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Abstract: The use of Transformer-based networks has been proposed for the processing of general
point clouds. However, there has been little research related to multispectral LiDAR point clouds that
contain both spatial coordinate information and multi-wavelength intensity information. In this paper,
we propose networks for multispectral LiDAR point cloud point-by-point classification based on an
improved Transformer. Specifically, considering the sparseness of different regions of multispectral
LiDAR point clouds, we add a bias to the Transformer to improve its ability to capture local information
and construct an easy-to-implement multispectral LiDAR point cloud Transformer (MPT) classification
network. The MPT network achieves 78.49% mIoU, 94.55% OA, 84.46% F1, and 0.92 Kappa on the
multispectral LiDAR point cloud testing dataset. To further extract the topological relationships between
points, we present a standardization set abstraction (SSA) module, which includes the global point
information while considering the relationships among the local points. Based on the SSA module, we
propose an advanced version called MPT+ for the point-by-point classification of multispectral LiDAR
point clouds. The MPT+ network achieves 82.94% mIoU, 95.62% OA, 88.42% F1, and 0.94 Kappa on the
same testing dataset. Compared with seven point-based deep learning algorithms, our proposed MPT+
achieves state-of-the-art results for several evaluation metrics.

Keywords: BiasFormer; standardization set abstraction; multispectral LiDAR point clouds; land
cover classification

1. Introduction

Land use and cover change, which are closely related to human development and
ecological changes, have long been core areas of global environmental change. A large
number of land use research projects have provided knowledge and service support for
global and regional land resource surveys [1,2], territorial spatial planning [3], ecological
and environmental assessments [4,5], and other governmental decision-making processes
and scientific research. Accurate classification is the basis for conducting land cover change
research. With the development of industrialization, traditional classification methods
based on two-dimensional images can no longer meet the needs of researchers. There
is an urgent need for more spatial information to allow for the development of detailed
strategies. Therefore, Light Detection and Ranging (LiDAR) data, which can efficiently
sense surface and terrain information, are widely used for land cover classification. LiDAR
point clouds are a form of data storage.

Compared with two-dimensional images, airborne single-wavelength LiDAR systems
can acquire surface information, but they cannot obtain fine classification results. Numerous
studies have shown that the performance of single-wavelength LiDAR point clouds can be
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further improved by combining image information [6,7]. However, determining how to
achieve the full fusion of information remains an important issue.

With the development of remote sensing technology, researchers have invented mul-
tispectral LiDAR systems that can collect multi-wavelength intensity information simul-
taneously, provide rich feature information about the target object, and avoid problems
associated with data fusion. In 2014, Teledyne Optech developed the first multispectral
three-wavelength airborne LiDAR system available for industrial and scientific use. In 2015,
Wuhan University developed a four-wavelength LiDAR system. In recent years, multispec-
tral point clouds have been widely used for land cover classification. Wichmann et al. [8]
explored the possibility of using multispectral LiDAR point clouds for land cover classifica-
tion. Bakula et al. [9] further evaluated the performance of multispectral LiDAR point clouds
in classification tasks.

Determining how to make full use of multispectral LiDAR point clouds is an important
issue. Classical machine learning algorithms are widely used as classifiers for land cover
classification [10], for example, through the maximum likelihood method [9,11,12], support
vector machine [13–15], and random forest [16–18] method. With the development of deep
learning techniques, convolutional neural network-based algorithms [19–23] have also been
successfully applied to multispectral LiDAR point cloud classification. However, due to the
disorder of point clouds, the original point clouds need to be transformed into structured data
by voxelization or projection. This process inevitably increases the computational burden
and leads to a loss of spatial information in some categories, which causes problems of large
time consumption and inaccuracy. In 2017, Qi et al. proposed PointNet [24] for the direct
processing of conventional point clouds. Inspired by PointNet, researchers have proposed
point-based deep learning methods for multispectral LiDAR point clouds. To obtain different
channel weights, Jing et al. added the Squeeze-and-Excitation block to PointNet++ [25], and
SE-Pointnet++ [26] was developed for the classification of multispectral LiDAR point clouds.

The successful application of Transformer [27] in natural language processing and
image processing has attracted researchers to explore its application in 3D point cloud
analysis and its ability to achieve state-of-the-art performances in shape classification, part
segmentation, semantic segmentation, and normal estimation. Although Transformer-
based models can perform well with general point cloud datasets, optimal results are not
always achieved with multispectral LiDAR data due to domain gaps [28]. Therefore, we
designed Transformer-based networks for multispectral LiDAR point cloud analysis. Our
contributions are summarized as follows:

(1) We designed a new Transformer structure to adapt to the sparseness of local regions
of the LiDAR point cloud. Specifically, we added a bias to the Transformer, which
is named BiasFormer, and changed the normalization methods of the feature maps.
Based on BiasFormer, we propose a new multispectral LiDAR point cloud (MPT)
classification network, which cascades BiasFormer to capture the deep information
in multispectral LiDAR point clouds and uses multilayer perceptrons (MLPs) to
accomplish the point-by-point prediction task.

(2) To further capture the topological relationships between points, we propose the SSA
module. Specifically, the local contextual information is captured at different scales by
iterative farthest point sampling (FPS) and K-nearest neighbor (KNN) algorithms. In
each iteration, the point cloud distributions are transformed into normal distributions
using the global information from the point clouds and the neighboring information
of the centroid points in KNN algorithms to emphasize the influence of neighbor
points at different distances to the centroid points. An improved version named
MPT+ is proposed for multispectral LiDAR point cloud classification by combining
the BiasFormer and SSA modules.

