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Abstract: The LCZ framework has become a widely applied approach to study urban climate.
The standard LCZ typology is highly specific when applied to western urban areas but generic in
some African cities. We tested the generic nature of the standard typology by taking a two-part
approach. First, we applied a single-source WUDAPT-based training input across three urban areas
that represent a gradient in South African urbanization (Cape Town, Thohoyandou and East London).
Second, we applied a local customized training that accounts for the unique characteristics of the
specific area. The LCZ classification was completed using a random forest classifier on a subset
of single (SI) and multitemporal (MT) Sentinel 2 imagery. The results show an increase in overall
classification accuracy between 17 and 30% for the locally calibrated over the generic standard LCZ
framework. The spring season is the best classified of the single-date imagery with the accuracies 7%
higher than the least classified season. The multi-date classification accuracy is 13% higher than spring
but only 9% higher when a neighborhood function (NF) is applied. For acceptable performance of
the LCZ classifier in an African context, the training must be local and customized to the uniqueness
of that specific area.

Keywords: local climate zones; random forests; neighborhood function; multitemporal classification

1. Introduction

Since before the dawn of civilization, the global population has been increasing both
in isolated as well as connected communities [1,2]. This continuous rise in population has
resulted in civilization and furthermore has created the barrier between urban and rural
regions [3,4]. While urbanization comes with prospects of technologically advanced liveli-
hoods for the inhabitants and easier access to amenities, it brings with it some undesirable
side effects [5]. One of these side effects is the urban heat island (UHI) phenomenon. The
urban heat island is a term coined by [6] to refer to a phenomenon where urban regions
experience warmer surface and atmospheric climatic conditions as compared to their sur-
rounding rural areas. The earliest documentation of this phenomenon was in a 1820 study
on the London climate [7]. While the UHI is created by urban infrastructural developments,
planning and design as well as population growth, it is however projected to be more inten-
sified by climate change through extreme heat waves [8,9]. With anthropogenically-driven
climate change becoming an even bigger threat to livelihoods, there is a need to establish
living conditions that do not exacerbate but adapt to the changing climate. Urban planners
propose that the increase in urban population demands innovation toward sustainable
cities while some propose low energy buildings [10,11]. These are cities that have systems
in place to curb and adapt to the effects of UHI while accommodating as much as 68% of
the global population as projected for 2050 [12,13]. Even with this much awareness being
raised in the urban planning and climate change circles, studies on UHI are still limited
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and only localized in Asia, Europe and North America with very little literature available
on Africa, Mid and South America as well as Oceania [14].

What these limited studies highlight is that the biggest challenge in the study of UHI
has been and is still that of relating the observed surface and air temperature patterns with
the features on the ground [14,15]. This has been addressed primarily by the development
and application of local climate zones to study both surface and atmospheric UHI [16–18].
Local climate zones (LCZ) are regions of homogenous surface features that experience
uniform climatic conditions [19]. The local climate zones typology currently accepted as the
standard framework for classification was designed by [15]. The framework was developed
specifically to study UHI on the hypothesis that surface and atmospheric patterns in UHI
can be attributed to the spatial and structural characteristics of surface features.

Even with the development of local climate zones to address the spatial distribution
challenge, studies are still not evenly distributed geographically. Between 1970 and 2020,
57% of the publications have been in Asia, 23% have been in North America, 14% have
been in Europe and only about 3% have been in Africa [14]. The majority of the African
studies on local climate zones were part of global studies and not particularly focused on
local African cities. Local climate zones studies in Africa have been limited as compared
to the other continents, which creates a big gap in the literature in this area of study [20].
Urban climatology studies in South Africa have focused on a diversity of urban climate
variables ranging from temperature-focused studies, Koppen’s climatic zones and rainfall
and drainage but not local climate zones [21,22]. This current study intended to not only
play a part in filling the gap in the lack of LCZ classifications in South Africa but also
contributing to the knowledge increase in African studies in general.

For the purposes of universal application and generalizability, the standard LCZ was
designed to be culturally neutral [16]. Ref. [23] explored the relationship between culture
and urban form and found them strongly correlated. Urban form is defined by [24] as the
description of the city’s physical characteristics. This covers everything from urban design,
type of building material, arrangement of infrastructure and type of ground material
among others. It was observed in Southwestern Saudi Arabia that cultural laws also
influenced urban form [25]. Seventy-seven metropolitan cities in Asia, US, Europe, Latin
America and Australia were sampled as part of a study to assess urban form across different
continents. This study by [26] found that apart from differences of density and height,
there are urban form features that are common across all the cities and yet there are some
urban form features that are only unique to some cities. This suggests that a classification
framework typology must be flexible enough to allow training based on the standard
classes, combinations of the standard classes as well as the addition of classes that are
unique to that local environment. The flexibility of the standard framework to manipulation
is even more important in African urban regions due to how diverse they are and how
different they are from each other and from western urban regions [27]. This current
study explored the extent to which the standard LCZ framework can be manipulated and
modified to accommodate the uniqueness of an urban area. All this was completed with
the aim of developing a classification protocol that can be possibly applicable to similar
urban regions that do not strictly resemble the cities the standard framework was based on.

While the standard typology remains the same, its implementation over the past
decade since its conceptualization had adopted different methodologies. These approaches
have included in situ measurements, GIS-based mapping as well as remote sensing-based
approaches [28]. Within each approach, there are different sub-methods which can result in
differences in accuracy even within the same general approach. A study on local climate
zones on the Zimbabwean capital Harare adopted a remote sensing approach in attempt
to compare the machine learning technique of support vector machines with the World
Urban Database and Access Portal Tools (WUDAPT) generator approach. The WUDAPT is
a global initiative of online tools to create local climate zone maps for a given city using
a standard methodology [29]. This study by [30] found out that the WUDAPT approach
yielded higher accuracies as compared to the SVM approach. Ref. [28] proposes that
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the GIS-based and remote sensing-based classifications produce different accuracies and
level of detail as a function of scale [31]. The GIS-based method is more suitable for
micro-scale classification, while remote sensing is suitable for larger-scale classification [32].
The WUDAPT approach in general yields higher accuracies as compared to other remote
sensing as well as GIS-based methods. Ref. [28] attributed the accuracy of the WUDAPT
methodology to its generic nature. According to [29], the satellite imagery used by the
online WUDAPT classifier has pixel size of 100–120 m. This is the same size as the minimum
size of a local climate zone training input, which makes the accuracy higher.

