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1. Introduction

Recently, 3D mapping has begun to play an increasingly important role in photogram-
metric applications. In the last decade, unmanned aerial vehicle (UAV) images have become
one of the most critical remote sensing data sources because of the high flexibility of UAV
platforms and the extensive usage of low-cost cameras. The techniques and applications of
UAV-based photogrammetric 3D mapping are undergoing explosive development, which
can be observed from the adopted cutting-edge techniques, including SfM (Structure from
Motion) for offline image orientation, SLAM (Simultaneous Localization and Mapping) for
online UAV navigation, and the deep learning (DL) embedded 3D reconstruction pipeline.

This Special Issue includes a collection of papers that mainly focus on the techniques
and applications of UAV-based 3D mapping. There are a total of 13 papers published in this
Special Issue, which range from review papers on recent techniques to research papers for
feature detection and matching, false match removal, camera self-calibration, SfM-based
image orientation, MVS-based (Multi-view Stereo) dense point cloud generation, building
façade model reconstruction, and other related applications in varying fields. The details of
each paper will be described in the following section.

2. Overview of Contributions

Yao et al. [1] gave a review of recently reported learning-based methods for wide-
baseline image matching, which includes approaches involving feature detection, feature
description, and end-to-end image matching. By using benchmark datasets, some typical
methods have also been evaluated in this study. The paper reveals that no algorithm
can adapt to all wide-baseline images and the generalization ability of learning-based
methods should be improved by expanding training data or combining different model
design strategies.

For robust and accurate image orientation, Huang et al. [2] proposed a camera self-
calibration solution for long-corridor UAV images, such as transmission lines. The proposed
solution combines two novel strategies for parameter initialization and high-precision
GNSS fusion, in which the former is implemented by an iterative camera parameter opti-
mization algorithm, and the latter is achieved by inequality constrained bundle adjustment.
The validation of the proposed solution was verified by using four UAV images that are
recorded from transmission corridors. The experimental results demonstrate that the
proposed solution can alleviate the “bowl effect” for weakly structured long-corridor
UAV images and achieve high precision in absolute orientation when compared with
other methods.

In SfM-based image orientation, match pair selection is a key step, which can improve
the efficiency of feature matching and decrease the involvement of false matches. In the
work of Xiao et al. [3], a progressive structure-from-motion technique was designed to
cope with false match pairs retained from repetitive patterns and short baseline images,
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which iteratively selects initial matches by extracting minimum spanning trees and cycle
consistency inference. They verified the validation of the proposed algorithm by using
UAV images.

After SfM-based image orientation, multi-view stereo is used to resume dense point
clouds. Considering the 3D reconstruction of fine-scale power lines, Huang et al. [4]
designed an efficient PatchMatch-based dense matching algorithm, which improves the
steps of random red–black checkerboard propagation, matching cost computation, and
depth map fusion. When compared with the traditional PatchMatch algorithm, speedup
ratios ranging from 4 to 7 were achieved in the tests for transmission corridor UAV images.
In addition, the proposed algorithm can improve the completeness of reconstructed power
towers and lines.

In contrast to dense matching of normal objects, Zhou et al. [5] proposed a dense
matching algorithm, termed DP-MVS, for detail-preserving 3D reconstruction. DP-MVS
is achieved by using detail-preserving PatchMatch for the depth estimation of individual
images and detail-aware surface meshing to reconstruct final models. The proposed
algorithm can cope with the 3D modeling of thin objects, such as communication towers
and transmission corridors, and it is 4 times faster than other methods in the dense matching
of benchmark datasets.

Zhang et al. [6] presented a newly developed method for automatically generating 3D
regular building façade models from the photogrammetric mesh model using the contour
as the main cue. The contours tracked on the mesh are grouped into trees and segmented
into groups to represent a topological relationship of building components. Then, each
component of the mesh is iteratively abstracted into cuboids and the parameters of each
cuboid are adjusted to be close to the original mesh model.

