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Abstract: Human use of oceans has dramatically increased in the 21st century. Sea turtles are
vulnerable to anthropogenic stressors in the marine environment because of lengthy migrations
between foraging and breeding sites, often along coastal migration corridors. Little is known about
how movement and threat interact specifically for male sea turtles. To better understand male sea
turtle movement and the threats they encounter, we satellite-tagged 40 adult male sea turtles of four
different species. We calculated movement patterns using state-space modeling (SSM), and quantified
threats in seven unique categories; shipping, fishing, light pollution, oil rigs, proximity to coast,
marine protected area (MPA) status, and location within or outside of the U.S. Exclusive Economic
Zone (EEZ). We found significantly higher threat severity in northern and southern latitudes for
green turtles (Chelonia mydas) and Kemp’s ridleys (Lepidochelys kempii) in our study area. Those threats
were pervasive, with only 35.9% of SSM points encountering no high threat exposure, of which 47%
belong to just two individuals. Kemp’s ridleys were most exposed to high threats among tested
species. Lastly, turtles within MPA boundaries face significantly lower threat exposure, indicating
MPAs could be a useful conservation tool.

Keywords: sea turtle; cumulative threat; conservation

1. Introduction

Human use of oceans has dramatically increased in the 21st century. Results from a
five-year study found that by 2013, 66% of the world’s oceans faced increased pressure
from anthropogenic activities like fishing, pollution, global shipping, and elevated sea
surface temperatures [1]. Some of the highest cumulative impact scores (top 5% of scores)
were in the Gulf of Mexico, Caribbean, and Central Atlantic Ocean [1]. Additional studies
on human impact have found that the Caribbean scores among the highest regions in the
world for marine-associated threats [2]. Due to high pressure from human activity, species
within the Caribbean show the greatest rates of loss within neritic (coastal) habitats, where
the highest species richness occurs [3]. In the Gulf of Mexico, more than 79 species, which
represent 7 of 9 marine reptiles, 5 of 27 marine mammals, and 19 of 44 shark species, are
listed as at least Near Threatened by the International Union for Conservation of Nature
(IUCN) [4]. Additional research has also found that more than 26% of endemic bony
fish in the Gulf of Mexico and Caribbean are facing severe population declines [3]. High
cumulative human impact on marine wildlife is disruptive and can substantially increase
the chance of species extirpation or extinction [5].

One of the major ways that human activities affect marine animals is by disrupting
foraging and breeding behavior. Such disruptions force animals out of optimal habitats,
which can decrease an individual’s overall fitness [6–10]. Furthermore, marine wildlife that
remain near human activity often experience reduced foraging time with diminished catch
because they spend time avoiding interaction with humans due to stressors such as noise
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from ship traffic [11–13]. Habituation to human activity can also be dangerous because
it increases the risk of injury or death from boat strikes, capture, or aggressive behavior
from conspecifics [14–16]. Habituation has also been documented to decrease health and
increase disease risk in marine species due to improper diet [17].

Wildlife can also be disrupted by the indirect effects of human activity. Studies have
shown that threats can occur along spatial gradients, as is the case with marine debris from
areas with heavy shipping and fishing presence [18]. Similarly, chemical disturbances, such
as those from polychlorinated biphenyls (PCBs) and oil spills, are often most concentrated
at the source of contamination, but with wider ranging, although more diffuse effects
through bioaccumulation or dispersal of affected individuals [19,20]. Additional pressures
from threats like fishing and tourism can also be spatially autocorrelated, with high areas of
pressure found closer to the shore or in clusters where activity is greatest [16,21]. However,
of the disruptive activities on marine wildlife, fishing is regarded as highly destructive and
can lead to irreversible effects on fisheries [22].

Fishing practices in the 21st century have exhausted multiple fisheries across the
globe, to the point that only 32% have stocks above replenishable levels [22]. Current
data on fisheries indicate that even as the size of the global fishing fleet has more than
doubled from 1950 to 2017, catch per unit of effort of fish during that period decreased
by more than 80% in most areas—evidence that global fish abundance may be rapidly
declining [23,24]. Additionally, the world’s fishing fleet uses methods that catch many
species in non-target trophic groups, which is referred to as bycatch [25–27]. Despite
upgrades in fishing technology to reduce bycatch, oversight to ensure that newer technology
is being used is lacking [26]. Fishing methods meant to catch a target species are often
indiscriminate [23,26]. Undesirable fish are discarded at sea, and due to lack of a governing
body or trained individuals to observe active fishing vessels, especially on artisanal fishing
boats, the catch goes under-reported, or unreported [26,28].

The pressures caused by vessels from the world’s fishing fleet put fish and other marine
species at risk, either directly from bycatch, or indirectly from boat strikes and pollution.
Species that conduct long migrations are particularly at risk, such as elasmobranchs [29,30],
pinnipeds [31,32], cetaceans [33,34], and chelonids [27,35–37]. To best protect migratory marine
species, researchers rely on tracking individuals to better understand the threats they encounter
within and en-route to their feeding and breeding locations [7,29–31,35,36,38–44]. Locations
where species of interest aggregate can be used by managers to design strategies that protect
them, for example by establishing or expanding marine protected areas (MPAs) [7,39,42]. If
placed correctly, MPAs can be beneficial at protecting migratory species in addition to resident
species of the locale, particularly those that hold economic value like species consumed by
humans [45–48].

