.01 92.72 93.85 94.81
C17 70.28 88.99 89.70 93.41 94.33 68.13 78.13 84.79 91.22 93.47
C18 45.13 73.34 76.86 76.17 75.62 33.28 49.41 48.18 51.45 52.33
C19 75.09 89.08 88.87 87.49 88.25 67.27 83.61 83.23 81.09 84.80
C20 58.31 76.98 77.50 82.70 82.63 36.62 56.63 58.68 76.96 75.15
C21 21.25 29.08 29.77 36.58 41.69 20.39 21.20 22.54 32.80 38.83
C22 38.83 64.57 60.78 61.94 57.14 28.63 55.37 54.76 44.54 43.38
OA 73.42 88.26 88.74 88.87 89.31 67.28 80.64 82.53 83.63 84.08

Kappa 0.681 0.853 0.859 0.861 0.866 0.612 0.760 0.783 0.797 0.803

Figure 11. The classification results for the Longkou dataset using SVM: (a) Pixel-wise spectral
classification; (b) MLF; (c) MPF; (d) MLV; (e) MPV.
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Figure 12. The classification results for the Hanchuan dataset using SVM: (a) Pixel-wise spectral
classification; (b) MLF; (c) MPF; (d) MLV; (e) MPV.

Figure 13. The classification results for the Honghu dataset using SVM: (a) Pixel-wise spectral
classification; (b) MLF; (c) MPF; (d) MLV; (e) MPV.
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Figure 14. The classification results for the Longkou dataset using RF: (a) Pixel-wise spectral classifi-
cation; (b) MLF; (c) MPF; (d) MLV; (e) MPV.

Figure 15. The classification results for the Hanchuan dataset using RF: (a) Pixel-wise spectral
classification; (b) MLF; (c) MPF; (d) MLV; (e) MPV.

In addition, the effectiveness of the multiscale superpixel-based methods relays on
the superpixel segmentation results. Obviously, different superpixel segmentation algo-
rithms will result in different performances, and thus, it is important to select a suitable
segmentation algorithm to generate the superpixel results. Meanwhile, the number of scales
used in the proposed method restricts the final classification performance. A larger scale
number always indicates a higher computational burden and time cost, while a smaller
scale number cannot comprehensively exploit the spectral-spatial information of images.
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Figure 16. The classification results for the Honghu dataset using RF: (a) Pixel-wise spectral classifi-
cation; (b) MLF; (c) MPF; (d) MLV; (e) MPV.

5. Conclusions

In this manuscript, multiscale superpixel-based approaches were developed for the
fine recognition of crop types in UAV-based hyperspectral images. Superpixel segmentation
was performed with different parameters to exploit the multiscale information of objects,
and several superpixel maps can be obtained. To fuse the multiscale superpixel information,
the pre-processing and post-processing strategies were proposed according to different
principles. Specifically, the pre-processing strategy views the superpixel as the minimum
image processing unit, and the classification was conducted on the superpixel level at each
scale. Then, the label of each pixel was assigned to the domain class among multiscale
results. Moreover, the post-processing strategy was inspired by the voting approach, and
the class information of the superpixel was determined by the majority classes of pixels
within it. By fusing the voting result obtained at different scales, we can obtain the final
classification map. Note that, for the pre-processing and post-processing methods, the class
probability output and label information were taken into consideration to generate the final
classification results by different approaches.

The experiments were conducted on the WHU-Hi dataset provided by the RSIDEA
research group, which contains three individual UAV-based hyperspectral images. More-
over, for each dataset, seven training sets with different number of labeled samples were
supplied, as well as the hyperspectral image. Meanwhile, SVM and RF were employed
to test the effectiveness of the proposed methods. The comparison of the single-scale
approaches demonstrates that it is hard to select an optimal scale for a complex image
scene. Moreover, the best result among the single-scale superpixel-based approaches was
inferior to the multiscale superpixel-based approaches. Furthermore, it is found that the
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post-processing strategy shows better result than the pre-processing strategy, which illus-
trates the effectiveness of voting methods. Additionally, the classification maps show that
the proposed method is able to preserve the object boundaries while avoiding the discrete
misclassification pixels. Future work will focus on the extraction of superpixel-based
features for better classification of crops.
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