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Abstract: The task of multi-object tracking via deep learning methods for UAV videos has become
an important research direction. However, with some current multiple object tracking methods,
the relationship between object detection and tracking is not well handled, and decisions on how
to make good use of temporal information can affect tracking performance as well. To improve
the performance of multi-object tracking, this paper proposes an improved multiple object tracking
model based on FairMOT. The proposed model contains a structure to separate the detection and
ReID heads to decrease the influence between every function head. Additionally, we develop
a temporal embedding structure to strengthen the representational ability of the model. By combing
the temporal-association structure and separating different function heads, the model’s performance
in object detection and tracking tasks is improved, which has been verified on the VisDrone2019
dataset. Compared with the original method, the proposed model improves MOTA by 4.9% and
MOTP by 1.2% and has better tracking performance than the models such as SORT and HDHNet on
the UAV video dataset.

Keywords: deep learning; multi-object tracking; data association; object detection; temporal information;
remote sensing data; video sequence

1. Introduction

In recent years, with the rapid development of artificial intelligence technology, com-
puter vision [1–3] has also penetrated into various fields in society, and the application of
remote sensing data has become more and more popular [4–6]. Making full use of remote
sensing videos and computer vision technology can greatly improve the efficiency of envi-
ronmental monitoring and security monitoring. The use of computer vision technology to
accomplish multi-object detection and tracking tasks in UAV images has gradually become
one of the research hotspots. Multiple object tracking (MOT) refers to the object detection
of all targets in each frame in the continuous frame sequence of the videos and obtaining
the positions of targets in the images, the sizes of bounding boxes, and the speed of each
object, as well as assigning individual ID identifications for every object in each frame.
In the current mainstream research, the MOT model system can often be divided into
two different paradigms, tracking by detection (TBD) [7–10] and joint detection and track-
ing (JDT) [11–14].

In the task of tracking video sequences, the accuracy of target detection [15–28] and
data association can affect the performance of the model. Our research mainly pays
attention to these two aspects. In the current research, target detection based on deep
learning has been an important part of MOT. The anchor-free target detection algorithm
has also become one of the more popular frameworks recently. The main idea of the
algorithm is to perform target detection based on the center point of every object, such
as CenterNet [29], FCOS [30], and Centerpoint [31]. The task of multi-object tracking can
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also be achieved based on the anchor-free framework. In the framework of JDT, such as
RetinaTrack [32] and CenterTrack [33], these two methods combine detection and tracking,
simplifying the model structure and improving the real-time performance of calculation.
Figure 1 is the process of two paradigms of MOT. Compared with our research, it is mainly
the use of a single frame without using temporal information. Although the combination
of detection and tracking tasks can improve training efficiency, the two tasks have different
concerns, affecting the accuracy of detection or tracking performance. The model in our
paper separates the detection and tracking tasks to a certain extent in the phases of training
and inference for this problem and achieves end-to-end multi-object tracking. In addition,
the use of temporal information will also affect the performance of the model on the MOT.
Wu [34] and Liang [35] proposed models to improve the detection ability by using temporal
information with multiple frames. Except for the detection performance, our research
mainly focuses on the use of temporal information to improve the feature representation of
the objects so as to improve the accuracy of the data association.
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Figure 1. The process of two paradigms of MOT. (A) is the process of tracking by detection, and
(B) is the process of joined detection and tracking.

MOT based on deep learning has also been used in the field of remote sensing, and
the video interpretation of drones has been used as the research direction. This research
direction is the main topic of this article, which is also a current research hotspot. Some
research [36–42] combines trackers and detection models to realize the MOT tasks. Al-
though separating the detection and tracking tasks can train models independently, it is
more difficult to adjust one of the structures of a part to adapt the another. Our research
aims to set up an improved end-to-end MOT model for remote sensing data. Furthermore,
to improve the problems of small size and diverse backgrounds in remote sensing data,
Jin [43] and Kraus [44] made use of features in different aspects of the tracked objects to
improve the problems. Compared with the above research, temporal information can also
be used in the MOT for remote sensing videos except for the feature of every object in
our research.
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MOT is a cross-frame video interpretation task, and most models in the current re-
search do not make good use of the information in time series. There are certain limitations
in relying only on the information of a single frame. The object lacks the links between the
frames. For example, if an object is occluded in a certain frame, and if the model only relies
on a single frame of information for data association, there will often be situations where
the same object has different characterization information, which may lead to the ID switch
(IDS) problem, thereby reducing the accuracy of the model. Therefore, using temporal
information can significantly improve the model’s performance for this task. In addition,
although the JDT paradigm model combines object detection and data association for joint
training to achieve end-to-end MOT, object detection and tracking are often two different
vision tasks. Object detection needs to distinguish multiple categories, which needs to
maximize the distance between different types and minimize the distance between the same
type, to improve object detection accuracy. However, object tracking needs to maximize the
distance among all objects in the same category. Therefore, if the two subtasks share many
parameters during training, the training efficiency of the model may be reduced, and the
performance of the trained model, in some cases, may get worse.