As they represent a well-known, charismatic group of migratory marine megafauna,
sea turtles have been used to justify the establishment of MPAs. For example, Mexico [49],
Gabon [50,51], and Indonesia [52] have established MPAs in areas where tracking studies
found high use by sea turtles [53]. Sea turtle tracking studies have also helped managers
create zones that prohibit oil exploration or pipe laying in areas that intersect migration
routes [53,54]. Sea turtles also benefit from previously established MPAs. Large sea turtle
aggregations of multiple species can be found within U.S. MPAs, such as the Florida Keys
National Marine Sanctuary and Dry Tortugas National Park [55].

Established in 1990 and 1992, respectively, to create critical marine habitat and protect
marine resources for a number of imperiled species, the Florida Keys National Marine
Sanctuary and Dry Tortugas National Park encompass over 2900 square nautical miles and
contain a mix of restricted and prohibited human activity zones, also known as marine
zoning [56–58]. The Florida Keys National Marine Sanctuary and the reserves it overlaps,
including Dry Tortugas National Park, have been found to have positive impacts, such
as increasing population numbers for marine species, including green and loggerhead
turtles and sharks, and species of economic value such as spiny lobsters (Family Palinuri-
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dae) [39,59–61]. Both marine reserves show high use from threatened and endangered sea
turtles [39].

All seven, extant species of sea turtle face population pressures from anthropogenic
influence [62–68]. The IUCN has assessed loggerhead (Caretta caretta) and olive ridley (Lep-
idochelys olivacea) sea turtles as Vulnerable, leatherback (Dermochelys coriacea) sea turtles as
Threatened, green (Chelonia mydas) sea turtles as Endangered, and hawksbill (Eretmochelys
imbricata) and Kemp’s ridley (Lepidochelys kempii) sea turtles as Critically Endangered [62–67].
Australian flatback turtles (Natator depressus) are Data Deficient [68]. During nesting years,
adult female sea turtles will undergo migrations of up to thousands of kilometers to their
natal beaches to nest, often traveling through areas with high human activity [7,44,69–71].
Female turtles aggregate in the vicinity of nesting sites for the duration of the mating season,
where they lay multiple clutches of eggs before returning to their foraging grounds [72,73].
Fidelity to nesting locations each season is high, often in neritic habitats, which puts sea turtles
at risk of human–wildlife conflicts [7]. For example, small-scale fisheries in Greece report
heavy interaction involving loggerhead turtle bycatch in nearshore waters annually, one of
the primary nesting locations for Mediterranean loggerhead turtles [74].

In response to human presence, turtles may be moving to less ideal habitats where
interactions are fewer. For example, in Zakynthos Island, Greece, Schofield et al. [8]
determined that during the 2020 lockdown due to the COVID-19 pandemic, nesting female
sea turtles moved to warmer waters closer to shore that were previously occupied by high
densities of humans versus staying farther offshore in colder waters. Turtles moving to
warmer waters when humans were absent indicates they were residing in lower quality
habitats to avoid human interactions—a behavior not detected until disruption of the
daily pressures posed by the tourist industry. The phenomenon of species changing their
behaviors to avoid humans has been well documented. Multiple mammalian species across
the globe have shifted to nocturnal foraging patterns in response to heavy human presence,
with recreation, resource harvesting, extractive activities, development, and vehicles being
some of the leading causes behind this shift [75]. Species will also avoid areas occupied by
humans or other predators, even if the area is richer in resources [76]. In marine species, this
has been less documented, but has been found in sperm whales (Physeter macrosephalus) [77]
and killer whales (Orcinus orca) [78]. Green sea turtles have been found to accept trade-offs
in risk behavior. Turtles in good health have been found to avoid areas where predation
risk is high, whereas those in poor health will be more risk prone to forage [79]. The recent
paper by Schofield et al. [8] also indicates that turtles may be exhibiting similar behaviors
of avoiding areas with heavy human presence that warrant further study.

Although how sea turtles respond to human threat is understudied, strong evidence
suggests that sea turtles face multiple anthropogenic threats throughout their range [36].
However, due to differences in habitat, species may vary in the degree to which they
encounter various threats [40]. Kemp’s ridleys, for example, nest almost exclusively in
Rancho Nuevo, Mexico, and are primarily found in the Gulf of Mexico, exposing them to a
larger number of threats derived from oil pollution than hawksbill sea turtles, who are more
confined to coral reefs and other tropical climates, at least within Caribbean, Southern Gulf
of Mexico, and Atlantic populations [20,44,80–82]. Another study found that female Kemp’s
ridleys have much larger foraging ranges than loggerhead turtles, and minimal overlap of
foraging grounds within the Gulf of Mexico, exhibiting spatial partitioning of habitat, which
could indicate different exposure to certain human threats [40]. Foraging and migration
timing also differs by species, even in areas where population overlap occurs. One study
found that although a foraging ground in Florida was shared by three species of sea
turtle (loggerhead, green, and Kemp’s ridley turtles), spatiotemporal partitioning existed
in dive depth, duration, and the time at which diving behavior occurred [83]. Seasonal
migration timing may also play a factor in threat exposure, as different populations of
species will move out of shared spaces at different times. One study found that in a
seagrass bed used by three species of sea turtle, Kemp’s ridleys and loggerhead turtles left
the area when water temperatures dropped, but green turtles remained through the winter
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season [84]. Therefore, due to differences in behavior, foraging location, and migration
patterns, anthropogenic threats may affect the various species in different ways.

