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Abstract: In the synthetic aperture radar (SAR) ship image, the target size is small and dense, the
background is complex and changeable, the ship target is difficult to distinguish from the surrounding
background, and there are many ship-like targets in the image. This makes it difficult for deep-
learning-based target detection algorithms to obtain effective feature information, resulting in missed
and false detection. The effective expression of the feature information of the target to be detected
is the key to the target detection algorithm. How to improve the clear expression of image feature
information in the network has always been a difficult point. Aiming at the above problems, this paper
proposes a new target detection algorithm, the feature information efficient representation network
(FIERNet). The algorithm can extract better feature details, enhance network feature fusion and
information expression, and improve model detection capabilities. First, the convolution transformer
feature extraction (CTFE) module is proposed, and a convolution transformer feature extraction
network (CTFENet) is built with this module as a feature extraction block. The network enables the
model to obtain more accurate and comprehensive feature information, weakens the interference of
invalid information, and improves the overall performance of the network. Second, a new effective
feature information fusion (EFIF) module is proposed to enhance the transfer and fusion of the main
information of feature maps. Finally, a new frame-decoding formula is proposed to further improve
the coincidence between the predicted frame and the target frame and obtain more accurate picture
information. Experiments show that the method achieves 94.14% and 92.01% mean precision (mAP)
on SSDD and SAR-ship datasets, and it works well on large-scale SAR ship images. In addition,
FIERNet greatly reduces the occurrence of missed detection and false detection in SAR ship detection.
Compared to other state-of-the-art object detection algorithms, FIERNet outperforms them on various
performance metrics on SAR images.

Keywords: FIERNet; CTFE; CTFENet; EFIF module; bounding box regression decoding; SAR ship
detection

1. Introduction

In recent years, target detection technology based on deep learning has made great
breakthroughs in detection performance, gradually replacing traditional methods, and
is widely used in autonomous driving [1,2], face recognition [3,4], remote sensing object
detection [5,6], pose detection [7,8], and many other fields. Among them, the target
detection algorithm application of deep learning in synthetic aperture radar (SAR) ship
detection has received extensive attention. Object detection methods are generally divided
into two-stage detection and single-stage detection. The two-stage detection first generates
a preselected box through the proposal region network, and then the detection network
realizes the classification and regression of the preselected box, so it has a high target
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recognition accuracy, but the detection speed is slow, see R-CNN series [9–11]. Single-
stage detection can directly get the detection results through the detection network, so the
inference speed is faster. Typical examples are YOLO series [12–15], Retinanet [16], and
SSD [17]. Among them, YOLOv4 proposed in 2020 can achieve a good balance between
detection speed and accuracy in the process of practical application and has become one of
the most widely used target detection algorithms.

Although the above methods can achieve good results when applied to SAR ship
detection, due to the unique imaging mechanism of SAR images, these images are more
susceptible to the influence of the atmosphere, background clutter, and illumination dif-
ferences, with fewer feature details and unclear target feature information. At the same
time, ship targets in SAR images are dense, and various ships are very small and blurred,
and even submerged in extremely complex backgrounds, so the target detection algorithm
based on deep learning misses detection and false detection in practical applications. In
fact, the effective acquisition of target feature information is the key to all target detection,
not only SAR ship detection. Therefore, it is necessary to construct an algorithm that can
greatly enhance the expression of feature information.

Aiming at the problem of SAR target information ambiguity, some scholars [18,19]
proposed optimizing the SAR image acquisition process and using the information-rich
polarization method to enhance the identifiability of SAR target features. The echo intensity
of the same target under different polarization methods is different, and the obtained
target characteristic information is also different. The polarization method with better
performance can obtain more target information. Therefore, using a reasonable polarization
method in SAR can reduce the existence of interference data in the image and enhance
the presentation of effective information, thereby improving the target detection perfor-
mance. This is indeed a good approach. However, in the field of ship detection, the most
important thing is to build an excellent target detection model, which can obtain ideal
target feature information from complex image data, thereby greatly improving the effect
of ship detection. At present, to obtain powerful features of image context information,
the improvement of target detection algorithms mainly includes using basic neural net-
works that can extract richer features, fusing multiscale features, and weighting feature
information. Liu et al. [20] proposed the composite backbone network, which assembled
multiple identical backbones through composite connections between adjacent backbones
to form a deeper backbone network for feature extraction, which improved the detection
performance of the network. Liu et al. [21] proposed a path aggregation network (PANet),
which fused high-level semantic information and low-level location information to obtain
more feature details, thereby enhancing the feature information transmission capability of
the network feature fusion module. In order to further improve the small target detection
performance, Xu et al. [22] increased the number of network detection layers from three to
four to obtain more feature information. Yuan et al. [23] introduced a receptive field block
into the network to increase the receptive field and retain detailed feature information,
generate feature maps with local context information, and improve the accuracy of the
detection. Gao et al. [24] added a channel attention module (CAM) attention mechanism
to the bidirectional feature pyramid network module to help the network focus on more
interesting targets and improve the effectiveness of feature fusion. The above works have
improved the performance of detection algorithms from different perspectives. In general,
the above methods improve the network detection performance by enhancing the effective
expression of image feature information.

Through the above analysis, we know that there are generally two ways to enhance
feature information: a new backbone network and an optimized feature fusion network.
A backbone network with a reasonable architecture and excellent application effect can
indeed greatly improve the model detection performance. However, how to design a
suitable network is a difficult problem. In response to this problem, this paper proposes
a new feature extraction convolutional transform feature extraction network (CTFENet),
which is mainly composed of convolutional transform feature extraction (CTFE) modules.
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The design concept of the CTFE module comes from the Swin Transformer block [25]. The
Swin Transformer is mainly composed of a Swin Transformer block, which has excellent
global feature capture ability, and has achieved state-of-the-art results in image classifica-
tion, object detection and instance segmentation tasks. These experimental results confirm
the superiority of the Swin Transformer block structure. At present, most people directly
introduce the Swin Transformer to improve network performance [26–28], and the experi-
mental results further prove the effectiveness of the Swin Transformer block architecture.
However, few have used convolutional networks to build architecturally similar modules.
Therefore, we gradually analyze the architectural composition of the Swin Transformer
block to propose the CTFE block.