(3) We adopted a weighted cross-entropy loss function to deal with the imbalance among
classes and compare the performance of the proposed MPT and MPT+ with seven
classical models, thereby confirming the superiority of the proposed networks.
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The remainder of this paper is organized as follows: Section 2 introduces the processing
methods for general point clouds and the applications of Transformer. Section 3 describes
the multispectral LiDAR point clouds and the proposed BiasFormer-based point-by-point
classification networks. Section 4 qualitatively and quantitatively analyzes the performance
of the MPT and MPT+ networks and compares them with other classical models. Section 5
surveys the effects of different parameters and the weighted cross-entropy loss function
on the experimental results. Section 6 concludes the whole paper and presents ideas for
further work.

2. Related Work
2.1. Three-Dimensional Point Cloud Processing

Multispectral LiDAR point clouds play an important role in land cover classification.
However, the number of multispectral LiDAR datasets is quite small due to the difficulty
with data acquisition. Most of the existing methods deal with general point clouds. Given
the disorder and irregularity of point clouds, traditional deep-learning-based methods
transform point clouds into regularized data by voxelization or projection [29–34]. However,
the number of voxels generated by the voxel-based network cube increases as the resolution
increases, which increases the computational burden. The projection-based networks cause
the information inside the point clouds to become folded, which reduces the accuracy.
PointNet [24] is a pioneer in the direct processing of 3D point clouds. Subsequently,
PointNet++ [25], which captures local point cloud information through a set abstraction
module, was proposed. Since then, point-based deep learning networks [20,35–38], which
are dedicated to point cloud analysis, have been influenced by PointNet and PointNet++.

Inspired by PointNet++, researchers were able to deal with local information by group-
ing. Xiang et al. [37] generated sequences of consecutive point segments to obtain remote
point features without expanding the receptive field. Xu et al. [39] proposed a geometric
similarity connectivity module to aggregate distant points with similar features and geo-
metric correlations. With this method, the network aggregates neighbor points in Euclidean
space and feature space and enhances the robustness of geometric transformations.

Other researchers utilized the graph structures to explore the local features of point
clouds. Wang et al. [19] proposed a new neural network module, EdgeConv, to obtain
enough local information and extract the global information by stacking EdgeConv modules
in DGCNN. Wang et al. [21] proposed a graph attention convolution model that uses
attention weights to distinguish different classes of attributes, which allows for the more
purposeful learning of matching features. Xu et al. [40] proposed a new sampling approach
to construct local graphs and achieved information aggregation on center points.

2.2. Transformer

Bahdanhu et al. [41] applied the attention mechanism to translation work by com-
puting weights through the recurrent neural network. Lin et al. [42] proposed the use
of self-attention and used it for the visualization and statement explanation. Based on
the self-attention mechanism, Vaswani et al. [27] proposed the Transformer model. Then,
researchers [43–46] further explored the application of Transformers in the field of natural
language processing In 2020, Dosovitskiy et al. [47] successfully introduced Transformer to
the field of computer vision by proposing Vision Transformer (ViT). Drawing on the success
of ViT, researchers have conducted more fruitful work [48–50]. Due to the intrinsic structure
of Transformer, even a small input can take up a huge amount of storage space. Some useful
improvements have been made and are presented in the literature. For example, Lambda
attention [51] reconfigures the attention mechanism to achieve linear computation, and
SwinTransformer [52] reduces the computational cost by computing over a small window.

Recently, researchers have noticed that the self-attention mechanism of Transformer is es-
sentially a set operator. The successful application of Transformer to 3D point cloud [28,53–59]
analysis suggests that the order invariance is inherently suitable for handling disordered and
irregular point clouds. In other words, each point in a point cloud has to perceive information
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from other points. For example, Point Transformer [53] aggregates the information from
K neighbor points to recode points; point cloud Transformer [55] learns features through a
self-attention mechanism, and the weight distributions of the proposed model in the paper
do not decay with an increasing spatial distance.

3. Dataset and Methods
3.1. Introduction:Dataset

In this study, the experimental dataset was collected by the airborne Titan Multispectral
LiDAR system, which contains three wavelengths, the details of which are listed in Table 1.

Table 1. Details of the Titan Multispectral LiDAR system.

Channel C1 C2 C3

Waveband SWIR NIR GREEN
Wavelength (nm) 1550 1064 532

Point distance (points/m) 2 2 2

The study area was located in a small town in Ontario, Canada. The longitude and
latitude of its central location were 43◦58′00′′ and 79◦15′00′′, respectively. The raw data
contained the spatial coordinates and intensity values of each wavelength. First, we
used the inverse distance-weighted interpolation method to merge the three independent
point clouds into one point cloud (Figure 1). The new data contained six dimensions (3D
spatial coordinates, and intensity values for the three wavelengths). We divided the area
and selected thirteen regions for study. These areas contained six classes, namely roads,
buildings, grass, trees, soil, and powerlines. Then, we used CloudCompare software to
label the six classes in thirteen regions in a point-by-point manner. We selected the first
ten regions for training and the last three regions for testing. The numbers of classes in the
training and testing sets are shown in Table 2, where the total numbers in each class in the
training and testing sets are presented in bold.

Point clouds colored by λ 1550

Point clouds colored by λ 1024

Point clouds colored by λ 532

Data Fusion Data Annotation

Road BuildingGrass

Tree Soil Powerline

Figure 1. Data Preprocessing of Multispectral Point Clouds.



Remote Sens. 2022, 14, 3808 5 of 20

Table 2. Details of Multispectral Point Clouds (# represents the number of points).