The WUDAPT method was developed for global urban morphology data collection
for global climate models [33]. This suggests that it was not designed for implementation at
the local level. For lower mesoscale and local scale climate models, more detail is required
in urban morphology. This has resulted in the use of higher resolution data sources such as
Landsat-8 and Sentinel-2 among others. These products have been used in classifications
using mostly machine learning and deep learning techniques [20,30]. The use of coarser
imagery of 100–200 m resolution uses the surface reflectance values for each pixel at a
size that is comparable to the minimum size of a local climate zone. However, when
finer resolution data of less than 60 m are used, the pixel size becomes much smaller than
the size of the LCZ training input. When the pixel size is smaller than the object, the
variation in pixels belonging to the same class becomes larger [34]. This then necessitates a
neighborhood function kernel to aggregate the pixels to the level of the local climate zone.
At the end, the result is an aggregated value instead of the original classified value.

The first objective of this study was to characterize the spatial designs and layout of
three cities, namely, Cape Town, East London and Thohoyandou that cover a gradient in
urbanization within the South African context. This looks at the historical influences that
shape the morphology and urban form of each of these urban areas. The second objective
was to determine the extent to which the standard LCZ framework covers the nature and
morphology of South African cities. This is by applying the standard LCZ framework as it
is. For this objective to be carried out, a combination of a field survey together with digital
imagery was used to develop a training input of spectrally distinct classes found within
these urban regions, which was the third objective of the study. For this objective, all these
urban regions are assumed to be similar, and only one training is developed using Cape
Town and then applied across the rest of the urban regions. Lastly, a more specific training
is developed for a more customized LCZ classification protocol with each city having its
own training sample.

2. Materials and Methods
2.1. Study Area

The study was conducted in Cape Town, Thohoyandou and East London urban areas
of the Western Cape, Limpopo and Eastern Cape provinces of South Africa, respectively
(Figure 1). These are urban areas of different size, urban form and land-use systems,
representing a gradient across South African urbanization. Their geographical location
and dispersion through South Africa put them in different climatological systems. Cape
Town and East London are coastal cities, while Thohoyandou is a remote inland small town
(Figure 1).
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Figure 1. Geographic location of the Thohoyandou, East London and Cape Town relative to their
respective municipalities, provinces and South Africa in general.

Cape Town, located at the southernmost tip of Africa, experiences a Mediterranean
climate characterized by cold wet winters and hot dry summers [35]. East London experi-
ences a maritime climate with cool winters and mild summers that is moist throughout the
year because of proximity to the ocean [36]. Thohoyandou experiences cold dry winters
and hot wet summers [37]. Cape Town as a city is a monument of the historical occupations
and influences of the diverse people groups who contributed to its development. This
has greatly influenced urban form resembling Portuguese, Indian, Dutch and British ar-
chitecture [38]. The original development of Cape Town into somewhat of an urban area
began with the Portuguese explorers in the 14th century in an area that belonged to the
Khoikhoi people. This was followed by the Dutch period in the 17th century and then
the British period in the 19th century. Finally, the South African period began in the early
20th century and extends to date. The 20th century ushered in rapid urban expansion in
Cape Town from multiple epicenters, resulting in an overall design that is comprised of
multiple administration and suburban residential areas resembling Harris and Ullman’s
(1945) multiple nuclei model [39]. Cape Town currently sits at 400 km2 with a population
density of 17,500 per km2.

East London similar to Cape Town was also developed originally as a harbor town.
However, East London does not have as long a history of cultural diversity from different
developers as cape town. The city has remained a harbor city of mostly British influence in
style, but the expansion outwards into the indigenous communities has brought indigenous
cultural influences into the East London urban form [40]. It is currently sitting at an area of
168.9 km2 and a population density of 2745 per km2.

Thohoyandou, which was developed as a capital for the Venda Bantustan in the latter
half of the 20th century, does not benefit from the diversity of historical western influences
in its urban form and design that East London and Cape Town encompasses [41]. The
development of Thohoyandou was originally for a shopping center and government ad-
ministration offices [42]. Among the three urban areas, Thohoyandou is the most integrated
with features associated with the rural environment. The area of Thohoyandou is 42.62 km2

with a population density of 2051 per km2.
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2.2. Materials and Methods
2.2.1. Sentinel-2 Multispectral Imagery

The Sentinel 2 Top-of-Atmosphere (ToA) (L1C) product was obtained from the Coperni-
cus Open Access Hub (COAH) of the European Space Agency (ESA). Sen2Cor288 algorithm
was used in SNAP to correct for atmospheric interference and thus convert the L1C product
to Sentinel L2A, which is Bottom-of-Atmosphere (BoA) reflectance [43]. Sen2Cor creates
BoA reflectance images, terrain and cirrus corrected reflectance, aerosol optical thickness,
water vapor, scene classification maps and quality indicators for cloud and snow probabili-
ties [44]. The central month image of each season with a cloud coverage filter of less than
0.5% was selected as the most suitable to reflect peak season dynamics (Table 1).

Table 1. Date and seasons for the Sentinel-2 imagery used throughout the classification process.

Sentinel-2

Summer Autumn Winter Spring

Cape Town 25 February 2018 16 May 2018 24 August 2018 2 November 2018
East London 7 January 2018 28 March 2018 6 July 2018 14 September 2018

Thohoyandou 13 December 2018 27 April 2018 26 July 2018 24 September 2018

2.2.2. Definition of LCZ Classification

The standard [15] LCZ classification framework was selected for this study to be
applied across all three urban areas. A remote sensing-based approach was chosen over a
GIS-based approach. A GIS approach to classification would require manual digitization
of the entire image, which is laborious and time consuming. The processing of remotely
sensed data also requires the manipulation and interpretation of digital data [45]. This
tends to be a mathematically complex process due to the heterogeneity of materials and
geometry of the features [46]. However, the advantage of the remote sensing-based route
is that it can be automated. The irregularities of the geometry of the local climate zones
becomes a challenge to both pixel and object-based classifications [45,47,48]. A pixel-based
classification which was adopted for this study overcomes this geometric non-uniformity
challenge by assigning every pixel into a single class based on the reflectance value [49].