Data regarding sea turtles, although extensive, is mostly garnered from studies of
females, due to the relative ease of capture on beaches when they nest [85–87]. Male sea
turtles, however, are understudied, because they spend their entire lives in the ocean where
in-water captures are more logistically difficult and financially expensive [42,87,88]. To
date, the largest sample size of male sea turtles has come from Schofield et al. [7], who
were able to track and record 38 adult, male loggerhead turtles, of which only five were
tracked for more than one season. Furthermore, Schofield et al. found that male mortality
may differ from females, primarily due to male energy uses towards breeding [89]. As
most studies have small sample sizes and cover short temporal scales, data in the literature
regarding male sea turtles are deficient. This is especially true for studies of migration,
residency areas during non-breeding times, and the anthropogenic threats they face in
those locations.

The tracking of male sea turtles is important from a conservation standpoint, as
they exhibit different movement patterns than females [42,44]. While some male sea
turtles reside near nesting beaches year-round, others have been found to exhibit long-
distance migrations between breeding and feeding grounds with unique timing compared
to females [42,44,90]. Migrations often remove species from protected areas into locations
that increase an individual’s risk of mortality from human interaction, such as artisanal and
benthic fishing fleets in international waters or boundaries of countries where protection
is weak [35,91]. Additionally, shipping lanes, and pollution from ships and oil platforms
increase mortality risk [35]. Light pollution can negatively affect adult female sea turtles in
addition to hatchlings [92,93]. Thus far, however, the risks posed by these threats have not
been systematically evaluated for male sea turtles.

Male sea turtles will be increasingly affected by human threats as climate change acceler-
ates in the 21st century. When coupled with sea level rise and coastal development, nesting
beach habitat and therefore recruitment in these already small populations will be further
reduced [94–96]. Additionally, sea turtles are long lived, taking anywhere from 8 –24 years to
reach sexual maturity [97–99]. Replacement of lost males in a population is therefore slow,
and data on male mortality rates are nonexistent in most locations [88]. Migration routes
and phenology may also differ in male sea turtles compared to females [7,42,44]. Lastly,
operational sex ratios and the reproductive value of male sea turtles is unknown, as females
are focal points of studies relating to reproduction [88]. As such, the behaviors and movements
of male sea turtles could be studied and examined to better understand the threats they face
for conservation management efforts.

The purpose of this study was to track four species of male sea turtles to better
understand their exposure to spatially and temporally variable threats. We focus specifically
on threats faced by males within foraging areas and during long migrations between
breeding and feeding grounds by using seven unique threat categories: (1) within or outside
of an MPA boundary; (2) within 10 km of a coastline; (3) within the Exclusive Economic
Zone of the United States (U.S.) or not; (4) fishing; (5) shipping; (6) oil rig proximity; and (7)
light pollution levels. We predicted that (1) tagged turtles in our dataset would conduct
long-distance migrations that will put them into contact with threats; (2) threat intensity
would vary along a spatial and temporal gradient with increasing distance from MPAs like
the Florida Keys National Marine Sanctuary and Dry Tortugas National Park; (3) exposure
to threats would vary by species; (4) threats would be lower within MPA boundaries than
outside of them; and (5) areas of high turtle point concentration would have lower threat
values than areas with lower turtle presence.

2. Materials and Methods
2.1. Study Area/Species Collection

We captured turtles as in Hart et al. [100] from 2009–2019. Forty adult male sea turtles
of four different species were captured from four locations using boat (jumping from boat,
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snorkeling) or net capture via trawler. Sample sizes are as follows: Kemp’s ridley = 6,
hawksbill = 1, loggerhead = 8, green = 25. Capture location sample sizes are as follows: Dry
Tortugas National Park = 24, Florida Keys National Marine Sanctuary = 6, Northern Gulf of
Mexico = 9, Buck Island National Reef Monument = 1. We followed standard morphometric
data collection, and attached platform transmitter terminals (PTT) to each turtle carapace
using slow-curing epoxy (two-part Superbond epoxy; see Hart et al. [100]). Turtles were
tracked using Wildlife Computers (Redland, WA, USA) SPOT or SPLASH10 transmitters.
Tracking data ranged from 8 June 2009 to 7 August 2020 [100,101].

2.2. Collection and Calculation of Threats/State-Space Modelling

We performed a switching state space model (SSM) on the raw location data in
order to estimate each turtle’s true location at regular time intervals due to significant
positional uncertainty in the raw satellite data [101]. Briefly, we used a Bayesian hierarchical
movement model implemented in the R package ‘bsam’, using the ‘hDCRWS’ model
specification and a time step of 1 day [102–104]. We set the Markov Chain Monte Carlo
(MCMC) parameters following Roberts et al. [105], which used adaptive sampling for
7000 draws, taking 10,000 samples from the posterior distribution, and then thinning by
five to reduce MCMC autocorrelation, resulting in 2000 posterior samples from which to
make inference. This process ultimately resulted in an improved dataset by eliminating
location errors and provided one location point for each turtle per day.

We collected a total of 8875 SSM points for threat analysis [101]. Through review
of scientific literature and professional consultation, we collected data for seven primary
threats to male sea turtles (Fishing, Shipping, Drilling Platforms, Light Pollution, MPA
boundaries, located within or outside the U.S. Exclusive Economic Zone (EEZ), and coastal
threat (within 10 km of a coastline)) [8,35,36,101,106–109]. Raw location data have spatial
accuracy ranges that vary between 500 m to 1.5 km. Raw tracking data were therefore fit to a
hierarchical, behavior-switching state-space model (SSM), which was then used to increase
the accuracy of tracking data and to determine home ranges of each individual [103]. This
allowed for estimation of the behavioral modes of individual turtles (unique behavioral
patterns), regularization of the locations in time, and accounting for location error in the
raw satellite data. In order to accurately depict the threats within the area of each SSM point
(1.5 km), we created a 2-km radius buffer around each SSM turtle point using R [104], within
which threats were assessed. The threat data were collected and prepared as described in
the following sections.