Road (#) Building (#) Grass (#) Tree (#) Soil (#) Powerline
(#)

Training

Area_1 37,956 19,821 207,394 428,525 4549 0
Area_2 24,594 10,408 130,884 259,930 4761 809
Area_3 71,175 78,587 308,337 480,545 13,713 0
Area_4 32,601 45,556 79,891 254,723 7070 493
Area_5 75,710 46,571 347,264 79,966 7189 0
Area_6 63,879 39,436 71,229 207,817 1703 591
Area_7 63,879 39,436 224,173 274,159 1268 2626
Area_8 70,757 25,794 254,340 342,594 6344 4561
Area_9 72,570 33,754 355,467 155,838 9465 2153
Area_10 60,764 61,764 395,228 96,810 31,589 0

Total 573,885 401,127 2,374,207 2,580,907 87,651 11,233

Testing

Area_11 91,407 41,390 261,218 455,500 16,968 2533
Area_12 94,965 40,941 367,039 252,181 6181 2859
Area_13 117,994 65,040 478,454 198,248 46,380 3075

Total 304,366 147,371 1,106,711 905,929 69,529 8467

3.2. BiasFormer

The Transformer maps the input P ∈ RN×dp to the query matrix (Q ∈ RN×dk ), key
matrix K ∈ RN×dk ), and value matrix (V ∈ RN×dv ) through different transformation
matrices. The formulas are as follows:

(Q, K, V) =
(

PWq, PWk, PWv
)

(1)

where Wq ∈ Rdp×dk , Wk ∈ Rdp×dk and Wv ∈ Rdp×dv are the learnable weights.
In the original paper [27], the formula for the self-attention operation is as follows:

Attention(Q, K, V) = soft max
(

QKT
√

dk

)
V (2)

In this paper, we replace the transformation matrix with the unit PointNet and improve
the attention calculation, as follows:

A = (a)i,j = QKT (3)

āi,j = softmax
(
ai,j
)
=

ai,j

∑k ai,k
(4)

Ā = (ā)i,j =
āi,j

∑k āk,j
(5)

Attention(Q, K, V) = (Ā + B)V (6)

Adding a bias is beneficial to encode the geometric relationship in self-attention cal-
culation. Moreover, we maximize the last dimension and take the L1 norm on the second
dimension to highlight the attention weights and reduce the influence of noise [55]. Further-
more, we set dk to dp/4 for computational efficiency. Given the LiDAR scan pattern, the
sparseness of the multispectral LiDAR point clouds varies greatly among the different regions.
The attention mechanism deals with global characteristics but cannot take local characteristics
into account. Therefore, we add a learnable bias B after the feature maps to improve the
robustness of the model (Figure 2). The improved Transformer is named BiasFormer.
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Matrix Multiply/Add

Q

K

V

SL

UP

UP B

Unit PointNetUP

Softmax+L1NormSL

OutputInput

Figure 2. Structure of the BiasFormer block.

3.3. MPT

In this section, we propose an end-to-end network (MPT) based on BiasFormer for
multispectral LiDAR point cloud classification. We use the same processing method as in
PointNet [24] for the S3DIS dataset. N multispectral LiDAR points with 9 attributes (coor-
dinates (x, y, z), 3 wavelength intensities (λ1550, λ1064, λ532), and normalized coordinates
ranging from 0 to 1) are input into the MPT network (Figure 3).
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Figure 3. A framework of the proposed MPT.

As shown in Figure 3, we map the input to higher dimensions by MLPs to gain richer
information. Then, information exchange is carried out through the cascaded four BiasFormers.

Fi = BiasFormeri(Fi−1), i = 2, 3, 4, 5 (7)

Fo = concat(F1, F2, F3, F4, F5) •W (8)

BiasFormeri represents the i-th BiasFormer, and the dimension of the output feature in
each layer is the same as the input. W is the weight of the learnable linear layer.

To include rich point cloud information in global feature vectors, we perform a max
pooling operation and an average pooling operation on Fo [19,55]. The obtained features are
concatenated with Fo to F to obtain output features, which both contain global information
and the individual features of each point cloud. Finally, the probability that each point
belongs to six classes is output through the linear layers.
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3.4. MPT+

To further determine the relationships among points and extract local features, we pro-
pose an advanced version named MPT+ (Figure 4), which recursively feeds multispectral
point clouds into the network and expands the context range in a layer-by-layer manner to
learn local features. As shown in Figure 4, MPT+ takes a multispectral LiDAR point cloud
as the input and outputs the prediction results in a point-by-point manner. MPT+ consists
of three parts: an encoding network, a decoding network, and a series of skip connections.
The encoding network consists of three cascaded SSAs and BiasFormers. At each level,
the input points are first abstracted to generate a new set with fewer elements. Then, the
information is exchanged in the global region by BiasFormer. To preserve the low-level
abstract information, skip connections mix the features with the same number of point
clouds in the encoding network and the decoding network. The decoding network consists
of three cascaded feature propagation modules. In each module, the points, the number
of which is the same as in the coding layer, are obtained by the interpolation method.
Finally, feature fusion is achieved through a unit PointNet. The following subsections
detail the point cloud standardization module, the set abstraction module, and the feature
propagation module.

Input

SSA BF

SSA BF

SSA BF

Interpolate UP

Interpolate UP

Interpolate UP

Embedding

Conv ResultsDecoderEncoder

Downsample

Upsample

Skip connection

SSA

BF

UP

Standardization  
Set Abstraction

Unit PointNet

BiasFormer

(N×64)

(N/4×128)

(N/16×256)

(N/64×512)

Figure 4. Framework of the proposed MPT+.