This application of Stewart and Oke’s LCZ classification framework was used in two
approaches that differ in the creation of training data. Approach 1 followed strictly the
LCZ region of interest (RoI) creation as outlined by WUDAPT to create a standard training
set based on Cape Town to be applied on all three cities. The application of this remote
training on Thohoyandou and East London indirectly assesses whether the influence of
origin and culture on urban form affects the LCZ classification. This informs whether
there is a need to have a customized training for LCZ classification in South African cities
for all cities or locally for each urban region. Cape Town was chosen because it is the
only urban area of the three that experiences all four seasons and contains all 17 LCZ
standard classes [50]. Theoretically, this means that the impacts of phenology would be
more apparent in Cape Town than in East London and Thohoyandou, which also would
make it ideal for identifying the best season for single image classification across all three
urban regions. In defining these LCZ classes, a separability analysis was performed. A
spectral separability is an assessment of the performance of the Sentinel-2A multispectral
instrument bands to differentiate between the classes of the typology. For the purposes
of this study, histograms, scatter and box plots were used to perform this separability
according to guidelines from [51]. The second approach to the classification still took off
from the traditional [15] typology but explored combinations and subclasses of the standard
typology based on the unique features of each urban region.

i. Model Training
Two types of model training sets were developed for the classification where the first
was standardized and the second was customized to the context of the urban area.
The ground reference data were collected initially using digital globe resources due
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to COVID restrictions and were validated and revised in situ on February and March
2022 in Cape Town, Thohoyandou and East London. Based on a digital globe basemap,
circular regions of interest were made using QGIS having a diameter of 100 m following
the specifications of the standard typology as outlined by WUDAPT. The field campaign
was then used as a manual method to verify the regions of interest (Figure 2). Most
(80%) of the regions of interest were used for training and the remaining 20% were used
for validation. The field campaign was also used to observe and document the unique
elements of each urban region for the discriminations of subclasses to feed into the more
specific training for Approach 2.

Figure 2. Some of the sampled locations across Cape Town, East London and Thohoyandou.

a. Approach 1
The WUDAPT LCZ typology guidelines for the development of training data was
applied. These guidelines are divided into subcategories depending on the scale of
the total area, classification methods and the intended use of the final product [47].
These guidelines have a strict protocol for training with the objective of using the
WUDAPT online LCZ generator as well as a more flexible protocol for developing
training data to be used outside the WUDAPT generator [16]. The development of
these training polygons depends on a combination of general typology elements
such as cover, material, geometry and function taken to different levels of detail
depending on the scale of the imagery and the purpose of the classification. Cities
are then mapped using the scheme of [15], which classifies the urban landscape
into 10 urban and seven natural classes. Each class in the typology represents a
LCZ described in terms of specific landscape parameters of mean building height,
canyon width, aspect ratio, building surface ratio and impervious area. These
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training areas are used to characterize the reflectance properties of each LCZ, which
is then used to develop a model that assigns every other untrained pixel of the
image into the LCZ classes within the framework.
A three-step sampling method (Figure 3) was adopted from [52]. This block-based
system was developed for LCZ classification at the city block scale primarily as GIS-
based. In this study, this method was used to guide the development of training
samples following the three steps.

Figure 3. An outline of the city block method steps for accurately creating training polygons and
assigning them to different LCZ for the classification [15].

The natural city blocks are easier to assign to LCZ classes because they are homoge-
nous, but the urban classes are much harder even with the physical access to the
area. Urban LCZ metadata variables were thus limited to mean building height
(Hs ), which is the number of stories as collected in the field, mean building height
(BH), canyon width (CW), aspect ratio, building surface ratio and impervious area
(Figure 4). When the number of stories per building is less than 10, every story
is assumed to be 3 m; otherwise, Equation (1) is used for buildings with more
than 10 stories [53]. Buildings with one to three stories were considered low-rise,
four to nine stories were considered mid-rise, and more than nine stories were
classified as high rise (Figure 5). Canyon width is estimated by the average distance
between two buildings. Aspect ratio is estimated by the ratio of the building height
(BH) to the canyon width (W). Building surface fraction (BSF) and impervious
surface fraction (ISF) were estimated using simple calculations in QGIS following
the polygonization method (Figure 4) for areas of built and impervious surfaces.
These variables were all used to assign each one of the blocks into LCZ classes
(Figure 5). Within each block, multiple points were placed at a distance of 200 m
from each other. A circular buffer of 50 m was created around each point, ultimately
becoming the circular LCZ training polygon. Each of these training polygons was
at least 100 m from the next one. A total of 200 training polygons were selected for
the model training.

Building Height (BH) = H_(s) × 3.5 + 9.6 + 2.6 × (H_(s)/25): H_(s) (1)
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Figure 4. A display of the method for mapping the features within each polygon in order to classify
it to the suitable LCZ [53].

Figure 5. A flow diagram of the final stage of the method for assigning training polygons to their
suitable LCZ classes.

b. Local Customized Training Input (Approach 2)
This approach is developed based on the layout and design of each city taking into
account features that are common across all three cities and features that are unique
to the specific urban region. In Thohoyandou, the urbanized city center and the im-
mediate blocks around the city center have rural features integrated into the urban
landscape. The intra-block streets in Thohoyandou are not homogenous in material;
some are asphalted while some are gravel. While in a standard framework, the
building density and height stand out as the main discriminators for local climate
zones, the street canyon material stands out just as significantly in Thohoyandou.
This is also noted by [27], who stated that as a unique general feature, remote
African urban areas tend to have more bare soils than western urban. While this
might not be statistically significant for a highly urbanized and highly westernized
city such as Cape Town, its significance in a small town such as Thohoyandou
cannot be neglected without investigation. However, spectrally separating bare
soil from impervious surfaces in a remote sensing approach at the level of the pixel
(10 m) has inherent confusion in spectral signatures [54]. Therefore, Following
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Jin’s blocking, a GIS approach was developed in order to create a criterion for
separating blocks that are completely asphalted from blocks that are gravel within
the urban area without the inherent confusion of a remote sensing approach. A
digitization process was applied to digital globe imagery to create asphalted and
bare soil inter-street blocks (Figure 6).

Figure 6. Asphalted vs. bare soil (gravel) streets in Thohoyandou urbanized region.

The output of this digitization was used to separate training inputs that are in gravel
blocks from those that are in asphalted blocks. LCZ 3 was the only class observed
to be present in both block types. The buildings within LCZ 9 in Thohoyandou are
also further apart than they are in Cape Town and East London. The space between
houses is thus confused with Shrublands (LCZ 14) due to the dry nature of the
shrublands in Thohoyandou. In order to reduce this confusion, the low plants were
thus combined with shrubs lands to form a single class. Scattered trees were also
combined with dense trees to form a single class. The number of the natural classes
was thus minimized so that the built classes can then stand out more spectrally.
Impervious surface and bare soil were also combined to form a single class. This
is because they are the least represented classes in the area, and combining them
makes them a slightly larger class. This thus makes the updated training set for
Thohoyandou to become LCZ 3a, 3b, 6, 8, 9, 11 & 12, 13 & 14, 15 & 16, 17.
In East London, the ground truthing process in lightweight zones (LCZ 7) revealed
a unique class that is a hybrid between lightweight and compact low-rise (Figure 7).
A unique feature of South African light weight squatter camps is that they have no
designated stand-numbers. This means they have no yards, and it is common for
houses to share walls with their neighbors on all sides except the front. Because of
this nature of South African squatter camps, the integration of LCZ 3 and LCZ 7
in these East London zones happens below the minimum size of the local climate
(100 m). This is thus treated as a unique class and incorporated as LCZ 7a into the
updated East London training, which then becomes LCZ 2, 3, 5, 6, 7, 7a, 8, 9, 10, 11,
13, 14, 16, 17.