2.3. Fishing Data

Threats from fishing can come from a variety of sources (artisanal, longlining, com-
mercial, nets and trawlers, etc.). Since 2016, all commercial fishing vessels within U.S.
waters over 65 feet in length are required to have an AIS (Automatic Identification System)
transponder tag attached, which tracks the ships every hour via satellite global positioning
system (GPS) and ground-based receivers placed by the U.S. Coast Guard [110]. At present,
only 2% of the world’s fishing vessels have AIS tags on board, but these ships account
for more than 50% of total fishing efforts [110]. We used a fishing density raster layer of
ground-based, AIS-tracked ships as a representative subsample of fishing fleet intensity
from marinecadastre.gov, a joint collaborative data repository for marine-related research
by the National Oceanic Atmospheric Administration (NOAA), and the Bureau of Ocean
Energy Management (BOEM) [111]. This layer includes tracks of fishing vessels that leave
U.S. waters in the Gulf of Mexico, and therefore provides a representative subsample for
turtles that move beyond the U.S. EEZ boundary.

Fishing intensity was measured in grid cells 1 hectare in size, with each cell represent-
ing the total number of fishing craft that passed through that cell with an AIS transponder
onboard within a given year. We added and averaged the total number of fishing vessels
per cell from 2015–2017 to get the mean fishing intensity per cell. We then created a single
raster layer for analysis using ArcGIS Pro ver. 2.5 [112]. Although only three years of
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fishing data were available, we assume fishing density was similar enough in previous
years that the average cell values of the three years represent past fishing seasons. We
averaged the fishing intensity score of all raster cells within each SSM turtle buffer and
assigned that value as the fishing threat score for that point in ArcGIS Pro ver. 2.5 [112].

2.4. Shipping Data

Shipping data were also obtained using AIS tagged ships, and were downloaded
in their raw format courtesy of the U.S. Coast Guard with certain identifiers scrubbed
for privacy. We were able to obtain data for the entire study period from the Marine
Cadastre data repository [111]. These data cover the entire study area and are a suitable,
representative sub-sample of shipping data, clearly showing all shipping lanes within our
study area.

AIS-tagged ships in the United States account for 50–60% of shipping activity [109].
We clipped all AIS data to each 2 km turtle buffer by date and then merged the data into a
single vector shapefile to create a layer of shipping points that coincide with the presence of
each 2 km SSM turtle buffer. Due to the large size of the AIS data files, we ran an RStudio
instance on Google’s Cloud Computing Engine [104]. The total number of shipping points
within each 2 km buffer was then added and assigned as the threat score for that SSM point.

2.5. Drilling Platform Data

We downloaded drilling platforms point data, also referred to as oil rigs, oil platforms
or drilling rigs to represent oil derived threats from the Marine Cadastre data reposi-
tory [111]. We calculated the number of platforms within each turtle buffer by clipping the
oil rig layer to the turtle layer and merging the data into a single Vector shapefile to create a
layer of oil rig points within each SSM turtle buffer using ArcGIS Pro ver. 2.5 [113]. Drilling
platforms were corrected by date to ensure they were in use during the date associated
with the date of the 2 km turtle buffer.

Marine Cadastre, although very useful in acquiring data for the United States, is
missing drilling platform data for other parts of our study area, specifically Mexico and
Cuba. In order to understand if turtles that left the U.S. EEZ encountered oil threats, we
used a world, oil exploration shapefile called PETRODATA, that covers oil drilling hotspots
around the world [113]. Upon comparison with our existing dataset, 99.7% of oil rig points
fall within the PETRODATA polygon for the United States, Gulf of Mexico, oil exploration
polygon. Therefore, we felt it was comparable because no public oil rig data are available
for Mexico at the time of writing this manuscript. No international turtle points fell within
the confines of oil polygons so further calculations were not necessary.

2.6. Light Pollution Data

In 2011, the SUOMI VIIRS (Visible Infrared Imaging Radiometer Suite) satellite was
launched to track multiple spatial data, such as snow and sea ice cover, active wildfires,
sea and ice surface temperatures, and day/night light reflectance and radiance at high
resolution [114]. We created our light pollution threat layer by combining all available light
radiance raster data from NOAA’s Earth Observation Group public download domain
and averaging the total radiance for each pixel [114]. In total, 54 raster files, ranging from
13 January–8 March 2021, were combined by taking the average light radiance of each
pixel, and then recording the average value of all pixels within each 2 km turtle buffer
user R [105]. We assumed that the light radiance during the study period did not vary
annually and that the light data we collected are representative of all years for which we
have tracking data.

2.7. MPA, EEZ, and Proximity to Coast Data

We downloaded both the MPA Layer and EEZ Layer as vector layers from the Marine
Cadastre data repository [111]. We created the coastal threat vector layer in ArcGIS Pro
version 2.5 by making a 10 km buffer around all available land within the study region [112].
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The SSM points that were >10 km from coastline, or within the U.S. EEZ or an MPA
boundary were assigned a value of “0” to indicate threat absence, whereas points that were
<10 km from the coast or outside of the U.S. EEZ or an MPA boundary were assigned a
value of “1” to indicate threat presence.

As Marine Cadastre focuses on primarily U.S. waters, we needed data on international
MPAs, specifically for Cuba and Mexico. Those data were downloaded from the IUCN’s
World Database on Protected Areas website [115]. We followed the same format of assigning
values of “0” for turtles that were within the confines of those MPAs, and values of “1” for
turtles outside the confines of those MPAs.