Given using temporal information and the conflict of two subtasks during the training
phase, we propose an improved MOT model, using FairMOT [45] as the baseline. For the
overall model structure, the detection part and the ReID part are disassembled. Compared
with the detection part, the generation part of embedding is on an additional branch.
A feature enhancement structure based on temporal information is added to the branch to
improve the model’s ability to discriminate ReID information. In the calculation process of
model loss, compared with single-frame loss calculations, we perform double-frame output
in the output part of the model detection and perform loss calculations on the output of
two adjacent frames simultaneously.

Our contributions can be summarized as follows:

1. We change the single frame output of the original model to an output of two adjacent
frames to improve the training efficiency.

2. We improve the conflict problem of two subtasks, including object detection and
tracking during the training phase.

3. We constructed a feature enhancement structure based on temporal information to
improve the representation of ReID information, enhancing the training efficiency of
the ReID head of the model and ensuring data association performance.

2. Materials and Methods

This chapter mainly explains the detailed structure of the model proposed in this
paper and the overall process of using the model to complete the MOT task. The model in
this study uses FairMOT [45] as the baseline, and we improve it to achieve the functions
mentioned in this article. Compared with the original structure, we have improved the
feature extraction part of the model for the UAV videos, separated its detection and
embedding parts, and added a feature enhancement structure in the ReID head. The
detection head is changed to generate outputs of two adjacent frames for loss calculation.
The following parts will describe each block in detail as a subsection.

2.1. The Structure of FairMOT

In the research field of MOT, many tracking algorithms can achieve MOT tasks based
on detection results. The authors believe that object detection and ReID should be par-
allel visual tasks, so an anchor-free multi-target tracking algorithm called FairMOT is
constructed. FairMOT is an end-to-end anchor-free MOT framework built on CenterNet.
The model adopts a simple network framework, which is mainly composed of detection
and ReID modules. FairMOT contains an anchor-free target detection framework, which
can output heatmaps, sizes of bounding boxes information and offset information. In
the Reid branch, the appearance feature of each pixel can be obtained, and it is used as
the feature of the object with the pixel as the center point. The two functions can be per-
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formed during stages of training and inference at the same time, which achieves a balance
between detection and ReID functions and has a better MOT performance. The feature
extraction part of the model is shown in Figure 2. DLA-34 [46] is used as the backbone
network to perform feature extraction on two-dimensional video images. The structure
of the encoder-decoder network is shown in Figure 2B. Then, multiple heads will be used
according to different vision tasks, namely the heatmap head, offset head, the size head
for bounding boxes, and ReID head. These branches share the same feature map after the
feature extraction structure.
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Figure 2. (A) is the process and structure of FairMOT. The blue part is the backbone of FairMOT, and
the orange part includes different heads to form detection and ReID functions. (B) is the structure of
the encoder-decoder network, which is used as the encoder and decoder of the FairMOT (the figure
is revised from [45]).

The heatmap branch is used to generate a response map of the center point of every
object, which represents the probability of objects. The size of the heatmap is HxWxC,
where C represents the number of object categories. The response value of each pixel
in the heatmap can reflect the probability of the object appearing, and the value of the
pixel response value decreases as the distance from the center point increases. The off-
set branch represents the possible offset of each point compared to the original point
after being encoded from the original image to the feature maps. This branch is respon-
sible for accurately locating objects. Since the size of the feature map in the calculation
graph varies greatly, this will produce some quantization errors, which will affect the loca-
tions of predicted objects and the extraction accuracy of ReID features of different objects.
The size branch represents the width and height of the bounding box corresponding to
each object. The three branches consist of the part responsible for object detection in the
MOT framework.

The ReID branch generates an embedding of a specific length vector for each point,
which is used to characterize the unique information of each point. Each pixel on the
feature map contains a vector with a depth of 128 to represent the appearance features of
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the object for that point, and finally, an embedding map with the size of 128 × W × H
will be obtained. In the training phase of the model, each head performs loss calculations
separately. The three branches of the detection part, including the heatmap, offset, and size
head, are mainly calculated by focal loss and L1 regression loss. In contrast, the loss of the
ReID branch is calculated through classifiers.