Remote Sens. 2022, 14, 3594 10 of 23

Figure 7. East London squatter camp types; LCZ 7 showing a standard lightweight region while LCZ
7a shows a hybrid region of concrete and light weight.

ii. Remote Sensing Classification Protocol
The choice of the LCZ classification method is guided by the nature of the data, the
available computational resources and the application purpose [45]. The classification
protocol was performed via a coded script in R on R-Studio using mainly the CARET
package through a Random Forests (RF) classifier. This was designed to extract the
training pixels from the image stack, build predictive models that assign the rest of
the image pixels into the most fitting class based on surface reflectance values and to
validate the assigned pixels. This was performed on a single image stack as well as a
multitemporal image stack.

a. Single Image vs. Multitemporal Classification and Neighborhood Function
The first classification method is the most straightforward application of a LCZ
classification and consists of applying the iterative process on a single date image.
The seasonality was therefore analyzed in terms of meteorological seasons, namely
winter, spring, summer and autumn, each in turn, by one scene at the center of
the season [55]. For the multitemporal approach, accuracies of single-image classi-
fications of each season will therefore be compared with those of a classification
combining images of all four seasons. This is in order to account for the spectral
and spatial changes in the natural vegetation that is caused by seasonal changes.
This has the potential to increase the accuracy of the classification. This eliminates
confusing between seasonal classes such as bare soil in the dry period, which is
covered by low vegetation in the rainy periods.

b. Neighborhood Function
A neighborhood function or contextual classifier can contribute to increased accu-
racies in the classification of urban areas that are internally highly differentiated or
heterogeneous, resulting from historical urbanization patterns that reflect the local-
ity and the culture. In addition, most classification methods, including the original
WUDAPT protocol, do not take this spatial variation into account. Moreover, the
WUDAPT workflow causes a loss of spectral variability information before the
actual classification by resampling the Landsat images during the pre-processing
phase to a spatial resolution of 100 m [56–60]. At 10 m resolution, the sensitivity of
the neighborhood function was tested by increasing the size of the kernel window
for an optimal cell number.

iii. Validation
The ground truth data were randomly split in R into a training (80%) and validation
(20%) set. The validation set is used to validate the model using accuracy metrics. The
first accuracy metric performed was visual comparison of the output with satellite
imagery. The User Accuracy (UA) is the probability that the predicted value is correct;
the Producer’s Accuracy (PA) is the probability that a value in a certain class was
classified correctly. The Overall Accuracy (OA), the Kappa coefficient, is a measure of
the agreement between classification and truth values. All were calculated according to
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the guidelines in [48]. The F1-score was calculated as the harmonic mean of the UA and
PA, which is even more useful when the classes are not balanced.

3. Results
3.1. Local and Remote Standard LCZ Training (Approach 1)
3.1.1. Visual Analysis of the Classification Outputs

A visual inspection of the Cape Town output reveals a clear separation of the built
from the natural classes (Figure 8). What this pattern also reveals is that the compact classes
are rather concentrated next to each other and the open classes are further away. The city
center toward the harbor is composed of compact high-rises and compact mid-rises, as
expected in a modern city such as Cape Town. The agricultural lands up north are also
visible from a visual inspection with minor patches of LCZ 9 through them. What is also
worth noting is the confusion that arises between the paved surfaces and built classes.
Roads at the city center are wrongfully classified as either compact high-rise (LCZ 1) or
heavy industry (LCZ 10).

Figure 8. Cape Town single image classifications across all 4 seasons with standard training according
to WUDAPT guidelines.

When the remote Cape Town-based standardized training is applied on a Thohoyan-
dou multitemporal image, LCZ 3 is completely absent (Figure 9A), but it reappears immedi-
ately when a local standardized training is applied (Figure 9B). Using a local standardized
training shows the Nandoni area to be mostly LCZ 9 with some vegetation; this is in line
with the pre-study survey and google globe imagery that show the area being a rural village.
However, the remote standardized training shows the same area as being mostly composed
of LCZ 8 (Large Open), which is mostly found in the city center. Single-image classification
using remote training shows LCZ 7 (light low-rise) at the city center, which according to
google globe is a misclassification, as Thohoyandou does not have squatter camps, and this
remote training also shows forested environment at the Nandoni region. This is different
from the output of the local training, which is almost in complete agreement with the local
MT classification showing no LCZ 7 at the city center and low plants and sparse trees at
the Nandoni dam area. The application of remote vs. local training in East London does
not yield significant differences in the appearance of classification outputs.



Remote Sens. 2022, 14, 3594 12 of 23

Figure 9. Single image (C,D) and multi-temporal (A,B) classifications of Thohoyandou using a
standardized remote (A,C) and local (B,D) training.

3.1.2. Single Versus Multi-Seasonal Images and Neighborhood Functions Comparing
Performance of Remote and Local Standard Trainings

While the multitemporal Cape Town image is the most accurately classified with an
overall accuracy of 44%, the spring image has the highest accuracy of the single image
classifications with an accuracy of 42% (Table 2). The difference in Kappa and OA metrics
between the spring image and the multitemporal image is relatively small: 1.6% for Kappa
and 1.4% for OA. This suggests that the spring image could be an acceptable representation
of the Cape Town area when there are no multitemporal data. The spring image OA is
a 6% improvement on the summer classification, which is at 36%. However, even this
6% is mostly due to the natural vegetation (OA-nat), which is 15% higher in spring than
in the summer. The difference between accuracies of the urban classes (OA-urb) is only
2%. This also proves that the effects of phenology are greatest among natural classes, as
expected. The summer image as the least successfully classified has the lowest Kappa at
31.2%, which is a 68.8% disagreement between the training and the output. This indicates
that the least represented classes in the training are not very well classified. According to
the Kappa statistic, the least classified (summer) and the best classified (multitemporal) all
have Kappa values that fall within the same range. This means about 60% disagreement
between training and output, suggesting that only 40% of the data can be relied upon
to produce the observed results. The difference between the F1 score and the OA is also
Indicative of patterns in classification of individual classes, since the F1 is a harmonic
mean of the PA and UA. From Table 2, the summer and autumn images F1-scores and OA
are almost identical which indicates confusion even in the classes which are rather well
classified in other seasons.
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Table 2. Accuracy metrics for single image and multitemporal random forest classifications over
Cape Town.