2.8. Statistical Analyses

To directly add and compare the effects of individual threats, we standardized all
threat categories to a mean of zero and standard deviation of one, which allowed us to
take the sum of all threats directly and create a cumulative threat score for each SSM
point. Through preliminary data exploration, we discovered the data were substantially
non-normal, and greatly spatially autocorrelated. As a result, we removed SSM points
that were within 4 km of one another. Data removal reduced the number of SSM points
from 8875 to 474. Despite removal, spatial autocorrelation still existed, but the degree to
which it existed was reduced. Moran’s I of cumulative impact scores changed from 0.458
(p < 0.001) at distance class I to Moran’s I of 0.313 (p < 0.001). Complete removal of spatial
autocorrelation from our dataset would have thinned the data to too few points to be able
to run an analysis on; therefore, we decided to strike a balance between reducing the data,
yet also minimizing the degree to which spatial autocorrelation existed in our dataset.

To test the prediction that individual or combined threats varied with species along
a latitudinal gradient, we tested our thinned data using PERMANOVAs, a permutation-
based test for significance as the data were still very non normal. PERMANOVAs were run
using the R package ‘vegan’ [116]. We tested this using the interactive effects of species
and latitude responding to threat. We included the threat x species interaction because we
expected that species may vary in their response to spatially varying threats. Due to the
potential for areas with variables of high threat to be clustered, data may not show a direct,
linear relationship with latitude. To better understand any latitudinal relationships present
in our data, we ran breakpoint regressions between latitude and threat (individual threats
vs. latitude, and cumulative threat scores vs. latitude) to see if the breakpoint model was a
better fit to the data. Due to the large spatial gap present and low sample size, we removed
turtle 14, the lone hawksbill of this study, from this portion of the analysis. All data were
given an alpha of 0.95 for detecting statistical significance. All data were analyzed using
R [105].

In order to test the prediction that threats vary by species, we first calculated median
values (due to the presence of outliers) of threat scores for each of the four numerical threats
(Shipping = 0, Light = 1.3, Fishing = 1.2, Oil = 0) and used presence scores for the remaining
three (Coast = 1, MPA = 1, EEZ = 1). Values above the median value for numerical threats
or that had a score of 1 for categorical threats were categorized as ”high threat,” whereas
values below the median or a score of zero, respectively, were considered ”low threat.”
We then calculated the percentage of days during the study period an individual turtle
encountered high threats by dividing the number of days a high threat was encountered
by the sum of their SSM points. We calculated average values for each species from these
percentages to understand how often sea turtle species were exposed to each threat during
the study period. Preliminary data analysis discovered our data were very non-normal.
Therefore, we ran PERMANOVAs on each threat category percent by species. Turtle 14, the
single hawksbill captured for our study, was removed from this part of the analysis.

To test the prediction that turtles within MPA boundaries experienced lower threat,
we recorded the mean time each individual turtle spent outside of an MPA using their SSM
points. If individuals spent more than the mean value (23.6%) outside of an MPA, they
were counted as a “non-MPA” turtle. Individuals that spent more time than the mean value
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within an MPA were counted as “MPA” turtles. Three threat variables of continuous data
(Light, Shipping, Fishing) that were categorized as high threat were compared between
non-MPA and MPA turtles for statistical significance with a Welch’s t-Test in R [104]. t-
Test analyses were modified for unequal variance and if the equal variance assumption
was violated.

To test the prediction that concentration of turtle SSM points is lowest in areas of high
threat, we created a 10 × 10 km grid cell fishnet over the study region and then using the
‘Spatial Join’ tool to merge all points within each grid of the fishnet in ArcGIS Pro version
2.5 [110]. The number of turtle points within each grid cell was treated as a form of density
for that specific area. Threat values of each grid cell were averaged if more than one turtle
point was present. We then ran linear regression analyses to test for relationships between
density and each individual threat, and several combinations of threat layers: All Combined
Threats, Oil Threat (Oil, Shipping, and Coastal layers), Boat Threat (Fishing, Shipping, and
Coastal, EEZ layers), and Fishing Threat (Fishing, Coastal, EEZ, and MPA layers). We
additionally ran breakpoint regressions on our data to determine if density responded to
threat nonlinearly or in linear segments using the R package ‘segmented’ [117].

To better understand threat interactions through time, we added the total number of
high threat categories encountered on a given day for each SSM point and then plotted the
threat on a color gradient (from 0–6) by month of the year and individual turtle, which
clearly displays the daily number of high threats each turtle was exposed to during the
tracking period. Turtles were sorted by capture location, MPA status, and species. Plotting
data in such a manner can provide a visual interpretation of threats by individual, as well
as show the timing of threats by month. All data were analyzed using R version 4.1.0 [104].

3. Results

Turtles were tracked for an average of 221.8 days [118]. The tracking period ranged
from 16 days (minimum) to 1733 days (maximum). The mean number of days with SSM
points varied by species. Mean tracking for loggerhead turtles was 363.1 days whereas
green turtles and Kemp’s ridleys were tracked for 185.7 and 89.5 days, respectively. Turtle
#14, the only hawksbill turtle of this study, was tracked for 790 days (Figures 1 and 2) [118].
Seven of our turtles exhibited long-distance migrations between feeding and breeding
grounds (Figure 3). Most notable was one loggerhead turtle that migrated from Key West,
along the Florida Straits and up the east coast of Florida, and five green turtles, three of
which migrated out of the Dry Tortugas National Park and Florida Keys National Marine
Sanctuary to international waters, the Yucatan Peninsula, and the north coast of Cuba, well
outside of the U.S. EEZ (Figures A1–A3 and Figures A5–A7). The fifth migratory green
turtle, Turtle #16, made two migrations at similar times on two separate years. Increases in
high threat exposure were found at similar times when migrations began for this individual
(Figures 3 and A4).