2.2. The Structure of the Proposed Model

Compared with the feature extraction part of the FairMOT framework, we consider
that there is a certain degree of conflict between target detection and ReID tasks during
training; that is, the target detection task is to maximize the distance of different categories
and minimize the distance of the same category, and the ReID task is to maximize the
distance of objects with the same category. Therefore, it is necessary to adjust the model
structure for this problem.

Given the conflict between ReID and target detection, the model in this paper is mainly
to separate the two branches. The functions of the two structures on the FairMOT are
realized through four branches, and these branches share the same encoder and decoder.
The adjustment of the model in this article is mainly to improve the decoder part of the
backbone network. Because the original model with this decoder can realize detection and
ReID functions well, we change it to two decoders with the same structure as the original
model, which is used for target detection and ReID, respectively. Furthermore, the same
structure can meet conditions of finetuning. Still, there is no parameter sharing in these
two decoders, which reduces the mutual influence between parameters of two tasks during
model training. The encoder and decoder structures have been shown in Figure 2B, which
is used to extract image features. The overall structure of the model is shown in Figure 3.
In general, the model in this paper mainly uses two adjacent frames as input and can
achieve multiple associations and utilization of temporal information in object detection
and tracking tasks. From the overall structure of the model, the separation of the object
detection and the ReID structure can make the two parts of the structure better realize their
respective functions. In the ReID part, the temporal feature association structure is added
to the ReID structure. This structure mainly integrates the historical frame information
with the current frame to improve the robustness of the model while processing temporal
series information. Compared with the single-frame input, the proposed model changes
the input to two adjacent frames, which can make good use of temporal information.
Furthermore, the output of two adjacent frames can improve the training efficiency of the
model compared with the single-frame input. In the test phase, the model has two adjacent
frames as inputs, and if it is the first frame of the video sequence, the model’s input will be
two images of the first frame. In the input part, the processing method of two frames is
parameter sharing.

After the feature extraction of the encoder, the obtained features are simultaneously
input into two decoders, and the processing of target detection and ReID information are
performed, respectively. In the target detection part, the functions of the heatmap branch,
offset branch, and size branch are similar to the original model, which is indicated in
Section 2.1. Compared with the original structure, the structure of the heatmap branch is
adjusted. Firstly, the feature of the previous frame obtained by the decoder is followed by
a multi-layer convolution, which generates a centered map, and we combine this map with
the features of the current frame obtained by decoder B. Then, the output of the branch
can be obtained through the heatmap branch. The only difference is the output results of
these two branches. Compared with the single-frame output, the model’s output in this
paper includes two predicted results of adjacent frames in two branches, which perform
loss calculations simultaneously during training.
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Figure 3. The structure of the proposed model. The blue part is the backbone of the model to extract
features of the inputs, and there are two decoders with blue and grey colors. The orange part includes
different heads to form detection and ReID function. To distinguish the information from different
frames, the green part mainly makes use of the information from the T-1 frame. The detailed structure
and process of the temporal association are explained in Figure 4, which can integrate the temporal
information of two adjacent frames.
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(A) is the indication of structure A, and (B) is the indication of structure B. Structure A can add to the
model directly, and feature T and embedding T-1 are obtained by decoder B. The dotted arrow means
that heatmap T-1 is not regarded as one of the inputs which can provide tracked indexes during the
testing phase. Structure B combines the information of feature T-1, feature T obtained by decoder B,
and heatmap T-1.
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On the ReID branch, the branch adds a feature enhancement structure for the temporal
association, which uses the features of two adjacent frames obtained by decoder B and
the heatmap of the previous frame as the input information of the feature module. The
structure and process of the temporal association are in the following sections. The temporal
association can match and integrate the information of two adjacent frames to enhance the
robustness of the ReID branch to get the final output of the ReID branch. Making use of
temporal information on the ReID branch can improve the robustness of the appearance
features generated by the model. Objects in a single frame may be deformed or occluded
by other objects and background information, and the appearance features will change
greatly, which will affect subsequent data associations. The use of temporal information
can make some objects fused with historical feature information, which makes it possible
to reduce the IDS problems caused by the influence of appearance features when problems
such as occlusion and deformation of predicted objects occur in the current frame.