Metrics SI Summer SI Autumn SI Winter SI Spring Multitemporal

OA 36.20% 40.10% 41.80% 42.70% 44.10%
OA-urb 29.80% 28.70% 31.80% 32.70% 33.80%
OA-nat 47.20% 68.20% 64.30% 63.90% 68.50%
Kappa 31.20% 35.50% 37.20% 38.00% 39.60%

F1–metric 36.50% 40.40% 42.60% 43.20% 45.20%

The confusion matrix of the spring image shows that the built classes have more
confusion than the natural classes (Table 3). While LCZ 3 and LCZ 6 are visually well
represented across all reasons, the confusion matrix reveals that they have the highest
confusion in general. A lot of bare lands in the summer and autumn are classified as built
classes. This trend is also seen in the spring season with LCZ 16 confused with LCZ 9
and LCZ 10. However, the spring image is still the best classified single date image and
is the best season to test the Cape Town based remote training in Thohoyandou and East
London. The other tool that improves the classification is the contextual classifier, and
the optimal kernel size must be determined for application across all urban areas. This
fragmentation (salt and pepper effect) of classes is most visible from the classification
output (Figures 8 and 9).

Table 3. Confusion matrix from the standard LCZ training single date spring image over Cape Town.

Classified
Reference Classes

User’s Accuracy
1 2 3 4 5 6 7 8 9 10 11 13 14 16 17

1 42 15 0 10 8 2 0 63 0 9 0 0 7 0 0 27%
2 27 120 17 61 71 19 41 87 6 44 7 1 9 0 0 24%
3 55 156 506 77 146 326 213 155 55 58 0 0 4 0 0 29%
4 16 46 7 67 96 33 2 46 26 26 6 33 13 2 1 16%
5 43 100 26 82 118 22 22 63 58 13 11 9 54 0 8 19%
6 80 166 75 171 195 352 0 1 315 6 59 59 4 4 0 24%
7 1 46 438 11 5 120 847 103 65 46 0 7 5 0 0 50%
8 53 107 42 48 66 64 107 247 34 116 0 6 13 0 0 27%
9 27 45 82 66 124 180 50 40 462 28 134 229 13 38 0 30%
10 37 34 32 41 57 9 100 218 15 607 0 0 0 99 0 49%
11 3 1 0 25 37 3 1 2 64 0 763 147 88 3 82 63%
13 3 12 27 24 11 46 41 27 106 124 30 702 254 30 0 49%
14 0 6 2 5 9 0 0 22 104 1 0 30 429 0 0 71%
16 0 3 1 9 0 5 65 25 36 17 0 23 130 293 0 48%
17 0 0 0 0 0 0 0 0 0 0 0 0 0 78 929 92%

Producer’s
Accuracy 11% 14% 40% 10% 13% 30% 57% 22% 34% 55% 76% 56% 42% 54% 91%

Overall Accuracy
43%

The neighborhood function aggregates the pixels within a certain threshold into a
single value and results in a smoother output as compared to the raw data classification
(Figure 10). This is tested on Cape Town and the optimal kernel size applied to Thohoyan-
dou and East London to compare their results with Cape Town. The accuracy remains
constant at 42.7% and Kappa at 43.2% for all kernel sizes below 11 cells and reaches its peak
at 13 cells, after which the accuracy starts to decrease (Table 4).
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Table 4. Cape Town classification with 13 pixel neighborhood function.

SI SI + NH MT MT + NH

Kernel Size / 11 × 11 13 × 13 15 × 15 / 11 × 11 13 × 13 15 × 15

OA 42.70% 48.50% 48.70% 48.40% 44.10% 49.10% 49.80% 49.50%
OA-urb/nat 88.80% 91.30% 91.00% 90.50% 87.70% 89.70% 89.40% 89.00%

OA-urb 32.70% 37.10% 37.50% 37.00% 33.80% 38.50% 39.40% 39.40%
OA-nat 63.90% 72.70% 72.70% 72.70% 68.50% 71.70% 71.80% 71.20%
Kappa 38.00% 44.10% 44.40% 44.10% 39.60% 44.90% 45.60% 45.40%

F1–metric 43.20% 49.20% 49.40% 49.10% 45.20% 50.10% 50.90% 50.70%

With a 13 × 13 kernel of 130 m at a resolution of 10 m, the accuracy of the spring single
image classification is improved by 6.0%, and the multitemporal classification is improved
by 5.7%. However, in general, the multitemporal combined with the neighborhood function
still yields higher accuracies than the single image with the neighborhood function. The
highest overall accuracy of the multitemporal is 49.8% at a 13 × 13 moving window size,
bringing the total improvement over the general single image to 7.2%.

Figure 10. Classification output for Cape Town with a neighborhood function of size 13.

Nevertheless, it is only a slight improvement of 1.1% compared to the single-image
classification, which has an overall accuracy of 47.7%. Table 5 also shows that for both
the single and multitemporal classifications, the overall accuracy of the combinations of
both natural and built classes (OA-nat/urb) metric is highest at a kernel size of 11 × 11 or
110 m, indicating that confusion between natural classes and built classes is lower in these
classifications. However, this is only a 0.3% difference from the 13-cell kernel application,
which individually has higher OA-nat and OA-urb. For the purposes of this classification,
a standard 13 cell NH kernel was adopted as the optimal kernel size for comparison across
the three urban regions.

The application of remote training yields the highest results in a Thohoyandou multi-
date stack at 53.2%; however, a local standardized training yields a 7% increase in overall
accuracy and a 10% increase in Kappa. Urban classes are less successfully classified
across the board. However, they are better classified in East London than they are in
Thohoyandou. The use of remote vs. local classification in East London does not seem
to have as big an impact as it does on Thohoyandou. The multi-date classification using
local standardized training is only 2.1% higher than its remote training counterpart. The
single-date classification using remote training yields the lowest overall accuracy, Kappa
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and F1-metric across the board, while the multi-date local training yields the highest values
of the same metrics. There seems to be a similarity in the LCZ layout between Cape Town
and East London, which is seen through the accuracy metrics, which are almost similar for
both remote and local training.

Table 5. Accuracies of single-date and multitemporal classification using remote (local to Cape Town
but remote to Thohoyandou and East London) and local (standard training collected in Thohoyandou
and East London).