Wang et al. [7] proposed a U-Shaped Residual Network for Lightweight Image Super-
Resolution (URNet), which applies to low-computing-power or portable devices. Firstly, a
more effective feature distillation pyramid residual group (FDPRG) is proposed to extract
features from low-resolution images. Then, a step-by-step fusion strategy is utilized to fuse
the features of different blocks and further refine the learned features. To capture the global
context information, a lightweight asymmetric non-local residual block is introduced. In
addition, to alleviate the problem of smoothing image details caused by pixel-wise loss, a
simple but effective high-frequency loss function is designed to help optimize the model.

In their study, Wang et al. [8] developed a workflow to extract building 3D information
from GF-7 multi-view images. The workflow consists of four main steps, namely building
footprint extraction from multi-spectral images, point cloud generation from the stereo
image pair with SGM matching, normalized digital surface model (nDSM) generated
from the point cloud, and building height calculation. Among the four steps, the main
contribution is the multi-stage attention U-Net (MSAU-Net) designed for building footprint
extraction. The experiments based on a study area in Beijing show the RMSE between
the estimated building height and the reference building height is 5.42 m, and the MAE is
3.39 m.

The study by He et al. [9] proposed a novel approach to achieve CityGML building
model texture mapping by multi-view coplanar extraction from UAV or terrestrial images.
They first utilized a deep convolutional neural network to filter out object occlusion (e.g.,
pedestrians, vehicles, and trees) and obtain building-texture distribution. Then, point-line-
based features are extracted to characterize multi-view coplanar textures in a 2D space
under the constraint of a homography matrix, and geometric topology is subsequently
conducted to optimize the boundary of textures by combining Hough-transform and
iterative least-squares methods. This approach can map the texture of 2D terrestrial images
to building façades without the requirement of exterior orientation information.

To deal with the problem that some existing semantic segmentation networks for 3D
point clouds generally have poor performance on small objects, Liu et al. [10] presented
a Spatial Eight-Quadrant Kernel Convolution (SEQKC) algorithm to enhance the ability
of the network for extracting fine-grained features from 3D point clouds. Based on the
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SEQKC, they designed a downsampling module for point clouds, and embed it into classical
semantic segmentation networks (PointNet++, PointSIFT, and PointConv) for semantic
segmentation. As a result, the semantic segmentation accuracy of small objects in indoor
scenes can be improved.

Ran et al. [11] presented a building multi-feature fusion refined network (BMFR-Net)
to extract buildings accurately and completely. BMFR-Net was based on an encoding and
decoding structure, mainly consisting of two parts: the continuous atrous convolution
pyramid (CACP) module and the multiscale output fusion constraint (MOFC) structure.
The CACP module was positioned at the end of the contracting path and the MOFC
structure performed predictive output at each stage of the expanding path and integrated
the results into the network.

Hu et al. [12] presented an automated modeling approach that could semantically
decompose and reconstruct the complex building light detection and ranging (LiDAR)
point clouds into simple parametric structures, and each generated structure was an un-
ambiguous roof semantic unit without overlapping planar primitive. The method begins
by extracting roof planes using a multi-label energy minimization solution, followed by
constructing a roof connection graph associated with proximity, similarity, and consis-
tency attributes. Then, a progressive decomposition and reconstruction algorithm was
introduced to generate explicit semantic subparts and hierarchical representation of an
isolated building.

Zheng et al. [13] made a digital subsidence model (DSuM) for deformation detection in
coal mining areas based on airborne light detection and ranging (LiDAR). Noise points were
removed by multi-scale morphological filtering, and the progressive triangulation filtering
classification (PTFC) algorithm was used to obtain the ground point cloud. The DEM was
generated from the clean ground point cloud, and an accurate DSuM was obtained through
multiple periods of DEM difference calculations. Then, data mining was conducted based
on the DSuM to obtain parameters such as the maximum surface subsidence value, a
subsidence contour map, the subsidence area, and the subsidence boundary angle.

3. Conclusions

This Special Issue aims to attract a collection of papers that focus on the recent tech-
niques for UAV-based 3D mapping, especially for trajectory planning for data acquisition in
complex environments, recent algorithms for feature matching, SfM and SLAM for efficient
image orientation, the usage of DL techniques in 3D mapping, and the applications of
UAV-based 3D mapping. Furthermore, this Special Issue hopes to promote and inspire
further research in the field of UAV-based photogrammetric 3D mapping.
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