3.4.1. Standardization Module

To enhance the robustness of the model, we introduce a standardization module to
convert the features at each layer into a normal distribution. Let pi be the i-th center point,
and let

{
pi,j
}

j=1,...,k ∈ RK×d be the set of K neighbor points of the i-th center point after
KNN sampling. Each neighbor point has d dimensional features. We standardize the local
regions using the following formulas:

{
pi,j
}
= α�

{
pi,j
}
− pi

σ + ε
+ β (9)

σ =

[
1

N′ × K× d

N

∑
i=1

K

∑
j=1

(
pi,j − pi

)2
] 1

2

(10)

where α ∈ Rd and β ∈ Rd are optimizable parameters, and N′ is the number of center
points at the current set abstraction level. We compute the bias σ by all points of the current
set abstraction. Furthermore, we introduce ε = e−5 to increase the numerical stability [60].
Through the standardization operation, we change the intensity of the neighbor points without
changing the geometric relationship between the neighbor points and the center points.

3.4.2. SSA Module

We take the first SSA module as an example to elaborate on the specific operation in
the following sections (Figure 5). For a given series of points, P = {pi | i = 1, . . . , N} ∈
RN×9, we obtain P = {pi | i = 1, . . . , N} ∈ RN×64 through the embedding module. We
downsample using the FPS method to obtain a subset with a size of N/4× 64, where each
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point is called a center point. Then, we use the KNN algorithm to extract K closest points to
the center point from the initial points and standardize each grouping. After the subset has
been obtained using the KNN algorithm, the coordinates of each point in the set are used as
information to concatenate the features. At the same time, we copy the subset obtained by
downsampling and connect it with the standard set to obtain local region points with a size
of N/4× K× 131. After the max pooling operation and pointwise convolution, the local
features are aggregated and interact with each other. The size of the output is N/4× 128.

N
/4
×

K
×

1
3
1N
/4
×

K
×

6
4

N
×

64

N
/4
×

6
4

N
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×
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67

R

KNN

FPS

S

N
/4
×

K
×

67

N
/4
×

1
2
8

R SMPC Repeat Standardization

Farthest Point Sampling K-Nearest Neighbor

Max Pooling+Conv1D

FPS KNN

E
m

b
ed

d
in

g

MPC

Figure 5. Details of SSA.

3.4.3. Feature Propagation Module

In the SSA module, the multispectral LiDAR point clouds are downsampled several times.
However, in the pointwise classification, we need to obtain the features of all original points.
We refer to the feature propagation module of PointNet++. In the module, we upsample
based on the weights of K nearest neighbors. Taking the first layer of the decoding network
as an example, through the interpolation method, N/64 points are expanded to N/16 and
connected with the features in the encoding network. After aggregating the information by
the unit PointNet, features with a size of N/16× 128 are obtained (Figure 6).

N/64×256

N/16×256

N/16×(256+128)

Interpolate

Unit PointNet

N/16×128

N/16×128

Figure 6. Details of the feature propagation module.

3.5. Loss Function

From Table 2, it can be seen that the class distributions are imbalanced. There are two
ways to solve this problem: one is the data-level method, which is achieved by resampling
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the data with a small sample size; the other is the algorithm-level method, which pays
more attention to the small labeled samples in the network. In this study, we used the
second method. We adopted the weighted cross-entropy loss function as the loss function
of MPT and MPT+ to reduce the impact of class imbalance on the classification results. The
following formulas were used:

L =
1
N ∑

i
Li = −

1
N ∑

i
∑

c
wc log(pic) (11)

pic =
exp(xc)

∑j exp
(
xj
) (12)

pic is the probability that the point belongs to each class, and wc is the weight of each
class. wc is determined by the total number of samples in the training dataset and the
number of samples in class c in the training dataset and is calculated as follows:

wc =

[
maxj

(
Nj/N

)
Nc/N

] 1
3

(13)

where Nc is the number of points in class c, and N is the total number of points in the
training dataset. In Section 5.4, comparative experiments show the effectiveness of the
weighted cross-entropy loss function.

4. Experiments Settings and Results

In this section, we present the experiments conducted on multispectral LiDAR point
clouds to validate and evaluate the performance of the proposed models. First, we elaborate
on the software, hardware settings, and metrics used to evaluate the algorithms. Then, we
analyze the performance of MPT and MPT+ with the confusion matrix. Finally, we further
verify the superiority of the proposed models by comparing them with other popular
point-based algorithms.

4.1. Parameter Settings and Evaluation Indicators

All experiments were performed on the Pytorch 1.10.2 platform using an RTX Titan
GPU. The key parameter settings of MPT and MPT+ are shown in Table 3.

Table 3. Settings of the network parameters.

Hyper-Parameters

N 4096
K 32

Batch 32
Epoch 200

Optimizer Adam
Weight decay 0.0001
Learning rate Initial rate 0.001 multiply by 0.7 every 16 epochs

The following evaluation criteria were used to quantitatively analyze the classification
performance of multispectral LiDAR point clouds: the overall accuracy (OA), Kappa
coefficient (Kappa), precision (Precision), recall (Recall), F1 − score (F1), and Intersection
over Union (IoU). Their calculation formulas are as follows:

N = TP + TN + FP + FN (14)

P =
(TP + FP)(TP + FN) + (TN + FN)(FP + TN)

N2 (15)
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OA =
TP + TN

N
(16)

Kappa =
OA− P

1− P
(17)

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

F1 = 2
Precision× Recall
Precision + Recall

(20)

IoU =
TP

TP + FP + FN
(21)

where TP represents the number of positive samples predicted by models to be positive,
TN represents the number of negative samples predicted by models to be negative, FP
represents the number of negative samples predicted by models to be positive, FN repre-
sents the number of positive samples predicted by models to be negative, and N represents
the total number of labeled samples in the training dataset. Furthermore, according to
the elevation information from different classes, we roughly classified the objects into two
classes: high elevation and low elevation. High-elevation classes include roads, grass, and
soil; whereas low-elevation classes include buildings, trees, and powerlines.