CPT Thohoyandou East London

Training Local Remote Local Remote Local

Stack SI MT SI MT SI MT SI MT SI MT

OA 48.70% 49.80% 31.40% 53.20% 54.8186 60.50% 39.10% 41.30% 40.70% 43.40%
OA-urb/nat 91.00% 89.40% 72.90% 81.50% 81.00% 86.20% 91.70% 85.50% 89.00% 84.30%

OA-urb 37.50% 39.40% 16.80% 37.40% 31.00% 34.00% 22.90% 26.10% 34.60% 42.10%
OA-nat 72.70% 71.80% 41.80% 94.00% 75.00% 80.70% 61.90% 72.70% 79.10% 80.60%
Kappa 44.40% 45.60% 22.10% 45.50% 45.7 55.30% 33.30% 35.70% 35.10% 37.60%

F1–metric 49.40% 50.90% 24.00% 53.50% 53.10% 56.30% 33.50% 38.40% 33.90% 40.10%

3.2. Classification Using Local Customized Training Data (Approach 2)
3.2.1. Thohoyandou Classification

a. Random Splitting of Training Data

Using a randomized selection of training and test sample makes the model more
robust, but it does not create an even number of pixels throughout. The challenge even
in the development of the original training protocol was that some classes had better
representation than others. While this can be avoided by creating an even amount of
training samples throughout, there simply is not always enough land area to create regions
of interest in some classes. Other classes also call for a higher number of training due to
their inter-class variability that must be accounted for in the training sample. The output
of the randomly selected training pixels (Figure 11A) shows that classes 14, 15 and 16 do
not have enough representation in the sample. This was solved by joining them to other
classes that have similar spectral signatures. Class 14 was combined with class 13; class 15
was combined with class 16. The result of this ends up with the lowest number of pixels in
the training going from 250 pixels to above 700 (Figure 11B).

Figure 11. Pixels per class for the randomly selected training input for Approach 2 in Thohoyandou
where (A) is unmerged and (B) is merged.

b. Single Versus Multi-Seasonal Classification and Comparison with Standard Training

What has been observed in Approach 1 classifications is still maintained in the Ap-
proach 2 results. This is the observation that the spring image provides the highest accuracy
of all the single image classifications (Table 6). However, natural vegetation is more ac-
curately classified in the winter NH than in any other season, while urban is highest in
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the spring. The multitemporal image that combines all the seasons is the most accurately
classified with an accuracy of 82.68% as compared to 53.2% of Approach 1.

Table 6. Thohoyandou accuracy metrics for SI and MT raw and NH with local customized training.

Summer Autumn Winter Spring Multitemporal

Raw NF Raw NF Raw NF Raw NF Raw NF

OA 60.64 71.74 54.92 71.36 58.25 71.8 59.15 73.42 73.92 82.68
OA-nat 81.65 87.36 79.1 87.44 85.06 87.83 80.61 85.54 83.65 88.58
OA-urb 43.44 62.11 40.92 55.06 42.01 58.61 47.11 63.49 53.2 69.66
Kappa 53.12 65.19 46.08 64.58 50.4 65.69 51.83 67.5 70.31 75.6

F1 score 0.554 0.65 0.5324 0.627 0.5513 0.661 0.5766 0.694 0.695 0.764

What the confusion matrix of the multitemporal classification reveals is that all the
classes are more accurately classified than misclassified except for LCZ 16, which is a
compound class of LCZ 15 and original LCZ 16. The highest confusion of LCZ 16 is with
LCZ 8, which is due to the paved spaces between large open buildings, and LCZ 13, which
is due to the large bare regions in between shrubs (Table 7).

Table 7. Thohoyandou confusion matrix for multitemporal classification.

Classified
Reference

User’s Accuracy
3 6 8 9 11 13 16 17 3a Total

3 738 0 29 0 0 0 17 0 33 817 90%
6 47 1284 1 0 0 186 113 0 110 1741 74%
8 85 0 1138 0 0 156 258 0 0 1637 70%
9 0 0 0 900 0 131 0 0 0 1031 87%

11 0 0 0 0 943 0 29 0 0 972 97%
13 42 11 4 0 57 1416 256 0 0 1786 79%
16 0 0 106 0 0 42 27 0 0 175 15%
17 0 0 0 0 0 0 0 1800 0 1800 100%
3a 188 5 22 0 0 0 0 0 957 1172 82%

Total 1100 1300 1300 900 1000 1931 700 1800 1100 11,131

Producer’s
Accuracy 67% 99% 88% 100% 94% 73% 4% 100% 87% Overall Accuracy

82.7%

The analysis of the multitemporal classification model reveals that the higher bands
(Band 9—11) of each season are the most important in classifying the pixels (Figure 12).
These are the SWIR (shortwave infrared) bands of the Sentinel 2A image stack.
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Figure 12. Band priority and importance in the class discrimination process for multitemporal stack
in Thohoyandou.

The discrimination between the gravel LCZ 3a and the asphalted LCZ 3 seems to be
very good according to a visual inspection of the classification output (Figure 13). The
confusion matrix also confirms this with 17% of the LCZ 3 classified as LCZ 3a. However,
the highest confusion with LCZ 3a is with LCZ 6. This is due to them sharing similar open
spaces and also their proximity with 11.5% of LCZ 3a pixels classified as LCZ 6.

Figure 13. Thohoyandou classification output for multitemporal with neighborhood function with
local customized training showing asphalted and gravel streets.
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3.2.2. East London Classification

Using a local and customized training input yielded higher overall accuracy and
Kappa values. The highest OA value for East London using Approach 1 was 41.3%, which
has increased to 58.5% using Approach 2 which is a 17.5% increase. However, contrary to
observations from the Approach 1 results, the multitemporal image does not appear to be
the best fit for both built and natural classes. The spring image with a 13-cell neighborhood
function yields the highest overall Kappa, F1-Score, and overall accuracy (Table 8). This is
in agreement with the observation made in Approach 1, where the spring image was the
highest of the seasonal single image classifications. What is also similar is that the summer
image has the lowest values for all the overall metrics. It is worth noting that the spring
image still has the highest number of lowest individual class Kappa values spread out
across built classes; this suggests that the higher overall metrics are due to the perfect and
near perfect classification of the natural classes. The highest individual LCZ Kappa values
are not localized to a single season but spread out through different seasons. A common
trend, however, is that the highest individual Kappa values fall within the classifications
that have been smoothed out with the 13-cell kernel, while the lowest values are within the
raw image classification.

Table 8. East London, individual Kappa and overall accuracy metrics for single image and multitem-
poral raw and neighborhood function with local customized training.