Introducing modules to enhance the representation of feature information in the
network can indeed improve the performance of the model. For example, channel and
spatial attention mechanisms are introduced in the feature fusion module. In addition
to the introduction of the module, it is also a good idea to optimize the convolution
extraction block in the feature fusion module. Therefore, we propose the information
hybrid convolutional block(IHCB) module as a convolutional feature extraction block to
enhance information exchange and enhance the integrity of information transmission and
feature uniqueness.

In fact, in addition to improving the network model, improving the bounding box
regression decoding formula can also enhance the effective expression of feature informa-
tion, thereby greatly improving network performance, and this method does not have such
problems as network complexity and model design, its implementation method is simple,
and it has great results.

In view of the above ideas, this paper proposes a new feature information efficient
representation network (FIERNet), conducts comparative experiments on various real
complex situations and different detection algorithms, and finally confirms the effectiveness
of the proposed algorithm. The main contributions of this work are listed as follows.

1. This work analyzes the architecture of the Swin Transformer block, proposes the CTFE
module, and then constructs the CTFENet. It further improves the feature extraction
capability of the backbone network, enhances the breadth and accuracy of model
feature details, weakens the interference of similar information and background infor-
mation, and greatly reduces the occurrence of missed detection and false detection,
thereby improving the accuracy of model detection.

2. We propose the efficient feature information fusion (EFIF) module. Specifically, first
of all, this module uses IHCB to realize the mixing of spatial dimension and channel
dimension, strengthen the exchange of information, and further ensure the richness
and integrity of feature information. Second, the EFIF module cleverly uses the chan-
nel and spatial attention mechanism to filter invalid information hierarchically and
strengthen the expression of semantic information and location information, thereby
improving the detection accuracy and generalization performance of the network.

3. For SAR ship detection, this paper introduces and improves a new method of bound-
ary regression decoding equation, and proposes a new decoding formula to enhance
the decoding effect.

4. We incrementally give the optimal combination of network modules, resulting in
FIERNet. This paper demonstrates the effectiveness of the method through test results
on SSDD, SAR-ship datasets, and large-scale SAR ship images.

The remainder of this paper is organized as follows. Section 2 reviews related work.
In Section 3, we describe the proposed model and discuss key design decisions. We report
the results of the experimental evaluation in Section 4 and conclude in Section 5.

2. Related Work
2.1. Triplet Attention Mechanism

Triplet attention [29] is a lightweight but effective module that enables cross-dimensional
information interaction through rotation operations, providing significant performance
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gains at a reasonable computational cost. This module mainly contains three branches,
two of which are used to capture the cross-channel interaction between the channel C
dimension and the spatial dimension W/H, respectively, and the remaining one is the
calculation of the traditional spatial attention weight. For example, the interaction process
of channel C and space W dimension is as follows: first, perform a permute operation on
the input feature (C× H ×W) to yield a H × C×W dimension feature, and then perform
Z-pool, convolution, and sigmoid activation function operations on the H dimension, gen-
erate spatial attention weights, and finally generate output features (C× H ×W) through
permutation. Among them, Z-pool consists of average pooling and max pooling. The
interaction process of channel C and spatial H dimension is similar. The traditional spatial
attention branch has no permutation operation, and other operations are similar. Finally,
the output information of the three branches is added, and the average value is the final
module output. The model structure diagram is shown in Figure 1.

Figure 1. Triplet attention model structure.

2.2. Convolutional Block Attention Module (CBAM)

CBAM [30] is a simple and efficient convolutional neural network attention mod-
ule containing two independent submodules, CAM and SAM, focusing on channels and
spatial features, respectively, by which independent information inhibits and enhances
the expression of the main information in the feature map [31], as shown in Figures 2–4.
For any given input feature map F ∈ RH×W×C, the channel attention module presses the
feature map by using global maximum pooling and mean pooling to obtain two channel
descriptions, Fmax ∈ R1×1×C and Favg ∈ R1×1×C, adds the two pooled one-dimensional
vectors to the full connection layer operation, and then passes a sigmoid activation function
to obtain the weight factor MC. After this, the weight factor F is multiplied by the element
of the original feature graph to get the new feature graph F′. The spatial attention module
performs global max pooling and average pooling on F′ according to the space to obtain
two two-dimensional vectors Fmax ∈ RH×W×1 and Favg ∈ RH×W×1. After splicing the
two two-dimensional vectors generated by the pooling, a 7 × 7 convolution operation is
performed, the activation function is sigmoid, and the weight coefficient MS is obtained.
Finally, the weight coefficient and F′ are multiplied element by element.

Figure 2. Channel attention module.
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Figure 3. Spatial attention module.

Figure 4. Convolution block attention module.

3. Feature Information Efficient Representation Network (FIERNet)

This paper proposes a target detection algorithm suitable for SAR ships. The algorithm
is generally composed of a CTFENet, SPPNet, EFIF module, prediction module, and the
BBRD method. The algorithm loss function consists of a regression loss function, confidence
loss function, and classification loss function. Among them, the CIoU [32] loss function
is used as the regression loss function, and the cross-entropy loss function is used as the
confidence loss function and the classification loss function, respectively. Experiments
show that the detection effect of the network on different datasets is excellent in complex
environments. The network structure is shown in Figure 5.

Figure 5. FIERNet overall network model structure.

3.1. Backbone Network
3.1.1. Convolution Transformer Feature Extraction Network (CTFENet)

The Swin Transformer model is an improved model based on the Transformer re-
cently proposed by Microsoft. It achieves better results in vision tasks through the Swin
Transformer module and can be applied to various vision tasks. Meanwhile, extensive
experiments are also conducted to demonstrate the superiority of the Swin Transformer
block architecture. The Swin Transformer module is mainly composed of windowed multi-
head self-attention (W-MSA), shifted windowed multihead self-attention (SW-MSA), layer
normalization, and a multilayer perceptron (MLP). Among them, the W-MSA models the
input image locally according to a fixed window, the SW-MSA realizes the interactive
connection of adjacent window information, and the MLP is composed of a fully connected
layer and a GELU activation function.