4.2. Performance of MPT and MPT+

In this section, we present the qualitative and quantitative evaluations of the classifica-
tion performance of the MPT and MPT+ networks on multispectral LiDAR point clouds.

Figures 7–9 show the ground truths and prediction results of areas 11–13. As shown
in the figures, the classification results for the roads, buildings, grass, trees, and powerlines
are satisfactory compared with the ground truths. However, the soil is misclassified as
road, which is obvious in Area_11 and Area_13. Furthermore, we can observe that the
MPT+ algorithm has fewer misclassified points for soil than the MPT algorithm. However,
in small areas, grass, roads, and soil are still easily confused. We speculate that this is
because roads, grass, and soil belong to the low-elevation classes. Misclassification points
are not easily observed between buildings, trees, and powerlines. Although all three are
high-elevation classes, the altitude gaps between the different classes are larger compared
to low-elevation classes and are easier to distinguish.

We further quantitatively analyzed the performance of the MPT algorithm and the
MPT+ algorithm in Sections 4.2.1 and 4.2.2 through the confusion matrices of the ground
truths and predicted labels.

(a) (b) (c)

Figure 7. The ground truth and predicted results of Area_11. (a) Ground Truth. (b) Prediction results
of MPT algorithm. (c) Prediction results of MPT+ algorithm.
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(c)(b)(a)

Figure 8. The ground truth and predicted results of Area_12. (a) Ground Truth. (b) Prediction results
of MPT algorithm. (c) Prediction results of MPT+ algorithm.

(a) (c)(b)

Figure 9. The ground truth and prediction results for Area_13. (a) Ground Truth. (b) Prediction
results of MPT algorithm. (c) Prediction results of MPT+ algorithm.

4.2.1. Results Analysis of the MPT Network

It can be seen from the confusion matrix (Table 4) of the prediction results obtained
by the MPT algorithm that roads, buildings, grass, trees, and soil are confused with one
another, while the powerlines (strips) only are mistakenly divided into buildings and trees,
from which 2705 points are misclassified as buildings and 705 points are misclassified
as trees. Additionally, there is more confusion between classes with similar elevations,
such as roads, grass, and soil and buildings, trees, and powerlines. It can be seen from
the evaluation criteria that trees have the best results with 98.38% IoU, 99.26% Precision,
99.10% Recall, and 99.18% F1. The soil has the worst results with 20.27% IoU, 44.08%
Precision, 27.28% Recall, and 33.70% F1. In the remaining classes, four evaluation metrics
exceed 70%. Furthermore, it is noted that the number of annotated samples for each class
in the dataset varies greatly, which has a large impact on the results. Classes with a large
number of labeled samples achieve better classification performances, and classes with a
small number of labeled samples achieve poor classification performances.
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Table 4. Prediction results of MPT network (# represents the number of the points).

Road (#) Building (#) Grass (#) Tree (#) Soil (#) Powerlines (#)

Road 278,965 36 20,761 6 4598 0
Building 712 144,159 315 2033 140 12

Grass 26,306 963 1,056,245 3912 19,285 0
Tree 99 3353 4529 897,766 38 144
Soil 41,468 50 9037 5 18,969 0

Powerlines 0 2 0 705 0 7760

IoU (%) 74.80 94.98 92.54 98.38 20.27 89.99
Precision (%) 80.27 97.04 96.82 99.26 44.08 98.03

Recall (%) 91.65 97.82 95.44 99.10 27.28 91.65
F1 (%) 85.58 97.43 96.13 99.18 33.70 94.73

4.2.2. Results Analysis of the MPT+ Network

Table 5 shows the confusion matrix for the prediction results of the MPT+ algorithm.
It can be seen from the confusion matrix that the high-elevation classes and the low-
elevation classes can be better distinguished. For example, only one road point is mistakenly
classified as a building. In classes with similar elevation, the performance of MPT+ is also
noteworthy. In the high-elevation classes, MPT+ can fully distinguish buildings from
powerlines, and only a small number of buildings (1593 points) are misclassified as trees.
Powerlines and trees are also clearly discriminative, with only 88 tree points misclassified
as powerlines, and 226 powerline points misclassified as trees. The features of the low-
elevation classes are more similar and have more misclassification points. It can be seen
from the evaluation indicators that the IoUs of roads, grass, and soil reach 78.58%, 93.30%,
and 33.03%, respectively. In addition, it can be seen from the classification of each class
that the performance of the MPT+ network is better than that of the MPT network. The
IoUs of roads, buildings, grass, trees, soil, and powerlines increased by 3.78%, 2.21%,
0.76%, 0.67%, 12.76%, and 6.52%, respectively. Among them, the classification results of
soil improved most obviously, with 12.76% IoU, 20.65% Precision, 13% Recall, and 15.96%
F1. The classification results confirm the effectiveness of the MPT+ network.

Table 5. Prediction results for the MPT+ network (# represents the number of the points).