Summer Autumn Winter Spring Multitemporal

CLASS
KAPPA Raw NH Raw NH Raw NH Raw NH Raw NH

LCZ 2 0.216 0.238 0.422 0.425 0.443 0.457 0.453 0.456 0.436 0.465
LCZ 3 0.331 0.373 0.364 0.586 0.295 0.489 0.236 0.497 0.325 0.454
LCZ 5 0.136 0.009 0.130 −0.008 0.161 0.020 0.152 0.030 0.135 0.065
LCZ 6 0.299 0.419 0.340 0.369 0.295 0.456 0.296 0.456 0.350 0.440
LCZ 7 0.267 0.504 0.391 0.991 0.381 0.873 0.381 0.877 0.455 0.749
LCZ 8 0.555 0.653 0.513 0.612 0.503 0.659 0.502 0.661 0.458 0.516
LCZ 9 0.346 0.410 0.300 0.372 0.264 0.356 0.255 0.356 0.350 0.408
LCZ 10 0.076 0.157 0.149 −0.003 0.154 −0.006 0.157 −0.006 0.147 −0.005
LCZ 11 0.837 0.690 0.856 0.784 0.848 0.765 0.838 0.765 0.853 0.728
LCZ 13 0.417 0.598 0.430 0.665 0.289 0.631 0.275 0.631 0.763 0.936
LCZ 14 0.125 nan 0.145 nan 0.524 1.000 0.512 1.000 −0.070 nan
LCZ 16 1.000 1.000 0.989 1.000 1.000 1.000 1.000 1.000 0.988 1.000
LCZ 17 0.997 1.000 0.964 0.959 0.922 0.873 0.832 0.873 0.972 1.000
LCZ 18 0.435 0.739 0.395 0.434 0.387 0.560 0.335 0.558 0.468 0.651

MAIN
KAPPA 0.431 0.522 0.456 0.553 0.462 0.581 0.445 0.582 0.474 0.570

OA 45.951 53.530 48.305 56.528 46.736 58.401 46.723 58.553 50.240 58.540
F1 0.444 0.497 0.465 0.525 0.467 0.565 0.462 0.567 0.481 0.538

OA-urb/nat 76.800 76.500 68.000 75.600 76.700 75.600 76.700 75.600 77.200 76.300

What the spring neighborhood function image (Figure 14) reveals visually is that LCZ
7 and 7a are in close proximity to LCZ 3. This goes from a strict LCZ 3 and moves into LCZ
7a, which is an integration of 7 and 3, and then ultimately moves into a strict LCZ 7.
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Figure 14. East London classification output for multitemporal with neighborhood function using
local customized training.

4. Conclusions

Cape Town is a multi-nuclei urban region of multi-cultural origin, East London is a
harbor town, and Thohoyandou is a small town that originated as the administrative capital
of the Venda Bantustan. These urban regions represent a gradient within urbanization
in South Africa. These different historical backgrounds contribute to the uniqueness of
the layout and feature type in each region, which is a phenomenon also noted in the
Middle East [25]. These unique features become an element of importance, as they could
potentially explain the poor performance of the standard framework when performed
using multispectral imagery at the local scale in Africa. Cape Town as an urban area
resembles closely the cities of the west; as such, the standard LCZ framework typology
would best fit Cape Town with minimal to no adjustment in the guidelines for RoI creation.
However, the development of a localized and customized training for East London and
Thohoyandou individually creates a classification protocol that considers these unique
local features stemming from influences of their unique origin and cultural evolution as
they herd toward modernization.

The nature of the training input was the major difference between Approach 1 and
Approach 2. Where Approach 1 used a single all-inclusive training input for all three cities,
Approach 2 used a local customized training input for each urban region and yields better
results. The biggest challenge in this study was the lack of a height layer in the stack as
a discriminator for the algorithm. Ref. [61] stated that the presence of a height layer is
essential for cities with LCZs belonging to different height classes (low, mid and high-
rise). What is immediately noticeable in the accuracies metrics is the big difference between
values obtained in homogenous-height Thohoyandou across all LCZs and the heterogenous-
height Cape Town and East London using both Approaches 1 and 2 (Tables 6–8). Without
a height discriminator in the classification stack, there is inter-class confusion within the
compact classes as well as the open ones (Table 3). Ref. [62] addressed the height challenge
by using an abridged version of the LCZ classification that considers surface feature density
but eliminates height altogether. While this land cover-based framework by [62] was also
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proven to explain trends in urban heat islands, the local scale suffers from detail loss. This
compromise of detail over accuracy renders the output less useful and to some degree even
unsuitable for local climate models. The best way to address the height data gap challenge
while maintaining detail resolution remains using locally calibrated training as opposed to
the [62] land cover approach.

Both approaches revealed that a local customized training sample is a better fit for
the random forest LCZ classifier than using a standardized training input for all regions.
This is seen through the classifier performance being better in Approach 2 as opposed
to Approach 1. The literature would also dictate that seasonality would mostly affect
natural LCZ classes because of plant phenology [63–65]. However, as seen in the metric
tables (Tables 3, 6 and 7), urban classes are also classified to varying degrees of accuracy
at different seasons. While the higher short-ware infrared (SWIR) bands are always the
most important in the automated LCZ discrimination protocol, the lower bands range from
minimally important to completely negligible. Studies by [66,67] isolate the variations in
band priority for different seasons as a function of the physical properties of surface features.
This is not limited to biotic but also abiotic features such buildings. The multitemporal
classification was the most accurately classified of all classifications. Ref. [68] stated that the
effects of seasonality are addressed by taking a multitemporal stack which covers classing
during all stages of annual variability. While the actual seasons are classified to varying
degrees, the multitemporal local customized training would still be more representative of
the LCZ classes than using a single image from any season.

The size of the pixel also determines the accuracy. As such, a contextual classifier
(NF) significantly improves the accuracy of the model [69]. While applying a neighbor-
hood function does not change the pixel of the image, it reduces the level of detail in the
classification output. This is seen by visually looking at the raw data output (Figure 9) as
compared to the NF output (Figure 12). The fragmentation is less apparent when the pixel
size is higher than 100 m, as seen when the WUDAPT online generator is used [66]. The
disadvantage is that classifying LCZ with a local-scale pixel size (100 m) reduces the level of
detail that that would otherwise be found in using higher-resolution imagery, which in this
study was 10 m. This is crucial while working with urban climate models. The challenge in
using a contextual classifier is in finding a kernel size that balances detail, accuracy and
aesthetic for the specific goal for which the classification is intended to be used. While
for the purpose of this study, the aim of the NF was to achieve the highest accuracy, the
nested algorithm is flexible enough to modify the kernel size should the purpose of the
classification be different.