Inspired by the Swin Transformer block, this paper proposes a convolutional feature
extraction module suitable for SAR ship target detection: the convolutional transformer
feature extraction (CTFE). This module consists of a 3 × 3 convolution, triplet attention,
the Mish activation function, an MLP, and a residual structure. To realize the information
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integration of different feature channels, the network depth and complexity are normalized.
This paper uses 1 × 1 convolutions to build MLPs instead of fully connected layers, because
the fully connected layer cannot realize the increase or decrease of the dimension of the
feature channel. The overall structure of the module is shown in Figure 6.

This module can extract richer target feature details, resulting in better detection
results. From the later experimental results, this module achieves the original intention of
this paper. Specifically, the extraction operation for the input image information of this
module is mainly composed of the following steps.

(1) Use a 3 × 3 convolution to extract more image information and better global features,
and pass this extracted information into the module. At the same time, the input
channel is dimensionally reduced to further reduce the network parameters of the
model and increase the practicability of the network.

(2) Use triplet attention to achieve cross-dimensional information interaction, and weight
the corresponding feature information to highlight important image feature details
and enhance the network’s recognition ability.

(3) Batch-normalize the output of the attention module to make the distribution of the
output data more stable, accelerate the learning speed of the model, and alleviate the
problem of gradient disappearance.

(4) Using two 1 × 1 convolution and Mish activation functions ( f (x) = x× tanh(ln(1 +
ex))), realize the dimensionality reduction and increase the number of channels in
the feature map of the entire module, enhance the information interaction between
channels, and improve the nonlinear expression ability of the model.

The instructions for using the 3 × 3 convolution and triplet attention are as follows:
Use the 3 × 3 convolution kernel as a sliding window to convolve the input image to
extract feature information. Then, the triplet attention is used to realize cross-dimensional
information interaction and enhance the richness of feature information. The description of
the batch normalization and activation function is as follows: the module abandons a large
number of batch normalization and activation function combination operations between
traditional convolution blocks, and only performs separate corresponding operations
between 1 × 1 convolutions, and the follow-up experiments show that the method is
effective. That is, the higher detection efficiency is achieved with a more streamlined
architecture. This module innovatively integrates Swin’s architecture and convolution
method, and thus proposes a convolution module with a better extraction effect, which has
a good effect on SAR ship detection.

Figure 6. Convolution transformer feature extraction (CTFE) module composition.

In this paper, a CTFE Network (CTFENet) is constructed based on the CTFE module,
and the network is used as the extraction backbone of SAR ship target features to obtain
more detailed feature information. Specifically, CTFENet consists of five modules: CTFE1,
CTFE2, CTFE8, CTFE8, and CTFE4. At the same time, in order to further enhance the
learning ability of the network and retain more feature details, this paper refers to the
practice of YOLOv4, and introduces a cross stage partial (CSP) [33] connection structure
for each module. Taking CTFE2 as an example, we use the CSP structure to divide the
module into two parts. The main part continues to stack the CTFE, and another part is
directly mapped and merged with the main part to form a larger residual edge. As shown
in Figure 7. This method can not only solve the problem of gradient disappearance and
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enhance the learning ability of the model, but also reduce the network parameters and
reduce the cost of model training.

Figure 7. CTFEX network structure.

3.1.2. Spatial Pyramid Pooling (SPP) Network

SPPNet [34] uses four different scales of maximum pooling to process the feature map.
The size of the pooling kernel of the maximum pooling is 1 × 1, 5 × 5, 9 × 9, and 13 × 13, and
the 1 × 1 pooling kernel operation can be regarded as no processing, as shown in Figure 8.
In this paper, SPPNet is placed in the last layer of the backbone extraction network as a
pooling layer, and multiple pooling windows are used to process the feature information to
separate the feature information of the significant upper and lower layers, thereby greatly
increasing the network receptive field.

Figure 8. SPPNet structure composition.

3.2. Effective Feature Information Fusion (EFIF) Module
3.2.1. Information Hybrid Convolutional Block (IHCB)

To better realize the mixing of spatial and channel dimensions during convolution
and further ensure the richness and integrity of feature information, this paper proposes an
information hybrid convolutional block (IHCB). This module consists of a 1 × 1 convolution,
LeakyRelu activation function, batch normalization, and ConvMixer [35]. Among them,
the ConvMixer consists of a depthwise separable convolution, GELU activation function,
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residual structure, and batch normalization. The IHCB is shown in Figure 9. This paper
applies the IHCB and IHCB-2 modules, respectively, where the number 2 represents the “X”
in the figure.

Figure 9. Information hybrid convolutional block (IHCB) network structure. DWC stands for
depthwise convolution, PWC stands for pointwise convolution.

3.2.2. EFIF Module

The path aggregation network (PANet) module is often used for feature fusion, su-
perimposing feature information, and improving network performance. However, when
the module performs feature fusion, it does not perform weighting processing on different
regions in the feature map, that is, it is considered that the contributions of different feature
map regions to the final prediction of the network are the same. This is unreasonable
because, in real-life scenarios, the objects to be detected often have rich and complex con-
textual information. The operation of the direct feature fusion of the PANet module leads
to the repeated superposition of a large amount of irrelevant information, which affects the
network’s judgment of the main feature information of the target to be detected, resulting
in missed detection and false detection.

The special semantic and location information of images is the basis for network
recognition and localization. In a deep convolutional neural network, the shallow features
contain location information, which is universal and conforms to the general characteristics
of the target to be detected. The deep features contain rich semantic information, are
more abstract and complex, have the uniqueness of the target to be detected, and are more
suitable for adding attention mechanisms to enhance the expression of target semantic
information and suppress irrelevant information.