Road (#) Building (#) Grass (#) Tree (#) Soil (#) Powerlines (#)

Road 278,193 1 23,161 0 3011 0
Building 88 145,014 318 1593 358 0

Grass 22,063 593 1,069,583 2852 11,620 0
Tree 30 1196 2530 902,061 24 88
Soil 27,809 7 13,643 41 28,029 0

Powerlines 0 0 0 226 0 8241

IoU (%) 78.58 97.19 93.30 99.05 33.03 96.51
Precision (%) 84.85 98.80 96.42 99.47 64.73 98.90

Recall (%) 91.40 98.35 96.65 99.57 40.28 97.56
F1 (%) 88.00 98.58 96.53 99.52 49.66 98.22

4.3. Comparative Experiments

To the best of our knowledge, there are currently few algorithms that can be applied
to multispectral LiDAR point clouds. To demonstrate the effectiveness of our proposed
MPT and MPT+ networks, we selected an extensive number of representative point-based
deep learning algorithms, including PointNet, PointNet++, DGCNN, GACNet, RSCNN,
SE-PointNet++, and PCT. PointNet was the first to attempt to process point clouds directly;
Pointnet++, based on PointNet, was proposed to focus on local structures; DGCNN, GAC-
Net, and RSCNN are classic algorithms for processing point clouds; SE-PointNet++ was
designed based on the characteristics of spectral LiDAR point clouds; and PCT was one
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of the earliest algorithms to apply Transformer to point cloud analysis. Table 6 lists the
comparison results with the other seven algorithms for the four evaluation indicators.

Table 6. Comparative results of different methods in the tested areas.

Model OA (%) mIoU (%) F1 (%) Kappa

PointNet [24] 83.79 44.28 46.68 0.73
PointNet++ [25] 90.09 58.60 70.13 0.84

DGCNN [19] 91.36 51.04 66.17 0.86
GACNet [21] 89.91 51.04 66.17 0.84
RSCNN [20] 90.99 56.10 70.23 0.86

SE-PointNet++ [26] 91.16 60.15 73.14 0.86
PCT [55] 93.55 75.87 83.03 0.90

MPT 94.55 78.49 84.46 0.92
MPT+ 95.62 82.94 88.42 0.94

As can be seen from Table 6, PointNet had the worst performance with 83.79% OA,
44.28% mIoU, 46.68% F1, and 0.73 Kappa. PointNet directly classifies the entire scene point
by point, cannot capture the geometric relationships between points, and cannot extract
local features. Due to this shortcoming of PointNet, researchers have conducted further
investigations. PointNet++ designs a set abstraction module, which captures local context
information at different scales by iterating the set abstraction module. DGCNN considers
the distances between point coordinates and neighbor points. The relative relationship in
the feature space contains semantic features. GACNet establishes the graph structures of
each point and neighbor points and calculates the edge weights of the center point and each
adjacent point by attention mechanisms so that the network can achieve better results for the
edge parts of the segmentation. RSCNN encodes the geometric relationship between points,
which expands the application of CNN, and the weights of the CNN are also constrained by
the geometric relationship. SE-PointNet++, based on PointNet++, introduces the Squeeze-
and-Excitation module to distinguish the influences of different channels on the prediction
results. The above algorithms, which do not include PointNet, achieve approximate results
(about 90% OA). The Transformer naturally has permutation invariance when dealing with
point sequences, making it suitable for disordered point cloud learning tasks. Inspired by
Transformer, researchers proposed PCT. It can be seen that, compared with the previous best
algorithm, the SE-PointNet++, the OA, mIoU, F1, and Kappa of the PCT network increase by
2.39%, 15.72%, 9.89%, and 0.04, respectively. For the same reason, we improved Transformer.
For different point cloud densities in different regions, we added a bias to the Transformer to
improve the robustness of the model. The evaluation results of the four indicators show that
this method is better than PCT. Based on MPT, we proposed the hierarchical feature extraction
network MPT+, which achieved the best results in terms of the four evaluation criteria with
95.62% OA, 82.94% mIoU, 88.42% F1, and 0.94 Kappa.

5. Discussion

From the comparison in Section 4, it is obvious that the performance of the MPT+
network is better than that of the MPT network. Therefore, we performed the parameter
analysis only for MPT+. We used the control variable method to analyze the influences
of three sensitive parameters (input data, the number of sampling points, the number of
neighbor points) on the results. Furthermore, we compared the results with an unweighted
loss function. In this section, the values corresponding to each category in the table are the
IoUs. The mIoUs for the six categories are calculated for intuitive comparison.

5.1. Impact of Bias

In this section, we verify the effectiveness of adding a bias and the results are shown in
Table 7. Adding a bias to the Transformer improved its ability to capture local information.
Compared with MPT+, the effect of bias was more obvious in the MPT structure. Moreover,
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adding a bias was beneficial to encode the geometric relationship in self-attention calcula-
tion. Different regions were trained to obtain a bias that was closely related to that region.
Among them, the improvement of soil was the most significant. Take soil as an example:
the soil distribution was mostly small blocks, and adding a bias was beneficial to obtain
better distinction at the boundary.

Table 7. Impact of bias on results. The first six columns of values are the IoU of each class.

Model Road Building Grass Tree Soil Powerline mIoU (%) OA (%)

MPT_w/o_Bias 72.49 90.51 92.44 97.88 5.78 86.54 74.27 93.99
MPT_w/_Bias 74.80 94.98 92.54 98.38 20.27 89.99 78.49 94.55

MPT+_w/o_Bias 78.51 95.66 92.61 98.62 21.13 95.55 80.34 95.13
MPT+_w/_Bias 78.58 97.19 93.30 99.05 33.03 96.51 82.94 95.62

5.2. Input Data

To demonstrate the role of spectral information in point-by-point classification, we
designed five experiments with different types of spectral information input into the pro-
posed MPT+ network. The experiments were as follows: (1) only point cloud coordinates
(xyz); (2) point cloud coordinates and 1550 nm wavelength values (xyz + C1); (3) point
cloud coordinates and 1064 nm wavelength values (xyz + C2); (4) point cloud coordinates
and 532 nm wavelength values (xyz + C3); and (5) point cloud coordinates and three
wavelength values (xyz + C123). In the experiment, the number of sampling points was set
to 4096, and the number of neighbor points was set to 32.