Whether it be from shipping, fishing, oil rigs, light pollution, moving within coastal
boundaries or outside MPAs, or leaving on long-distance migrations outside of the U.S.
EEZ, most turtles experienced at least one threat on a daily basis. Of the total SSM points,
35.9% encountered no high threat exposure, 47% of which belong to just two individuals
(turtle #25 and #4; Figure 3). However, only 19 points, representing five individual turtles,
had a cumulative threat score of 0.



Remote Sens. 2022, 14, 3887 9 of 28Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 30 
 

 

 
Figure 1. Average number of days tracked using mean number of state–space model (SSM) points 
per individual by species. Error bars represent standard error. Sample sizes are as follows: Hawks-
bill = 1, Loggerhead = 8, Green = 25, Kemp’s Ridley = 6. 

 
Figure 2. Map of study area showing state-space model (SSM) points by species. Turtle species are 
denoted by color. 

Figure 1. Average number of days tracked using mean number of state–space model (SSM) points per
individual by species. Error bars represent standard error. Sample sizes are as follows: Hawksbill = 1,
Loggerhead = 8, Green = 25, Kemp’s Ridley = 6.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 30 
 

 

 
Figure 1. Average number of days tracked using mean number of state–space model (SSM) points 
per individual by species. Error bars represent standard error. Sample sizes are as follows: Hawks-
bill = 1, Loggerhead = 8, Green = 25, Kemp’s Ridley = 6. 

 
Figure 2. Map of study area showing state-space model (SSM) points by species. Turtle species are 
denoted by color. 

Figure 2. Map of study area showing state-space model (SSM) points by species. Turtle species are
denoted by color.



Remote Sens. 2022, 14, 3887 10 of 28Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 30 
 

 

 
Figure 3. Number of high threat categories on a given day by each tagged turtle of our study. Data 
are sorted by capture location, species, geographic region (N = north, C = central, S = south), and 
Marine Protected Area (MPA) status (MPA or non-MPA designation). Missing data indicate lacking 
reliable tracking data or transmitters that terminated transmission before a given full calendar year. 
Turtles that have more than one calendar year of tracking data are displayed with a “-(number)” 
after their ID number. Asterisks (*) denote turtles that migrated, double asterisks (**) denote turtles 
that conducted migrations, but tracking data stopped before turtles returned to their foraging 
grounds. Acronyms are as follows: CC = loggerhead, CM = green, EI = hawksbill, LK = Kemp’s rid-
ley. 

Whether it be from shipping, fishing, oil rigs, light pollution, moving within coastal 
boundaries or outside MPAs, or leaving on long-distance migrations outside of the U.S. 
EEZ, most turtles experienced at least one threat on a daily basis. Of the total SSM points, 
35.9% encountered no high threat exposure, 47% of which belong to just two individuals 
(turtle #25 and #4; Figure 3). However, only 19 points, representing five individual turtles, 
had a cumulative threat score of 0. 

Figure 3. Number of high threat categories on a given day by each tagged turtle of our study. Data
are sorted by capture location, species, geographic region (N = north, C = central, S = south), and
Marine Protected Area (MPA) status (MPA or non-MPA designation). Missing data indicate lacking
reliable tracking data or transmitters that terminated transmission before a given full calendar year.
Turtles that have more than one calendar year of tracking data are displayed with a “-(number)” after
their ID number. Asterisks (*) denote turtles that migrated, double asterisks (**) denote turtles that
conducted migrations, but tracking data stopped before turtles returned to their foraging grounds.
Acronyms are as follows: CC = loggerhead, CM = green, EI = hawksbill, LK = Kemp’s ridley.

3.1. Latitudinal Gradient

Through our PERMANOVA analysis, we found a significant interaction between the
effects of latitude and species on cumulative threat (total cumulative threats F2,448 = 29.268,
p = 0.001; Figure 4), and five of seven individual threats (Fishing F2,448 = 9.499, p = 0.006, Oil—
F2,448 = 5.116, p = 0.012, EEZ—F2,448 = 672.42, p = 0.001, MPA F2,448 = 77.430, p = 0.001, Coastal
F2,448 = 10.236, p = 0.001; Figure 5). Cumulative impact scores of threats showed higher values
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in northern and southern latitudes of the study area, but were lowest at mid-latitudes within
the Florida Keys National Marine Sanctuary and Dry Tortugas National Park (Figure 3). When
the MPA threat was removed as a response, the cumulative values still exhibited a similar,
significant trend (F2,448 = 81.217, p = 0.001), except that loggerhead turtles experienced higher
threat in lower latitudes (Figure 6). Although the interaction between species and latitude
was non-significant for Light Pollution and Shipping threats (Light Pollution—F2,448 = 1.318,
p = 0.253, Shipping—F2,448 = 1.568 p = 0.177), we did detect significant relationships with
the individual effects of both light pollution (latitude—F1,452 = 67.008 p = 0.001, species—
F2,451 = 21.142 p = 0.001) and shipping (species—F2,451 = 7.431 p = 0.001). Breakpoint regression
values for all threats combined and all individual threats were not significantly better fits than
the original models.
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Figure 4. Interactive effects plot of Latitude × Species by the total score of all threats combined (cu-
mulative impact score) using standardized scores. Standardizing threat scores reassigns values based
on a mean of 0 and standard deviation of 1. Values are then re-calculated accordingly. PERMANOVA
results detected a significant relationship between the interaction of species x latitude predicting
threat (F2,448 = 29.628, p = 0.001). Low threat scores for green and loggerhead turtles coincide with the
presence of the Florida Keys National Marine Sanctuary and Dry Tortugas National Park. Kemp’s
ridleys display lower threat scores in southern latitudes.
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Figure 5. Interactive effects plot of latitude x species by the total score of all individual threats using
standardized values. Standardizing threat scores reassigns values based on a mean of zero and
standard deviation of one. Results from our PERMANOVA analysis found significant relationships
between the interactive effects of latitude and species for five threats (Fishing (B) F2,448 = 9.499,
p = 0.006, Oil (D)—F2,448 = 5.116, p = 0.012, Exclusive Economic Zone (EEZ) (E)—F2,448 = 672.42,
p = 0.001, Marine Protected Area (MPA) (F) F2,448 = 77.430, p = 0.001, and Coastal (G) F2,448 = 10.236,
p = 0.001). We found significant relationships on individual predictor variables and threat for both
Light Pollution (A) (latitude—F1,452 = 67.008 p = 0.001, species—F2,451 = 21.142 p = 0.001) and
Shipping (C) (species—F2,451 = 7.431 p = 0.001) threats. Asterisks (*) next to each embedded figure
letter denote a significant result.
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Figure 6. Interactive effects plot of latitude x species by the total score of all threats combined with
Marine Protected Area (MPA) threat values removed (cumulative impact score) using standardized
values. Standardizing threat scores reassigns values based on a mean of zero and standard deviation
of one. PERMANOVA results show that removing MPA threat scores from our combined score still
supports significantly lower threat values central to the Florida Keys National Marine Sanctuary and
Dry Tortugas National Park for green turtles, but showed an increase in threat for loggerhead turtles
(F2,448 = 81.217, p = 0.001). Kemp’s ridleys also show lower cumulative threats in southern latitudes.