In view of the above analysis, this paper proposes an effective feature information
fusion (EFIF) module. This module uses IHCB as a feature acquisition convolution block,
and at the same time comprehensively considers the influence of overlapping feature
information of each feature layer of the network, cleverly uses the channel attention and
spatial attention mechanism to filter invalid information hierarchically, and strengthens the
expression of semantic information and location information.

Firstly, the channel attention module is introduced into the semantic information path
with high-level features, which explicitly models the interdependence between channels,
determines the content that needs to be focused on the feature map of each layer, and assists
in completing the target recognition task. Secondly, a spatial attention module is introduced
before each head network, the spatial attention matrix is extracted based on the preserved
spatial position information, and the extracted matrix is used on the corresponding feature
map of the semantic information path to determine the need to focus on a position to assist
in the completion of target positioning tasks. The module structure is shown in Figure 10.
We describe the detailed operation below.

Given different input feature maps Y1, Y2, and Y3 ∈ RH×W×C, Y3 is a high-level
feature map, which contains the most semantic information, which helps the network to
identify the target to be detected. First, we perform IHCB on Y3 to obtain the feature map
Y3′. We use CAM to perform the first information weighting on many feature channels
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in Y3′ to obtain Y3′′. This operation focuses on “what” is meaningful, given an input
image, that is, the weighted processing of important semantic information. Secondly, Y3′′

is upsampled and Y2 is superimposed on the channel dimension, the superimposed feature
map is subjected to IHCB2, and then upsampling is performed again to obtain Y2′. Finally,
the information of Y2′ and Y1 is superimposed, and then the information is extracted to
obtain Y1′ after IHCB2. Y1′ aggregates feature information from different feature layers,
resulting in rich and complex semantic information and location information. Then, we
add the CBAM attention mechanism to Y1′, weight the channel and space, respectively,
pay attention to the meaningful features in the channel and space, and obtain the network
output feature information H1. The rest of the H2 and H3 acquisition process is similar to
H1. In short, the EFIF module output is computed as:

Y′′3 = CAM(IHCB(Y3)), (1)

Y′2 = IHCB2(concat(Upsample(Y′′3 ), Y2)), (2)

Y′′2 = Upsample(Y′2), (3)

H1 = SAM(CAM(IHCB2(concat(Y1, Y′′2 )))), (4)

H2 = SAM(CAM(IHCB2(concat(Y′2, Downsample(H1)))), (5)

H3 = SAM(IHCB2(concat(CAM(Y′3), Downsample(H2))), (6)

Figure 10. Effective feature information fusion (EFIF) module.

3.3. Prediction Module

The prediction module mainly consists of a 3 × 3 convolution, batch normalization,
LeakyReLU, and 1 × 1 convolution. This module processes the multiscale feature informa-
tion output by the EFIF module, and obtains three output feature layers with different scales,
respectively. Three kinds of anchors are set on each feature layer, and K-means clustering is
used to obtain anchors according to different datasets and image input sizes. The smallest
feature layer has the largest receptive field, applies larger anchors, and detects larger objects.
The medium feature layer has a medium receptive field, applies medium-sized anchors,
and detects medium-sized objects. Larger feature layers have smaller receptive fields, apply
smaller anchors, and detect smaller objects. The specific dimensions of the prior boxes on
the three prediction feature layers are shown in Table 1.
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Table 1. A prior box size based on different datasets.

Feature Map Receptive Field Prior Box Size

16 × 16 Large object (117,61), (60,155), (52,41)
SSDD 32 × 32 Medium object (29,28), (27,83), (19,20)

64 × 64 Small object (15,52), (13,35), (10,17)

8 × 8 Large object (53,51), (24,61), (47,28)
SAR-ship 16 × 16 Medium object (35,37), (37,18), (25,26)

32 × 32 Small object (14,32), (20,16), (9,11)

3.4. Postprocessing—BBRD Method

The bounding box regression is to obtain the final prediction box. The decoding
process of the predicted value can further improve the performance of the object detection.
In Figure 11, the purple box represents the real box, and when the prediction box is not
positioned, i.e., IoU < 0.5, even if the target in the real box is a dog, when the dog is
identified by the classifier, it can still not be detected. If we fine-tune the prediction box
to adjust the frame closer to the real frame of the target, we can improve the positioning
accuracy, and thus improve the detection performance. Joseph Redmon et al. then proposed
a border regression method based on previous work, which is also the main method
introduced in the rest of this section.

Object detection edges are generally represented by a four-dimensional vector (x, y, w, h),
representing the central point coordinates and width and height of the edges, respectively.
In Figure 11, the red box O, represents the original prediction box and the purple box
G represents the real box of the target. The bounding box regression refers to finding a
relationship, so that the predicted candidate box O can get a regression bounding box S
that is closer to the real box G through mapping.

Figure 11. Bounding box regression.

Given (Ox, Oy, Ow, Oh), we search for the mapping relation ϕ such that ϕ(Ox, Oy, Ow, Oh)
= (Sx, Sy, Sw, Sh) and (Sx, Sy, Sw, Sh) ≈ (Gx, Gy, Gw, Gh).

The main steps of finding the mapping relationship ϕ are the border center point
translation and wide height scaling; the formula can be given as:

(1) Central point translation

Sx = σ(tx) + Cx, (7)

Sy = σ(ty) + Cy. (8)

(2) Scale down

Sw = Owetw , (9)

Sh = Oheth . (10)
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Where tx, ty, tw, th is the predictive value of the network output, (Cx, Cy) is the upper
left coordinate of the grid cell at the center point of the candidate target box (Ox, Oy), σ() is
the sigmoid function, and σ(x) = 1/[1 + exp(−x)]. The control offset is within the range
(0, 1), and the final obtained (Sx, Sy, Sw, Sh) is the parameter value of the final predicted
box. Because the value domain of the sigmoid function is an open interval, the Sx or Sy
cannot take the boundary value, therefore Sx 6= Ox or Sx 6= 1 +OX . When the central point
coordinates of the regression box need to be offset to the critical point, and the adjustment
range is unable to take the boundary value, it is difficult to predict the corresponding
information, which consequently affects the target detection performance.