2.2.1. The ReID Branch with Structure A

As shown in Figure 4A, firstly, we associate the obtained feature T-1 with feature T.
In the training phase, the calculation process is performed by inputting label information.
The input includes the number of objects that exist simultaneously and the corresponding
location index in two adjacent frames. Tracked indexes in Figure 4A mean that the heatmap
T-1 can provide the detailed location and number of detected objects in the last frame,
which can be used to extract the embedding information. We use this information to obtain
the feature at the corresponding position of feature T-1 and calculate the similarity between
it and feature T to obtain the feature similarity between each object in the previous frame
and each point in the current frame; after that, we keep the point with the smallest distance.
Feature similarity can be used as a measure of the degree of matching among embeddings.
Additionally, it is regarded as the possible position of the object where the object of the
previous frame may exist in the current frame. In this study, we mainly associate objects of
two adjacent frames by calculating the similarity of the ReID feature, and the corresponding
calculation process is shown in Equation (1). By calculating the similarity between the
objects in the two frames, the possible position of each object in the previous frame in the
current frame is obtained, and the feature fusion can be performed with the corresponding
objects in the current frame. In this study, we also tried to achieve a similar effect through
the point multiplication calculation of embeddings, which can improve the training and
inference speed of the model. After the position information is obtained, feature fusion is
performed, and the fusion method selected in this step is to add the corresponding feature
matrix to the average. In the inference stage of the model, since there is no label information,
the heatmap of the previous frame obtained by the model is used as auxiliary information.
The number of possible targets in the previous frame is obtained from the heatmap.

similarity(x, y) =
x · y
|x| · |y| =

∑n
i=1 xi · yi√

∑n
i=1 xi

2
√

∑n
i=1 yi

2
(1)

where n represents the length of embeddings in the branches, and x and y represent the
features of different objects between two frames.

The ReID embedding of the corresponding positions of these targets is input into
the feature module as the feature of frame T-1. Since there is a situation in the inference
phase where the object that appeared in the previous frame may disappear in the current
frame, for this situation, a distance constraint needs to be added at this time. A threshold
value needs to be set; namely, if the center point of the previous frame is far away from the
center point matched in the current frame and exceeds the threshold, the matched point is
considered unreliable. It should be ignored, and only a matched point with high reliability
is retained. Distance constraints can be applied to the inference stage of the model to filter
the predicted object positions. For the scaled size of the dataset images in this study, we set
that if the distance of two predicted points is more than 50 pixels, the association can be
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considered unreliable matching, and we set it as the filtering threshold. The feature fusion
method consistent with the training phase is performed to generate the final output of the
ReID branch.

2.2.2. The ReID Branch with Structure B

The way that the structure makes use of temporal information is shown in Figure 4A.
The information used in the structure includes three blocks, namely the heatmap of the
previous frame and the feature t-1 and feature t of the two adjacent frames obtained by
the decoder B. After the channel is spliced, the multi-layer convolution of the ReID branch
is used to generate the final output on the branch. In the model’s training phase, the
previous frame’s heatmap is also provided with label information. In the inference phase,
the heatmap obtained from the model detection part is used as one of the inputs of the
ReID branch.

2.3. The Post-Processing Part

The post-processing part functions mainly through adjusting the process of SORT [41]
and DeepSORT [42] to complete the data association. Compared with single-category MOT,
this research changes the post-processing part on multiple categories. Unlike the training
stage, the post-processing stage does not assign an ID to each category; objects of various
categories are assigned IDs together in sequence. The inference part uses DeepSORT
as the main process framework, and there is a round for every three frames. The first
frame normalizes the heatmap and standardizes ReID features obtained by the model, and
performs non-maximum suppression processing on the heatmap according to the threshold
to filter out possible objects. We assign an ID to objects in the first frame.

The second frame repeats the operation of the first frame; after getting the possible
objects, it matches the object by the IoU value of the bounding boxes in the first frame,
retains the expected detection, assigns the same ID, and includes those that are not matched.
In the third frame, the ReID feature is added to the second frame, the cosine distance of
the ReID feature is calculated on the detection target of the two adjacent frames, and the
Kalman filter [47] is used for motion prediction. The appearance and motion characteristics
are combined for data association. After that, the unmatched objects in the third frame and
the objects in the second frame are subjected to IoU calculation. If it is smaller than a fixed
threshold, it is regarded as a new target, and a unique ID is assigned. Finally, repeat the
above steps for each subsequent frame to complete the post-processing steps of video MOT.

2.4. Training Strategy

In the model’s training, a combination of multiple loss functions is used for training,
and different training strategies are used primarily according to other branches of the model.
The output of the heatmap of the target detection part is mainly used to train the model
through focal loss. The corresponding label of the heatmap uses the label information
to provide the center point position of every object. The corresponding response of the
heatmap is obtained through Gaussian distribution processing, which is used as the training
label of the heatmap, and the loss function is shown as follows. The information of offset
and width and height branches are trained using the loss of L1 regression [48]. On the
branch of ReID, the primary training method is classification type. After normalizing the
target features obtained by the ReID head, classification training is carried out through
classifiers. Since it is a multi-category MOT, multiple classifiers are also set at this time to
train the model. The number of categories is the tota

LH = − 1
n∑

m

{
(1− x̂)a log(x̂), 1
(1− x)b(x̂)a log(1− x̂) otherwise

(2)
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where m represents the number of points in the heatmap, x̂ represents the model’s predicted
values, x represents the label’s value, and a and b represent weights of focal loss.