As can be seen from Table 8, the spectral information improved the performances. The
spectrum of each wavelength improved the performance of the point cloud classification
compared to inputting only point cloud coordinates. The influences of 1550 nm wavelength
values and 532 nm wavelength values on the results were slight and similar, and the
influence of the 1064 nm wavelength values on the results was significant. The 1064 nm
wavelength values had a greater impact on the five classes, except for soil, and the soil
points were more sensitive to the 1550 nm wavelength values. It is worth mentioning that
the soil class still had the worst classification results and did not exceed 10% IoU in the four
experiments used for comparison, while our input data achieved 33.03% IoU for soil points.
Different wavelengths had a superposition effect on the results. Point cloud coordinates
and three wavelength values achieved the best results with a 5–9% improvement in mIoU
and a 2–9% improvement in OA. Through these comparative experiments, it is confirmed
that adding additional spectral information could enhance the accuracy of point-by-point
classification and spectral information collected from different channels exhibited different
effects on different classes.

Table 8. Multispectral point cloud classification results with different types of input data. The first
six columns of values are the IoU of each class.

Input Road Building Grass Tree Soil Powerlines mIoU (%) OA (%)

xyz 38.85 87.64 75.08 97.35 1.97 83.14 64.01 86.04
xyz + C1 39.19 91.34 75.27 97.80 9.22 87.16 66.67 86.10
xyz + C2 74.60 94.33 90.43 98.50 9.17 95.88 77.15 93.98
xyz + C3 46.93 88.67 79.48 97.51 8.73 83.08 67.40 87.36

xyz + C123 78.58 97.19 93.30 99.05 33.03 96.51 82.94 95.62

5.3. The Number of Sampling Points

The point-by-point classification method required a fixed sample size, therefore, we
tested the performance of the model under different training sample sizes. The number of
sampling points reflects how local details are captured: the greater the number of sampling
points, the richer the captured information and the greater the accuracy. Training samples of
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different sizes provided different semantic and geometric information on the categories in
the scenes. In the experiments, we set N to be 4096, 2048, 1024, and 512, respectively. The
other initial parameters remained unchanged. The experimental results are summarized in
Table 9.

Table 9. Multispectral Point cloud classification results with different sampling points. The first six
columns of values are the IoU of each class.

N Road Building Grass Tree Soil Powerlines mIoU (%) OA (%)

4096 78.58 97.19 93.30 99.05 33.03 96.51 82.94 95.62
2048 74.89 96.57 92.77 98.75 21.64 91.31 79.32 94.81
1024 72.74 93.18 91.78 97.63 9.58 88.91 75.64 93.92
512 72.76 90.65 90.71 97.51 21.42 76.42 74.91 93.57

It can be seen from Table 9 that when the number of sampling points changed from
1024 to 4096, the mIoU increased by approximately 3%, doubling the number of sampling
points. When the number of sampling points increased from 512 to 1024, the performance
improvement was not obvious, and the mIoU increased by less than 1%. In addition, OAs
became larger with the increase in the number of sampling points. It can be seen that
the greater the number of sampling points, the better the classification performance of the
multispectral LiDAR point clouds. The experimental results verified our conjecture that
a larger sampling size led to better classification accuracy. Considering the limitation of
computing power, we need to strike a balance between the accuracy and the number of
sampling points. In this paper, we set N to 4096 without further attempts and achieved the
best point-by-point classification performance with 82.94% mIoU and 95.62% OA.

5.4. The Number of Neighbor Points

In this section, we explore the effect of the number of neighbor points K on the
classification performance. K represents the extent to which the center points obtain the
information from surrounding points. The larger the K, the more information is obtained.
We set K to 4, 8, 16, 24, 32, and 64 for comparison. The comparison results are shown in
Table 10. Other initial parameters remain unchanged.

Table 10. Multispectral point cloud classification results with different neighbor points. The first six
columns of values are the IoU of each class.

K Road Building Grass Tree Soil Powerline mIoU (%) OA (%)

4 77.62 96.86 93.39 98.82 39.74 94.41 83.47 95.57
8 76.28 97.26 93.02 98.97 29.98 95.89 81.90 95.20

16 77.97 96.22 92.17 98.80 14.75 94.59 79.08 94.88
24 77.46 97.09 92.60 98.87 21.92 94.57 80.42 95.01
32 78.58 97.19 93.30 99.05 33.03 96.51 82.94 95.62
64 77.87 96.76 93.34 98.84 33.60 91.54 81.99 95.44

It can be seen from the table that the prediction results were greatly affected by K, but it
was not a simple linear relationship. To visually see that the prediction results are affected by
the neighbor points, we plotted the values of mIoU and OA. As can be seen from Figure 10,
mIoU and OA did not have a pure polyline relationship. When K was smaller (K = 4 and
K = 8), higher mIoU and OA values could be obtained, and when K = 16, both mIoU and OA
reached the lowest values. As K increased, mIoU and OA peaked at K = 32. When K = 64,
the prediction results started to decrease. We looked at the IoU for each class and found that
the soil classification results significantly affected the final results. It can be seen from the
ground truths that the soil distribution was concentrated and lumpy. Therefore, when K was
small, most of the captured neighbor points were from the soil itself, which allowed better
results to be obtained. When K = 16, the captured neighbor point information mixed with
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other classes, which led to a drop in accuracy. When K was further increased to 32, the model
captured more specific local information and geometric relationships between points. When
K reached 64, each center point would capture a large number of neighbor points. Due to the
sparseness of the different regions of the point clouds, some neighbor points may be farther
away and the correlation was insufficient. In addition, noise was also introduced, resulting in
decreases in mIoU and OA. Overall, we believe that when K = 32, the model can achieve the
best performance.
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Figure 10. Multispectral point cloud classification results with different neighbor points.