Therefore, we introduce a method [36] to improve the center point translation of the
original formulation, which we formulate as

Sx = α ∗ σ(tx)−
α− 1

2
+ Cx, (11)

Sy = α ∗ σ(ty)−
α− 1

2
+ Cy. (12)

Although the above method can solve the problem of Sx 6= 1 + Ox and Sx 6= Ox
simultaneously, the penalty term added to the central point translation formula is relatively
too large, resulting in a too large frame offset range and unsatisfactory actual effect. In
this case, the present paper improves the formula penalty term to reduce the order of
magnitude and further obtain a precise offset range.

The central point formula presented in this paper is as follows:

Sx = α ∗ σ(tx)−
α− 1

12
+ Cx, (13)

Sy = α ∗ σ(ty)−
α− 1

12
+ Cy. (14)

In this formula, the α is taken as 1.04(α > 1). It is evident from the formula that the
coordinate offset of the center point of the candidate target box is multiplied by α, and minus
(α− 1)/12, changing from the original value domain (0, 1) to (−(α− 1)/12, α− (α− 1)/12),
making it easier to predict the center point in the candidate target box of the grid boundary,
and at the same time, we avoid the value domain being so large as to cause an excessive
candidate box offset, which affects the detection performance. The bounding box regression
decoding (BBRD) process is shown in Figure 12.

Figure 12. BBRD diagram.
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4. Experimental Results and Analysis
4.1. Dataset and Experimental Conditions

We apply FIERNet to the SAR Ship Detection Dataset (SSDD) [37] and SAR-ship [38]
dataset to test the detection performance of the network.

SSDD dataset: SSDD is the first publicly available dataset for SAR ship target detec-
tion. It consists of 1160 images containing 2456 ship targets with a resolution of 1–15 m.
The dataset is divided into many different scenes, including simple scenes with clean back-
grounds, complex scenes with obvious noise, dense scenes with complex environments,
and near-coastal buildings disturbing scenes. However, the results obtained on such a
dataset are more credible. We set the ratio of training and test sets to 8:2.

SAR-ship dataset: The SAR-ship dataset is composed of 102 Gaofen-3 and 108
Sentinel-1 sliced images, the image size is 256 × 256, the total number of images is 43,819,
and the number of ships is 59,535, which are annotated in the Pascal VOC format. The ship
slice pictures in this dataset have complex environments and changeable scenes, and most
of the ships are fused with the background, making them difficult to detect. The ship target
has fewer feature details and weak feature information, which is beneficial to reflect the
powerful feature information acquisition capability of the network proposed in this paper.
We divide the dataset into a training set and test set with an 8:2 distribution ratio.

The hardware and software platform parameters implemented in this algorithm are
shown in Table 2.

In the early stage of the model training built in this paper, the model hyperparameters
need to be initialized [39]. The model hyperparameter initialization based on SSDD is
shown in Table 3. The model hyperparameter initialization for the SAR-ship dataset was
similar to that of the SSDD dataset. It is only because the scales of the two datasets are
different that some parameters of FIERNet on the SAR-ship dataset are different. The input
size in the SAR-ship dataset was 256 × 256, the training steps were 100, and the batch size
was 16.

Table 2. The specific configuration parameters of the experimental platform.

Name Configuration

CPU Intel (R) Core (TM) i7-11700K@3.60 GHz
GPU NVIDIA GeForce RTX 3060 12 GB

Operating system Window 10
Deep learning framework Pytorch 1.9.0
Programming language Python 3.7

Dependent package CUDA 11.1 + CUDNN 8.0.4

Table 3. Initial setting of network hyperparameters based on SSDD.

Hyperparameter Initialization

Learning rate 0.001
Image size 512
Batch size 4

Train epoch 100
Weight decay 0.0005
Momentum 0.937

Label smoothing 0.005

4.2. Experimental Evaluation Metrics

In order to evaluate the effectiveness and performance of FIERNet more scientifically,
this paper selected performance indicators such as Precision (P), Recall (R), F1 score,
Average Precision (AP) and mean Average Precision (mAP) for testing and verification.

The formulas for calculating P and R are as follows.
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P =
TP

TP + FP
, (15)

R =
TP

TR + FN
, (16)

where TP and FP represent the number of correctly classified positive samples and the
number of misclassified positive samples, respectively. FN is the number of missed samples.

The F1 score is often used as the final measure for multiclassification problems, i.e.,
the harmonic mean of precision and recall. The larger the F1 value, the better the model
performance, and the smaller the value, the worse the model performance. The formula for
calculating the F1 score for each detection category is as follows.

F1 =
2 ∗ P ∗ R

P + R
. (17)

The formula for calculating AP is

AP =
∫ 1

0
P(R)dR. (18)

Taking the mean value of AP of all categories to get mAP, its calculation formula is
as follows.

mAP =
1
N

N

∑
i=1

AP(i). (19)

The log-average miss rate (LAMR) represents the missed detection rate of the test set
in the dataset. The larger the LAMR, the more missed targets are represented, whereas the
smaller the LAMR, the stronger the model detection performance.

4.3. Ablation Experiments

In this section, ablation experiments are performed on the methods proposed in this
paper, and the advantages and disadvantages of each method and their impact on the
performance of the algorithm are discussed in detail. This experiment used the general
dataset SSDD for validation. The FIERNet proposed in this paper was designed based on
the architecture of YOLOv4. Therefore, in the following experiments, we used YOLOv4 as
the benchmark module for experimental comparison.

As shown in Table 4, the performance metrics change when the different modules
combine, but not all module combinations can bring about a performance improvement. For
example, the Recall of the combined module using the CTFENet + BBRD was decreased by
1.65% compared to the performance of the BBRD module alone, the reason being that each
improvement technique is not completely independent and even though some techniques
are effective when used alone, they are not effective in combination. Therefore, here
we gave an incremental order of optimal network performance for various performance
metrics [36]: benchmark module + EFIF module + CTFENet + BBRD(FIERNet).