LB =
n

∑
i=1
‖o f f i − o f f̂ i‖

1

+ ‖whi−wĥi‖1 (3)

LID = −
n

∑
i=1

J

∑
j=1

Ai(j) log(p(j)), (4)

where o f f i represents the values of the label, o f f̂ i and wĥi represent the predicted outputs
from the heads of the model, Ai(j) represents the class label, and p(j) is a class distribution
obtained by the model.

LT =
1
2
(

1
ew1 (LH +

1
2
(LB1 + LB2) +

1
ew2 LID) (5)

where w1 and w2 represent the weights for different losses, LB1 represents the loss of Frame
T, and LB2 represents the loss of Frame T-1.

The experiment of this study used pre-trained parameters, that is, the pre-trained
parameters of CenterNet on the coco dataset [49]. Since CenterNet does not contain ReID
parameters, only the parameters of the target detection part need to be used. After the
parameter migration, training is performed on the training set of visdrone2019, and the
learning rate is performed in an attenuated method, which will be reduced after a particular
epoch, and we use Adam [50] as the optimizing process. In the testing phase, models
are tested on the validation set with a single RTX 3090ti to compare the performance of
the models.

3. Experimental Results
3.1. Data Introduction and Processing

This research dataset uses the UAV video sequences of visdrone2019 [51]. The dataset
includes a training set and validation set. The training set contains 56 UAV video sequences.
The training set has a total of 24,201 frames, and the validation set contains 7 video
sequences, which have a total of 2819 frames. Each video is an optical image containing
different scenes and targets. Each frame in the same video has the same size and format,
and other video sequences have different image sizes and shooting methods. There are
10 categories in total. The main target categories of this dataset are pedestrian, person,
car, van, bus, truck, motor, bicycle, awning-tricycle, and tricycle. The corresponding label
format of the dataset used this time is the coco format. Table 1 is the distribution of the
VisDrone2019 dataset in this study. Compared with the target detection dataset, the label
of this dataset has ID information. Therefore, the information provided by the original
data of the label mainly includes the serial number of the frame number, the target ID,
the coordinates of the top-left vertex of the bounding box, the width and height of the
bounding box, and whether the target is occluded and whether it needs to be ignored.

Table 1. The distribution of the VisDrone2019 dataset in this study.

Training Set Validation Set

Video Sequences 56 7
Number of Frames 24,201 2819

Category 10 10
The number of frames is the total frames in the sequences, and the category is the number of an object class in the
video dataset.

Compared with the single-category MOT tasks, multi-category MOT requires addi-
tional processing on the dataset. This research is set to a total of 10 categories for the original
label, so the training data construction needs to deal with the ID of multi-category. The
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primary way is to count the ID according to the category; that is, the ID of each category
starts counting from 0. Compared with single-category tasks, it is necessary to count
the number of target IDs of each category that appears in the entire video sequence and
use them as the number of classes for the ReID branch during the model training. The
model was trained with data augmentation, and each image imported into the model was
processed by rotation and scaling, which improved the training effect of the model.

Evaluation Index

The evaluation indicators involved in this research mainly contain CLEAR metrics [52],
including MOTA, MOTP, MT, ML, and IDF1 [53]. The corresponding calculation equations
are as follows. MOTA represents the comprehensive performance of the model in MOT,
and MOTP represents the average degree of overlaps of all tracked targets; MT and ML,
respectively, represent the number of trajectories that are successfully tracked and the
number of courses that have failed to follow. FN represents the number of detected objects
missing in the target detection, FP represents the number of erroneously detected objects in
the detection, and IDS represents the number of ID switches for the same objects.

MOTA= 1−∑t (Nt + Pt + idst)

∑t gt
(6)

MOTP =

∑
i,t

Ti
t

∑
t

dt
(7)

where Nt represents the number of missed objects in frame T, Pt represents the number of
the wrong predictions in frame T, idst represents the number of the ID switch in frame T,
Tt represents the number of matches in frame T between objects and the hypothesis, and dt
represents the distance between targets and the hypothesis.