An application of these methods in future studies should consider using more training
samples for the less represented classes. In addition, whether the accuracy in Thohoyandou
would improve if a height discriminator is part of the protocol is worth exploring further.
Height is definitely recommended as an important addition to the classification stack for
East London, Cape Town or any other city with mid- and high-rise classes. The findings of
this particular study as well as the methodological protocols would be recommended for
adoption by any future study that aims at studying UHIs in the African context, particularly
investigating the spatial correlation between the patterns that are observed in the UHIs
with the underlying LCZ classification.

Author Contributions: Conceptualization, T.M. and J.T., B.S., B.V.; Data curation, T.M. and J.T.;
Formal analysis, T.M. and J.T.; Funding acquisition, B.S., B.V. and N.N.; Methodology, T.M., J.T., B.S.,
B.V.; Software, T.M. and J.T.; Visualization, T.M. and J.T.; Writing—original draft, T.M.; Writing—
review and editing, T.M., B.S., B.V. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was funded by VLIR-UOS, the Flemish University Council for University
Development Cooperation through the ReSider project and the Flemish government funded SAF-
ADAPT project. Funding number: 000000166183.

Data Availability Statement: Data are available on request from the authors.



Remote Sens. 2022, 14, 3594 21 of 23

Acknowledgments: I would like to acknowledge the help of Anna Van Eyck in collecting the
validation data in Thohoyandou and Cape Town in February-March 2022.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Adams, R.M. The origin of cities. Sci. Am. 1960, 203, 153–172. [CrossRef]
2. Robinson, E.; Zahid, H.J.; Codding, B.F.; Haas, R.; Kelly, R.L. Spatiotemporal dynamics of prehistoric human population growth:

Radiocarbon ‘dates as data’ and population ecology models. J. Archaeol. Sci. 2019, 101, 63–71.
3. Pierson, W.A. Spatial Assessment of Urban Growth in Cities of the Decapolis; and the Implications for Modern Cities. Ph.D.

Thesis, University of Arkansas, Fayetteville, AR, USA, 2021.
4. Schaedel, R.P.; Hardoy, J.E.; Scott-Kinzer, N. (Eds.) Urbanization in the Americas from Its Beginning to the Present; Walter de Gruyter:

Berlin, Germany, 2011.
5. Chen, S.; Chen, B.; Feng, K.; Liu, Z.; Fromer, N.; Tan, X.; Alsaedi, A.; Hayat, T.; Weisz, H.; Schellnhuber, H.J.; et al. Physical and

virtual carbon metabolism of global cities. Nat. Commun. 2020, 11, 182. [CrossRef] [PubMed]
6. Balchin, W.G.V.; Pye, N. A micro-climatological investigation of bath and the surrounding district. Q. J. R. Meteorol. Soc. 1947, 73,

297–323. [CrossRef]
7. Stewart, I.D. Why should urban heat island researchers study history? Urban. Clim. 2019, 30, 100484. [CrossRef]
8. Lhotka, O.; Kyselý, J.; Farda, A. Climate change scenarios of heat waves in Central Europe and their uncertainties. Theor. Appl.

Climatol. 2018, 131, 1043–1054. [CrossRef]
9. Profiroiu, C.M.; Bodislav, D.A.; Burlacu, S.; Rădulescu, C.V. Challenges of sustainable urban development in the context of

population Growth. Eur. J. Sustain. Dev. 2020, 9, 51. [CrossRef]
10. Al-Thani, H.; Koç, M.; Isaifan, R.J. A review on the direct effect of particulate atmospheric pollution on materials and its mitigation

for sustainable cities and societies. Environ. Sci. Pollut. Res. 2018, 25, 27839–27857. [CrossRef] [PubMed]
11. Longo, S.; Montana, F.; Sanseverino, E.R. A review on optimization and cost-optimal methodologies in low-energy buildings

design and environmental considerations. Sustain. Cities Soc. 2019, 45, 87–104. [CrossRef]
12. Griffith, D.A.; Can, A. Spatial statistical/econometric versions of simple urban population density models. In Practical Handbook

of Spatial Statistics; CRC Press: Boca Raton, FL, USA, 2020; pp. 231–249.
13. Zhou, X.; Okaze, T.; Ren, C.; Cai, M.; Ishida, Y.; Watanabe, H.; Mochida, A. Evaluation of urban heat islands using local climate

zones and the influence of sea-land breeze. Sustain. Cities Soc. 2020, 55, 102060. [CrossRef]
14. Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite remote

sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sens. 2019, 11, 48. [CrossRef]
15. Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [CrossRef]
16. Bechtel, B.; Alexander, P.J.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G.; See, L.; Stewart, I. Mapping local climate zones

for a worldwide database of the form and function of cities. ISPRS Int. J. Geo-Inf. 2015, 4, 199–219. [CrossRef]
17. Mushore, T.D.; Mutanga, O.; Odindi, J. Determining the Influence of Long Term Urban Growth on Surface Urban Heat Islands

Using Local Climate Zones and Intensity Analysis Techniques. Remote Sens. 2022, 14, 2060. [CrossRef]
18. Yang, J.; Wang, Y.; Xiu, C.; Xiao, X.; Xia, J.; Jin, C. Optimizing local climate zones to mitigate urban heat island effect in human

settlements. J. Clean. Prod. 2020, 275, 123767. [CrossRef]
19. Zheng, Y.; Ren, C.; Xu, Y.; Wang, R.; Ho, J.; Lau, K.; Ng, E. GIS-based mapping of Local Climate Zone in the high-density city of

Hong Kong. Urban. Clim. 2018, 24, 419–448. [CrossRef]
20. Brousse, O.; Georganos, S.; Demuzere, M.; Vanhuysse, S.; Wouters, H.; Wolff, E.; Linard, C.; Nicole, P.M.; Dujardin, S. Using local

climate zones in sub-Saharan Africa to tackle urban health issues. Urban. Clim. 2019, 27, 227–242. [CrossRef]
21. Engelbrecht, C.J.; Engelbrecht, F.A. Shifts in Köppen-Geiger climate zones over southern Africa in relation to key global

temperature goals. Theor. Appl. Climatol. 2016, 123, 247–261. [CrossRef]
22. Wichmann, J. Heat effects of ambient apparent temperature on all-cause mortality in Cape Town, Durban and Johannesburg,

South Africa: 2006–2010. Sci. Total Environ. 2017, 587, 266–272. [CrossRef]
23. Kiet, A. Arab culture and urban form. Focus 2011, 8, 10. [CrossRef]
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