Benchmark module + BBRD(FIERNet-B): First, we considered optimizing the post-
processing method of the network model to improve the localization accuracy of detection
boxes, because in general, improving the BBRD method only affects the network decoding
process, and has little or no impact on the number of network parameters and inference
time. We optimized the original boundary regression decoding formula and the mAP,
Recall, Precision, and F1 increased by 0.79%, 0.37%, 0.41%, and 1.00%, respectively, and the
LAMR decreased by 2.00%.

Benchmark module + BBRD + CTFENet (FIERNet-BC): Next, since it is difficult to
continue to improve the model performance without changing the network structure, we
proposed a new backbone network CTFENet to strengthen the feature extraction effect and
bring about an effective improvement in performance. Among them, the mAP, Precision,
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and LAMR had the best effect. The mAP and Precision increased by 1.28% and 1.76%,
respectively, and the LAMR decreased by 2.00%.

Benchmark module + BBRD + CTFENet + EFIF (FIERNet): The transmission and
fusion module of feature information is an indispensable part of the network model, which
has a great impact on the performance of the model. Therefore, this paper proposed the
EFIF module as the feature transmission and fusion module of FIERNet to reduce missed
and false detection and enhance network performance. After experimental verification, the
performance of this module met our expectations, and the addition of EFIF could improve
the Recall by 4.77% and the LAMR by 4.00%.

Finally, compared with the benchmark model, FIERN was proposed; its mAP, Recall,
Precision, and F1 were improved by 2.96%, 3.49%, 3.12%, and 4.00%, respectively, and the
LAMR was reduced by 8.00%.

Table 4. Network model performance for different combination modules. “X” indicates that the
current module or method is used.

CTFENet EFIF BBRD mAP Recall Precision F1 LAMR

91.17 84.40 95.04 89 20
X 93.12 82.94 97.00 89 17

X 91.62 86.79 94.41 90 19
X 91.96 84.77 95.45 90 18

X X 93.74 87.34 97.54 92 13
X X 93.24 83.12 97.21 90 16

X X 91.88 86.97 94.61 91 19
X X X 94.14 87.89 98.16 93 12

In Figure 13, we selected ship target images in different situations for a heatmap
visualization. The brighter the color of an area in the heatmap, the more interested the
model is in that area, and the more likely the target is. For ship targets that are difficult
to detect and easy to miss, FIERNet can accurately obtain the rich feature details of small
ship targets and give correct judgments. However, it is difficult for YOLOv4 to capture
the feature information of small targets, so the detection effect is not ideal, as shown in
the blue and green boxes in Figure 13. In the detection of near-shore ship targets, it is
prone to misdetection, that is, a nonship target is mistaken for a ship target. FIERNet
can effectively weaken background information, focus on effective information, give clear
ship characteristics, and finally obtain ideal detection performance. YOLOv4 is easily
disturbed by background information, so it gives wrong judgments, as shown in the red
box in Figure 13.

4.4. Experimental Analysis of BBRD Decoding Formula

In order to facilitate the experimental analysis, this paper calls the original BBRD
method BBRD-1, the method introduced from [36] is called BBRD-2, and the method
proposed in this paper is called BBRD-N.

The bounding box regression decoding is related to the presentation of the network
output information and is one of the key steps of the target detection algorithm. Therefore,
we proposed a new decoding formula to enhance the decoding effect. As shown in Table 5,
the bounding box decoding formula proposed here achieves good results, confirming the
effectiveness of reducing the order of magnitude of the penalty terms. At the same time,
BBRD-2 also achieved good results, indicating that the improvement of BBRD is necessary.
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Figure 13. Feature heatmaps for different networks. There are 3 columns of pictures in the figure,
from left to right, the visualization of the ground truth, the visualization of the YOLOv4 heatmaps,
and the visualization of the FIERNet heatmaps.

Figure 14 shows the experimental results for different a and N. It can be seen from
Figure 14 that the improvement of the penalty item is necessary, and the overall performance
indicators after the improvement are improved to varying degrees. This paper selected 11
different values for verification. It can be seen from Figure 14a that when a is 1.03, 1.04, and
1.05, the overall performance index is the best. Therefore, based on these three values, we
selected 13 different N values for the experiments, as shown in Figure 14b–d. We evaluated
these three curves as a whole, and we found that when a = 1.04 and N = 12, the mAP (94.14),
Recall (87.89) and Precision (98.16) achieved their maximum value. Therefore, this paper
selected a = 1.04 and N = 12 to construct the BBRD-N formula for bounding box regression
decoding. In addition, it can be seen from Figure 14b–d that when N = 2, no matter what
the value of a is, the maximum value of the current performance index cannot be reached.
This verifies the idea proposed in this paper when optimizing the BBRD-2 formula: the
penalty term is too large, which leads to reduced model performance.

Table 5. Performance analysis of decoding formulas with different boundaries.

Method Different BBRD mAP Recall Precision

FIERNet-1 BBRD-1 93.74 87.34 97.54
FIERNet-2 BBRD-2 93.78 87.34 97.54
FIERNet BBRD-N 94.14 87.89 98.16
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(a) (b)

(c) (d)

Figure 14. The performance comparison of different α and N. (a) Performance comparison of different
values of α. (b) Comparison of mAP with different N values. (c) Comparison of Recall with different
N values. (d) Comparison of Precision with different N values.

4.5. Analysis of Experimental Results Based on SSDD Dataset

The comparison of evaluation indicators between FIERNet and multiple models is
shown in Table 6. It is obvious that the method proposed in this paper is excellent, and
the model achieves amazing detection results. Our method obtains the best mAP (94.14%),
Recall (87.89%), and F1 score (93%). Specifically, the mAP of FIERNet is 22.24% higher than
Faster RCNN, 2.97% higher than YOLOv4, and 5.22% higher than YOLOX [40]. The Recall
of FIERNet is 14.68% higher than SSD512 and 11.59% higher than SAR-ShipNet [41]. In
addition, compared to other methods, the F1 of FIERNet is at least 4% higher. To sum up,
the performance of FIERNet is amazing, and it also demonstrates the effectiveness and
applicability of the method proposed in this paper.