3.2. Threat Exposure

From our PERMANOVA analysis, we found that species varied in the degree to
which they experienced five out of the seven threats (Fishing—F2,36 = 11.03, p = 0.001,
Light Pollution—F2,36 = 7.9462, p = 0.002, MPA—F2,36 = 52.837, p = 0.001, Shipping—
F2,36 = 34.523, p = 0.001, Oil—F2,36 = 259.6, p = 0.001; Figure 7). Kemp’s ridleys were found
to have the highest exposure of five threats (Fishing, Shipping, Light Pollution, Oil rigs and
MPA threat). For three of these threats (Fishing Intensity, Light Pollution, and MPA threats),
Kemp’s ridleys encountered 100% high threat presence during their entire tracking period.
They were also the only species tracked here to be found near oil rigs, with more than 50%
of tracking days encountering high oil threat. Loggerhead turtles remained significantly
nearer to the coast than other species, with more than 30% of tracking days found within
10 km of coastlines (coastal threat). Green turtles were the only species to move beyond the
U.S. EEZ, with 5.2% of SSM points found in international waters. These points represent
five individuals that migrated south, three to the Yucatan Peninsula and two to the northern
coast of Cuba. Green turtles spent the most time within MPA boundaries and scored lowest
in five out of the seven threat variables (Fishing Intensity, Light Pollution, MPA, Shipping,
and Oil threats; Figure 7). Differences between species for distance to coast and EEZ threat
exposure were found to be nonsignificant (F2,36 = 0.6355, p = 0.504 and F2,36 = 0.7947,
p = 0.479, respectively; Figure 7).
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Figure 7. Average percentage of days a high threat was encountered by species. Error bars represent
standard error. High threats were classified by threat scores above the median value for the given
threat. PERMANOVA results found that threat scores significantly differed for 5 out of 7 threat
variables (Light Pollution (A)—F2,36 = 7.9462, p = 0.002, Fishing (B)—F2,36 = 11.03, p = 0.001, Shipping
(C)—F2,36 = 34.523, p = 0.001, Oil (D)—F2,36 = 259.6, p = 0.001, and Marine Protected Area (MPA)
(F)—F2,36 = 52.837, p = 0.001), for all of which Kemp’s ridleys scored the highest. Nonsignificant
variables were Coastal (G) and Exclusive Economic Zone (EEZ) (E) threats (F2,36 = 0.6355, p = 0.504
and F2,36 = 0.7947, p = 0.479, respectively). Asterisks (*) next to each embedded figure letter denote a
significant result.

3.3. Threats and MPAs

From our analysis, we found a significant relationship between high threat expo-
sure and the MPA status of turtles. MPA turtles had significantly lower frequencies of
days where high threats were encountered compared with non-MPA turtles for all threat
variables (Fishing—T38 = −4.8428, p Please add the explanation for * in the figure. 0.001,
Shipping—T38 = −4.4127, p ≤ 0.001, Light Pollution—T38 = −5.8619, p ≤ 0.001; Figure 8).
High threat exposure for non-MPA turtles were over two-fold higher for Light Pollution
(46.2% MPA vs. 94.1% non-MPA) and almost three-fold higher for Fishing (26.9% MPA vs.
90.0% non-MPA) threats. Additionally, Shipping threat exposure for non-MPA turtles was
over four times higher than MPA turtles (14.3% MPA vs. 62.6% non-MPA; Figure 8).
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Figure 8. Average percentage of days a “high” threat of three categories (Fishing, Shipping, and
Light Pollution) was encountered for “MPA” and “Non-MPA” turtles. “High” threats were classified
by threat scores above the median value for the given threat. “MPA” and “non-MPA” classification
were calculated by the mean percentage of time an individual turtle was in or out of an MPA
boundary. “Non-MPA” turtles were significantly more likely to encounter a “high” threat than
“MPA” individuals for all three tested threat variables (Fishing (A)—T38 = −3.399, p = 0.002, Shipping
(B)—T38 = −3.191, p = 0.007, Light Pollution (C)—T38 = −3.7005, p = < 0.001). Error bars represent
standard error. Asterisks (*) next to each embedded figure letter denote a significant result.