MOTP has two different calculation and evaluation criteria in this paper. The criteria
are that if the tracked match is perfect, MOTP is 100%, and if it deviates completely, it is 0.
The larger the MOTA result, the better the overall performance of the model on multi-target
tracking tasks, and the maximum value of MOTA is 100%. FN and FP represent the error
of target detection, and IDS represents the number of ID switches in the tracking task.
The larger the value of these indicators, the worse the MOT effect. The indicators used in
this study are mainly from clear mot metrics. By measuring the differences between the
indicators, the detection and tracking performance of the models can be evaluated well.

3.2. Experimental Results

This section mainly compares the performance of two feature enhancement structures
constructed with temporal information. We add the two structures to the model for
experiments, guarantee the same training and testing environment, and compare the
performance of the two structures. The comparison method of the experiment in this
section is mainly carried out by evaluating the difference of each indicator and comparing
the performance shown by the visualization effect of each model.

The detailed information and structures of the modules are shown in Figure 4. Struc-
ture A combines the temporal information of two frames, including the embedding and
heatmap obtained from the last frame. Structure B uses the features of two frames from the
decoder part. In this part, the heatmap T-1 can be provided by the label information during
the training phases. During the testing phase, the heatmap information can be obtained
from the model in the last frame.

Figures 5 and 6 show the visualization effects of two different structures in the
video sequences of the testing set. Figure 6 selects a part of the results of Figure 5 to
enlarge the display, which can make the visualization effect of the model in the MOT task
clearer. Table 2 shows the statistics of each indicator value on the testing set after adding
two structures to the proposed model. The results in Table 2 show that the feature enhance-
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ment of structures A and B do not have much difference in the performance of the model’s
detection function. Structure A has a smaller total number of FN and FP than structure B.
There is a difference in the function of ReID. It can be seen from the statistical table that
the two models with different structures in the experiment have a specific difference in the
IDS problem. When the FN is not notably different, structure A has a smaller IDS value
than B, and structure A improves MOTA by 1.9% and MOTP by 0.3%, so it has a better
improvement in ReID. The smaller number of IDS means fewer ReID errors in the testing
phase, which provides better visual performance.
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Figure 5. The visual results of MOT obtained by the two structures added to the ReID head, which
displays two video sequences, including (A,B), in the validation set. The first row shows the visual
results of structure B, and the second row shows the visual results of structure A. Every detected
object is positioned by a bounding box of different sizes and is assigned an ID. In the three frames
above, the same object is assigned the same ID in every frame. There are ten categories of objects
detected in the video dataset at this time. The visualization of this multi-target tracking task only
shows specific ID information, location and bounding boxes of every detected object.
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Figure 6. (A,B) are partially enlarged results of (A,B) in Figure 5. The arrangement of the images
is the same as in Figure 5, which displays two video sequences in the validation set. The first row
shows the visual results of structure B, and the second row shows the visual results of structure A. In
every image, the red circle and red arrow mean that the object to be detected is missed in this image,
and the orange circle and arrows mean that the object has an ID switch between two adjacent frames.

Table 2. Quantitative comparison of two structures used in the ReID head of the proposed model.

MOTA MOTP IDF1 MT ML FN FP IDS

Structure A 34.7 74.5 45.2 164 265 57,848 14,385 2349
Structure B 32.8 74.2 45.9 175 257 57,939 16,106 2706

Structures A and B are used for feature enhancement added to the ReID branch, and the details are explained in
Figure 4. The bold values in the table mean the best results.
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As shown in Figures 5 and 6, the Figures illustrate the visual results of two structures
in the two video sequences. The visualization results show that the two structures have
similar effects on target detection. Most targets with different classes can be detected in the
following samples, which means that the models in this experiment can achieve the object
detection task. Only a part of the targets is not well detected. Compared with the larger
and closer targets, some distant targets and occluded objects are more challenging to be
accurately identified.

As for another aspect, there also are some IDS issues in the visualization results. From
Figure 6, we can see that the IDS problem always appears when some objects are occluded
in the last frame, and these objects appear in the next frame. If some objects are occluded,
the embeddings of the object may be changed or not precious for the same object, which will
influence the process of ReID and the MOT performance of the model. In the visualization
results, compared with structure B in the task of ReID, structure A has a better ReID effect,
and there are fewer IDS issues.

In order to verify whether different model structures have an impact on the perfor-
mance of MOT, in this section, we have added corresponding ablation experiments. Table 3
counts the numerical results of the ablation experiment. Methods of this ablation experi-
ment include: (1) FairMOT, which is the baseline for this experiment; (2) adjusted FairMOT,
which only splits the detection and ReID branches; (3) the model changes the outputs from
a single frame to the two adjacent frames during the training phase; (4) based on (3), the
model is improved by adding the heatmap information of the previous frame and adding
feature enhancement structure A.