Figure 15 shows the PR and F1 curves for different models. The PR curve represents
the relationship between precision and recall, and the area enclosed by it and the coordinate
axis is the mAP value of each model. The F1 curve is an average of precision and recall,
which represents the overall performance of the model. It can be intuitively seen from the
figure that the F1 and mAP values of FIERNet are higher, which strongly demonstrates the
effectiveness and superiority of the model. Figure 16 shows the visual detection results of
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FIERNet, CenterNet [42], and YOLOX. It can be seen that FIERNet has excellent application
effects for ship detection in complex environments. For example, CenterNet and YOLOX
experience false detections, mistaking ship-like targets for ships, as shown in the yellow
boxes. Ships in SAR images belong to the category of small targets, occupying fewer pixels,
and are easily affected by background factors, making it difficult to detect targets. During
the detection process of CenterNet and YOLOX, missed detection occurred, as shown in
the green box in Figure 16. However, FIERNet can obtain the contextual information of
the target from the complex background, and then detect the ship target. FIERNet also has
performance that is not inferior to other algorithms for dense target detection. The above
conclusions prove that FIERNet can be applied to SAR ship detection in various scenarios.

To further dissect the FIERNet detection process, we show the feature information
changes of the FIERNet network during the ship detection process in Figure 17. From
Figure 17b we can clearly see that all three detection heads of FIERNet capture the main
feature information that is beneficial for ship detection. Even the eigenhead (16 × 16), which
is mainly used for large target detection, obtains obvious target information, marking the
approximate location of the ship target. Combining the other two detection heads with
more explicit ship feature information, we can finally get Figure 17c. Comparing Figure 17a,
we find that FIERNet detected all the targets, and we compared the position and size of the
detection box and the real box to find that they were basically the same. This verifies the
validity and soundness of the method proposed in this paper.

Table 6. Comparison of performance indicators of different models based on SSDD. Results marked
with “*” are from [41]. Results marked with “**” are from [43]. The best performing methods are
marked in bold.

Method Backbone Size mAP Recall F1

SSD VGG-16 512 89.55 73.21 81
RetinaNet ResNet-50 512 63.71 52.29 68
CenterNet ResNet-50 512 83.31 66.79 78

Faster RCNN * ResNet-50 600 71.90 75.00 71
EfficientDet * EfficientNet 512 68.27 39.78 56

YOLOv3 * Darknet-53 416 79.06 67.61 77
YOLOv4 CSPDarknet-53 512 91.17 84.40 89

YOLOv4-tiny CSPDarknet-53 512 82.85 75.41 80
SAR-ShipNet * ResNet50 512 89.08 76.30 85
DCMSNN ** ResNet101 512 89.60 83.40 84

NNAM ** Inception-ResNet 512 84.30 85.70 85
YOLOX Modified CSP v5 512 88.92 83.67 87
FIERNet CTFENet 416 90.66 79.24 87
FIERNet CTFENet 512 94.14 87.89 93
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(a) (b)

Figure 15. Comparison of different target detection performance. (a) PR curves; (b) F1 curves.

(a)

(b)

(c)

(d)

Figure 16. Comparison of visual detection results of different target detection algorithms. (a) Visual-
ization of the ground truth based on SSDD dataset labels. (b) FIERNet. (c) CenterNet. (d) YOLOX.
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(a)

(b)

(c)

Figure 17. Visual analysis of FIERNet network detection process. (a) Visualization of the ground
truth. (b) Visualized feature maps for different detection heads. From left to right, they are 64 × 64,
32 × 32, and 16 × 16. (c) FIERNet finally visualizes the detection results. The left one is the visual
image after the three detection heads are combined. The right one is the visual detection result.

4.6. Analysis of Experimental Results Based on SAR-Ship Dataset

The SAR-ship dataset is large in scale, the ship target environment is complex, there
are many negative samples, the target is dense, and the detection is extremely difficult.
However, such a dataset can better reflect the superiority of the network and the credibility
of the experimental results. Therefore, this paper applied FIERNet to this dataset for testing.

The input size of the image affects the detection accuracy of the network model. Many
researchers [16,17,44] have demonstrated that the larger the size of the input image, the
better the detection effect of the network model on the target. Therefore, it was reasonable
for us to use FIERNet with an input size of 256 in Table 7 to compare with other advanced
object detection algorithms that used larger input sizes. Such comparative experiments are
challenging and better demonstrate the effectiveness of FIERNet. As shown in Table 7, the
overall performance of FIERNet on large-scale datasets is better than that of other advanced
target detection algorithms, and all performance indicators have reached an ideal state.
Overall, FIERNet’s mAP is 1.81~16.82% higher, its Recall is 8.05~22.61% higher, and its
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F1 is 6~14% higher. This shows that FIERNet has good generalization performance and
applicability. It is not limited to a single dataset, but also has the potential for generalization
to more complex datasets.

To further highlight the strong detection performance of FIERNet, we deliberately se-
lected multiple sets of hard-to-detect images to visualize the detection effect. The ship target
pointed by the yellow arrow in Figure 18 is integrated with the surrounding background,
and the feature information is difficult to extract and easy to miss. However, FIERNet can
extract unique ship features with a powerful network model, and then accurately detect
ship targets. Due to the small size of SAR targets and too many similar targets, it is easy
to lose ship feature information during the network detection process, resulting in false
detection. For such problems, FIERNet still has good performance, as shown in the blue
box in Figure 18. FIERNet has excellent detection performance for hard-to-detect and easy-
to-misdetect objects, so it should also have good detection results for ship objects in other
situations. To test this idea, we continuously detected nearshore building disturbances and
dense target images, as shown in the second row of Figure 18. We can see that FIERNet still
performs well with a strong object detection ability.