5.5. Weighted Loss Function

To verify the impact of using the weighted cross-entropy loss function (Case 2) on mul-
tispectral point cloud classification, we chose the unweighted cross-entropy loss function
(Case 1) for comparison. The experimental results are shown in Table 11. K and N were set
as the optimal results obtained in the above comparison (K = 32, N = 4096).

Table 11. Multispectral point cloud classification results with different loss functions. The first six
columns of values are the IoU of each class.

Road Building Grass Tree Soil Powerlines mIoU (%) OA (%)

Case 1 78.01 97.07 93.10 98.79 28.44 95.69 81.85 95.39
Case 2 78.58 97.19 93.30 99.05 33.03 96.51 82.94 95.62

For the class we need to pay attention to, we can give it a higher weight. The higher
the weight, the greater the loss, and the better the model will learn this category. If a certain
category is less, we can give a higher weight to make it train better. If a certain category
does not allow errors, we need to train these data as much as possible, and we can increase
its weight. As can be seen from Table 11, the IoUs of each class was better when using the
weighted cross-entropy loss function than when using the unweighted cross-entropy loss
function. Moreover, mIoU improved by 1.09% and OA improved by 0.23%. By analyzing
the performance of each class, the two classes with the least number of points (soil and
powerline) were found to have the most significant improvement, increasing by 4.59% IoU
and 0.82% IoU, respectively. We speculate that this is because soil is more easily confused
with roads and grass. After the loss function is weighted, it is more sensitive to soil points
than road and grass points, so the improvement is greater. The experiments show that the
proposed weighted cross-entropy loss function could alleviate the data imbalance problem
to a certain extent.
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5.6. Computing Resource Analysis

Considering the impact of classification accuracy, we explored the computational re-
sources required by the three best-performing models for point cloud classification. We
compared the floating point operations (FLOPs) and parameter quantities of PCT, MPT, and
MPT+ (Table 12). It can be seen that, compared with PCT and MPT, MPT+ provides only
14.78 GFLOPs and 1.91M parameters while having a high level of accuracy. MPT+ achieves
the best in terms of both computational resource requirements and computational accuracy.

Table 12. Comparison of computing resources based on Transformer-based networks.

PCT MPT MPT+

FLOPs (G) 502.34 467.57 14.78
Params (M) 3.83 3.57 1.91

5.7. Experiments on S3DIS Dataset

We test the generalization ability on non-multispectral LiDAR point clouds (S3DIS
dataset [61]). The dataset contains 3D scans from Matterport scanners in six areas including
271 rooms. Each point in the scan is annotated with 1 of the semantic labels from 13 cate-
gories (chair, table, floor, wall, etc., plus clutter). In contrasting models, the performance of
proposed model was only weaker than PointTrans, but achieved the best results in the table
and chair classes (Table 13). Our classification accuracy is lower than recently proposed
PointTrans by 3.3%, while this small gap validated the good generalization ability of MPT+.
Hence, our design could not only deal with a multispectral dataset with complex topology,
but also distribute the excellence to regular 3D shapes.

Table 13. Semantic segmentation results on S3DIS dataset. The first thirteen rows of values are the
IoU of each class.

Model PointNet [24] MinkowskiNet [62] PAconv [63] PointTrans [53] MPT+

Ceiling 88.8 91.8 94.6 94.0 92.3
Floor 97.3 98.7 98.6 98.5 98.3
Wall 69.8 86.2 82.4 86.3 84.4
Beam 0.1 0.0 0.0 0.0 0.0

Column 3.9 34,1 26.4 38.0 33.1
Window 46.3 48.9 58.0 63.4 59.3

Door 10.8 62.4 60.0 74.3 65.7
Table 59.0 81.6 80.4 89.1 89.2
Chair 52.6 89.8 89.7 82.4 78.6
Sofa 5.9 47.2 69.8 74.3 74.4
Book 40.3 74.9 74.3 80.2 67.4
Board 26.4 74.4 73.5 76.0 74.7
Clutter 33.2 58.6 57.7 59.3 55.2

mIoU (%) 41.1 65.4 66.6 70.4 67.1

6. Conclusions

In this work, we applied a Transformer to multispectral LiDAR point cloud classifi-
cation research. Specifically, we proposed BiasFormer, which adds a bias to adapt to the
density of different regions of the point cloud and changes the method of normalization.

Based on BiasFormer, we proposed an easy-to-implement multispectral LiDAR point
cloud classification network which inputs the encoded point cloud into cascaded Bias-
Formers and predicts the classes by MLPs. To further differentiate the influences of local
regions, we built an SSA module and proposed an improved Multispectral LiDAR point
cloud classification (MPT+) network. The MPT+ network gradually expands the receptive
field through recursive sampling to allow a wider range of information to be perceived.
Qualitative and quantitative analyses were used to demonstrate the feasibility of the use
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of the MPT and MPT+ networks for carrying out multispectral LiDAR point cloud classi-
fication. In addition, we explored the influences of the spectra of different wavelengths,
the number of neighbor points, and the number of sampling points on the performance of
the control variable method; we obtained the best classification results based on optimal
parameters. Furthermore, to deal with the class imbalance problem, we adopted a weighted
cross-entropy loss function and improved the IoU by 4.59% on soil points. Finally, we
compared the computational resources of the three best-performing networks and verified
the superiority of our proposed models in terms of computational resource requirements
and performance.

However, there is still a lot of room for improvement in soil points. In future work, we
will explore the handling of sample imbalance, enhance the robustness and uniqueness of
output features, and improve the accuracy of multispectral LiDAR point cloud classification.
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