Table 3. Quantitative comparison of the ablation experiment.

MOTA MOTP IDF1 MT ML FN FP

baseline 29.8 73.3 46.1 183 279 58,657 17,683
+split structure 32.6 73.3 44.9 164 278 59,865 14,855

+two-frame
output 32.5 74.2 45.3 167 260 58,695 15,376

+centermap,
attention 34.7 74.5 45.2 164 265 57,848 14,385

The structures of different models in the table are explained in the following paragraph. The bold values in the
table mean the best results.

The result shows that compared with the original baseline, the final model signifi-
cantly improved target detection and tracking performance. In the target detection part, the
number of missed and wrong detections are reduced, the total number of FN and FP has
dropped, and the effect has increased by 4.9% and 1.2% on MOTA and MOTP, respectively,
compared with the baseline. Model (2) splits the detection and ReID heads, which improves
the efficiency of multi-object detection and tracking tasks during training and can obtain
more representative features for the MOT. From the result, we can see that the detection
performance has been improved compared with the baseline. As for Model (3), the out-
put part has been changed from a single frame to two adjacent frames. Compared with
Model (2), Model (3) improved the MOTP by 0.9%, though there is no noticeable improve-
ment effect in object detection from the numbers of FN and FP. Figures 7 and 8 show the
visual comparison of the performance of the proposed model compared with the FairMOT
under this validation dataset. The visualization effect shows that the proposed model of
this paper has a certain degree of improved performance in multi-category MOT compared
with the baseline.

The results show that in the MOT task based on UAV video, the baseline model did
not detect the most targets. As for detecting some small objects and objects that may be
occluded, the model may miss these objects. On the other hand, it can be seen from the
visualization results that the ID switch has appeared in the samples in the function of ReID
of the baseline model. The problem of ID switch mainly occurs when two objects meet,
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which may change the feature representation of the object between two frames. Therefore,
the use of temporal information can improve this problem.

The numerical results of the quantitative comparison experiment are presented in
Table 4, which includes an MOT evaluation matrix. Compared with the models that
complete the MOT task on this dataset, the proposed model increases MOTA by 1.8% and
IDF1 by 2.9% compared with HDHNet [54] and increases MOTA by 4.9% and MOTP by
1.2% compared with FairMOT. The proposed model has a smaller number of the sum of
FN and FP than the other. The proposed model has a better object detection and ReID
effect in the visualization results, which shows that the model can complete the MOT task.
Thus, from the numerical and visualization results, the proposed model has improved the
performance of the multi-category MOT task in this dataset.
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Figure 7. The visual results of MOT obtained by the two models, including the baseline and the
proposed model, which displays two video sequences in the validation set. (A,B) are two examples
in the two video sequences. The first row shows the visual results of FairMOT, and the second row
shows the visual results of the proposed model. Every detected object is positioned by a bounding
box of different sizes and is assigned an ID. In the three frames above, the same object is assigned the
same ID in every frame.
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Figure 8. (A,B) are partially enlarged results of (A,B) in Figure 7. The arrangement of the images is
the same as Figure 7, which displays two video sequences in the validation set. The first row shows
the visual results of structure B, and the second row shows the visual results of structure A. In every
image, the red circle and red arrow mean that the object to be detected is missed in this image, and
the orange circle and arrows mean that the object has an ID switch between two adjacent frames.

Table 4. Quantitative comparison of the different models in the VisDrone2019 dataset.

MOTA MOTP IDF1 MT ML FN FP

GGDTRACK [55] 23.4 / 48.1 / / 42,917 12,630
SORT 18.1 65.1 32.2 / / 78,467 104,453

HDHNet 32.9 76.9 42.3 / / 35,686 80,454
FairMOT 29.8 73.3 46.1 183 279 58,657 17,683

Proposed Model 34.7 74.5 45.2 164 265 57,848 14,385
Some indicators of the models mentioned in this table are not provided in the corresponding references. The bold
values in the table mean the best results.

4. Discussion

In this research, the multi-category multi-object tracking task based on UAV video
sequences is realized using the proposed model in this paper. It can be seen from the
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results of the first part of the ablation experiment that making good use of the temporal
information and adjusting the corresponding network structure can improve the model’s
performance in detecting and tracking MOT tasks. Compared with the baseline structure,
the structure that separates the detection and ReID branches improves the detection ability
and reduces missed and false detection problems.