Table 7. Comparison of performance indicators of different models based on SAR-Ship. Results
marked with “*” are from [41]. The best performing methods are marked in bold.

Method Backbone Size mAP Recall F1

SSD * VGG-16 300 82.90 72.48 79
SSD * VGG-16 512 84.42 74.58 81

RetinaNet * ResNet-50 600 88.37 73.24 81
CenterNet * ResNet-50 512 87.44 60.02 74

Faster RCNN * ResNet-50 600 75.19 70.95 73
EfficientDet * EfficientNet 512 85.20 71.77 80

YOLOv3 * Darknet-53 416 87.24 70.12 80
YOLOv4 * CSPDarknet-53 416 88.76 70.36 81

SAR-ShipNet * ResNet50 512 90.20 71.31 81
YOLOX * Modified CSP v5 640 88.21 67.51 78
FIERNet CTFENet 256 92.01 82.63 87

(a)

Figure 18. Cont.
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(b)

Figure 18. Visualization of detection results. The first behavior is difficult-to-detect and easily
misdetected targets, and the second behavior is dense targets. (a) Visualization of the ground truth
based on SAR-ship dataset labels. (b) FIERNet practical application effect.

4.7. Verification Based on Complex and Large-Scene SAR Images

In this section, we used large-scale complex SAR ship images from two different
scenes from the LS-SSDD-v1.0 dataset [45] to verify the practicability and generalization
of FIERNet. The picture scenes were: Campeche and Singapore Strait, with resolutions of
25,629 × 16,742 and 25,650 × 16,768, respectively. In this verification link, in order to further
evaluate the generalization and soundness of FIERNet, instead of using the LS-SSDD-v1.0
dataset as the training set for training, we used the FIERNet trained on the SSDD dataset
with a resolution of 512 × 512 as the test model. Due to limited computer performance, it
could not support the testing of large-scale SAR images. Thus, each large-scale SAR image
was divided into 600 subimages of 800 × 800 size. We separately fed the subimages of each
SAR image into the FIERNet network to detect the performance.

Compared with other advanced target detection methods, the performance indicators
of FIERNet on large-scale SAR images were still excellent. For example, the mAP of
FIERNet was 4.69% and 7.5% higher than that of YOLOv4, the Recall was 6.65% and 8.79%
higher than that of YOLOVX, and the F1 indicator was also much higher than that of the
other methods, as shown in Table 8. This also proves that FIERNet has strong generalization
performance and soundness, and has the potential for large-scale dataset promotion.

As can be seen from Figure 19, these two images have very complex backgrounds, large
scales, and a high detection difficulty. However, under such conditions, FIERNet can still
detect many small ship targets and give correct detection results, with few missed detection
and false detection. This is shown by the enlarged area of the blue box in Figure 19.
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(a)

(b)

Figure 19. Detection results in complex and large-scene SAR images. To better observe the detection
results of large-scale SAR images, specific regions marked with blue rectangles are enlarged. (a) Vi-
sualization of detection results based on Campeche. (b) Visualization of detection results based on
Singapore Strait.
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Table 8. Comparison of experimental results.

Method
Campeche Singapore Strait

mAP Recall F1 mAP Recall F1

SSD 76.81 54.29 68 58.43 42.91 56
CenterNet 68.26 48.49 63 55.87 35.16 50
YOLOv4-
Tiny 68.89 59.49 70 56.90 49.46 61

YOLOv4 76.60 66.63 78 60.82 51.98 64
YOLOX 73.45 66.87 75 55.97 51.67 62
FIERNet 81.29 73.52 81 68.32 60.46 72

5. Conclusions

Aiming at the problems of fuzzy feature information, complex background, and
difficulty in distinguishing ship targets in SAR images, a deep learning-based detection
method for ship SAR images in the marine environment was proposed. We constructed
a feature information efficient representation network (FIERNet) to achieve an efficient
representation of the target information to be detected.

Firstly, this paper proposed CTFENet as a feature extraction network to extract broader
and richer feature details. The network was built on the CTFE module, a module that
implemented the Swin Transformer module architecture using convolutions. The CTFE
module mainly consisted of a 3 × 3 convolution, triplet attention, Mish activation function,
MLP, and a residual structure.

Secondly, the EFIF module was used to enhance the effective fusion and transfer of
feature information. First, IHCB was used to realize the mixing of spatial and channel
dimensions, strengthen the exchange of information in different dimensions, and further
enrich the feature information of the target. Then, we used the channel and spatial attention
mechanism to filter invalid information hierarchically and strengthen the expression of
semantic information and location information.

Thirdly, the new BBRD method was used to optimize the postprocessing process of the
network, strengthen the decoding effect, and further clarify the position of the prediction
frame, thereby enhancing the performance of the target detection.

The FIERNet method proposed by the above methods could obtain powerful feature
information, thereby greatly improving the network performance. In this paper, we suc-
cessively used SSDD, SAR-ship datasets, and large-scale SAR ship images to demonstrate
the superiority and applicability of the FIERNet method. In the future, we will explore
lightweight processing of the network, hoping to achieve excellent accuracy and detection
speed at the same time. For example, applying a Ghost [46] convolution instead of the 3 × 3
convolution, appropriately reducing the number of backbone network layers, pruning the
channels’ branch operations, using the Focal-EIOU [47] regression loss function, etc.
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Abbreviations
The following abbreviations are used in this manuscript:

FIERNet Feature information efficient representation network
CTFE Convolution transformer feature extraction
CTFENet Convolution transformer feature extraction network
CIoU Complete Intersection over Union
EFIF Effective feature information fusion
IHCB Information hybrid convolutional block
CBAM Convolutional block attention module
CAM Channel attention mechanism
SAM Spatial attention mechanism
PANet Path aggregation network
BBRD Bounding box regression decoding
SSDD SAR Ship Detection Dataset
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