Different function parts can be separated to improve the structure and train the model
on detection and ReID tasks. The original design integrates detection and ReID modules,
and there will be some training conflicts during the training phase; that is, detection
minimizes the distance between objects of the same category, and ReID maximizes the
distance of objects within the same categories. In this study, separating the detection and
ReID branches of the model in the encoder part can make the training of the two tasks more
independent. From the overall structure of the model, the model uses the information of
two adjacent frames in the input, and in the detection part, it realizes more independent
training and inference based on the use of historical features, which weakens the influence
of the ReID structure. In the output part of the model’s detection branches, it changes the
output format from single-frame output to a double-frame format, which can make the
output of adjacent frames perform loss calculation at the same time, improves the training
efficiency of the model, and uses the temporal information in the detection part during
training. The model with the output structure of adjacent frames has an improvement of
about 2.7% in MOTA performance compared with the baseline.

The proper way to use temporal information can help improve the ReID performance
of the model. According to the results of the ablation experiment, by adding feature
enhancement of structure A, the MOT performance of the model has been improved to
a certain extent. In contrast, the feature enhancement structure B did not improve the
model’s performance in the ReID branch. After analyzing the structure, structure B needs
to use the heatmap of the previous frame as auxiliary information for consideration, which
is directly input into the network for calculation. At this time, the label information is used.
However, the training efficiency of the model can be maintained during training; during the
testing phase, the model will use the heatmap provided in the previous frame as the input
of the branch, and the accuracy of the heatmap offered by the model is not as accurate as the
label information, which calculates it directly as features will cause a specific deviation in
the result. In subsequent experiments, other solutions were also implemented, such as now
using the heatmap generated by the model as input during training. Firstly, using label
information as training input after a particular round of iteration, then replacing it with the
model’s output. After comparing the two schemes, the effect has not been improved. As for
structure A, the temporal information of the videos is also used. The object’s center position
tracked in the previous frame is input into the prediction as auxiliary information for the
current frame. The ReID feature between the two frames is matched by the similarity of the
embedding quality. From the result, it can be seen that structure A is better than structure
B in the data association performance of MOT.

Adding temporal data to the model can also improve detection ability on the MOT
task. From the data association process of DeepSORT, the matched target first needs to
be detected. If an object in the video sequence is occluded or the size has changed, the
detection result will change, and the target may be classified as the background. There is
a case of missing detection or a change in the ReID embedding, which makes the model
match the wrong object during the inference phase. This module expands the range of
feature matching, merges embedding with the feature with the most significant similarity
on the feature map, and combines the apparent elements of the previous frame, making the
ReID features obtained during the training and testing phases of the model more sequential,
which can improve the performance of the ReID task to a certain extent. Compared with
the structure of the heatmap branch of the baseline, the model in this paper can improve
the response to the position of the object by generating the centered map of the previous
frame and adding it to the feature map of the current frame, which is used as auxiliary
information in the target detection part of the model. It can be seen from the structure of the
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model that, compared with the original structure, the model in this paper has been adjusted
in the input and calculation process. The performance of the multi-target tracking of the
model is improved, and the speed of training and inference of the model itself is slightly
reduced compared with the original model. For example, in the post-processing process,
with a single 3090ti, the processing speed of the video streams can be maintained at about
15 FPS, which is lower than the original structure. However, the real-time performance of
the model for MOT tasks of video sequences can still be guaranteed, and the performance
of multi-target tracking can be improved better at the expense of a little calculation speed
compared with the original model. We will also try to improve the model algorithm and
post-processing flow in the future to explore methods to enhance speed and accuracy.

5. Conclusions

Our study proposes an improved MOT model based on FairMOT, which can realize
end-to-end detection and tracking of multi-category objects in UAV video sequences. As
for the original structure, the target detection and ReID tasks may have some conflicts
during training. We separate the detection and ReID branches to make the two parts more
independent and improve the detection accuracy. Additionally, the model in this paper
uses temporal information in target detection and the ReID head, combines the central
point features of historical frames, and includes a feature enhancement structure to improve
the tracking performance of the model on UAV video sequences. Finally, compared with
other MOT models on this study’s drone video dataset, the use of the proposed model can
achieve better multi-category and multi-object tracking performance. Although making
good use of temporal information can improve the tracking performance of the model,
there are still some scenes where objects have similar appearance characteristics, which
will affect the results of data association during the process of history frame association.
Therefore, it is necessary to focus on the association of similar objects in historical frames in
subsequent research. Furthermore, the temporal information contained in adjacent frames
is still limited. In the follow-up research, we will also try to explore the use of multi-frame
and long-term information and apply it to tracking tasks to improve long-span tracking
tasks while ensuring the accuracy and real-time performance of the model.
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