3.4. Concentration of Points and Threat

No relationships were significant between concentration of SSM points for five of
the individual threats (Shipping, Fishing, Light Pollution, Oil, Coastal, EEZ all p > 0.05).
Additionally, Oil threat and Boat threat groups returned nonsignificant results from linear
models. All combined threats had a significant effect on turtle concentration, (F7,270 = 2.23,
p = 0.0318), and Fishing threat (Fishing, Coastal, EEZ, MPA layers; F4,282 = 3.984, p = 0.004),
which was influenced by the low p-value from the MPA threat as a predictor to the response
of concentration (F1,276 = 12.53, p < 0.001). However, due to the very low R-squared values
(all threats combined = 0.030, Fishing Threat = 0.041, MPA = 0.039), these associations were
not further investigated. To further test whether or not a relationship existed between MPA
boundaries predicting turtle point concentration, a breakpoint regression was run on all
individual variables and the cumulative threat, but was found to not be a significantly
better fit than the initial, linear model.

4. Discussion

Male sea turtles in the Gulf of Mexico, the Caribbean, and Atlantic Coast of Florida are
under pressure from many anthropogenic threats. Of the species we monitored, Kemp’s
ridleys had the highest threat exposure of all species for five out of seven threat categories—



Remote Sens. 2022, 14, 3887 16 of 28

three on a daily basis (100% of points in high exposure to Fishing, Light, and MPA threats).
Kemp’s ridleys were also the only species in this study to be present in areas with high oil
rig threat presence. Loggerheads have been previously recorded in this location by previous
studies [39,40,119], but not in our dataset. Loggerhead turtles consistently experienced the
next highest level of threat, with the highest coastal exposure threat among all three species.
Green turtles scored the lowest threat exposure among species for five of seven threats.
However, they were the only species that left the U.S. EEZ and therefore scored highest
in that category. The exposure of the aforementioned high threats varied significantly
based on geographic location, MPA status, and species. Lastly, turtles that remained within
MPA boundaries at least 76.4% of the time faced significantly less exposure to high threat
compared to those outside of MPA boundaries for three of our numerical threats (Light
Pollution, Shipping, and Fishing).

4.1. Latitudinal Gradient

We found significant differences between the interactive effects of species and latitude
with all combined threats within our study site. Additionally, we found that the highest
cumulative threat areas occurred in clusters north and south of the centrally located Florida
Keys National Marine Sanctuary and Dry Tortugas National Park MPAs. Cumulative
impact mapping using standardized values of all combined threats found a threat gradient,
with relatively high threat in southern latitudes, which decreases around 24.5◦ N before
increasing again in northern latitudes of the study area. When MPA threats are removed
from our cumulative impact analysis, green turtles and Kemp’s ridleys displayed similar
results, but loggerhead turtles show a reverse trend of higher threat in southern latitudes
and lower threat in northern latitudes. The area with lowest scores, whether MPA threats
are included or not, coincided with areas represented by green turtles within the boundaries
of two MPAs, the Florida Keys National Marine Sanctuary and Dry Tortugas National Park.
We did, however, find an area of elevated threat within the MPA boundary, which is due
to a major shipping lane that runs through the Florida Keys National Marine Sanctuary
along the southern and western side of Key West to the rest of the Gulf of Mexico and the
Florida Straits. Additionally, due to zoning and restricted take zones within the Florida
Keys National Marine Sanctuary, the Dry Tortugas National Park had lower threat exposure
than the Florida Keys National Marine Sanctuary.

Despite the cumulative trend of overall lower threat values within the confines of the
Florida Keys National Marine Sanctuary and Dry Tortugas National Park, three individual
threats (Light Pollution, Fishing, and Shipping) had higher scores in the reserve for both
loggerhead and green turtles. Previous data have shown that migratory risks for female
loggerhead turtles within this geographic area are high due to heavy boat traffic from fishing
and ships with AIS transponders, particularly along the Florida Straits to the Atlantic coast
of Florida [35]. Our data also show a similar trend for male sea turtles, with increasing
threat values as turtles head northeast along the Florida Straits, and then increase again
within the Gulf of Mexico. Despite an uptick in Light Pollution, Fishing, and Shipping
threats within the Florida Keys National Marine Sanctuary along the Florida Straits, the
lack of, or reduction in those and other threats within the Florida Keys National Marine
Sanctuary and Dry Tortugas National Park compared to the Gulf of Mexico may indicate
the effectiveness of MPAs within our study area.

Of all threats, fishing is often reported as one of the most impactful for turtles [35,36].
Previous studies within the Gulf of Mexico and Atlantic Ocean have found that fisheries
bycatch represents a major source of mortality for sea turtles [35,40,41]. Hart et al. [40] also
found that 77% of tracked turtles spent at least one day in high threat fishing locations. Our
results also found that turtle points along the Atlantic Coast of Florida, the Florida Straits,
and Gulf of Mexico had the highest fishing threat scores of all SSM points, which coincides
with threats to female sea turtles [35].

Cumulative impact analysis, like the results in our study, has been used in other
systems to develop ecosystem-based management practices [1,120,121]. Combined effects
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of all threats can help shed insight as to where the areas under highest anthropogenic
influence are located. Our study found the highest rates of cumulative impact within
the Gulf of Mexico and Atlantic Coast, with the lowest rates of impact coinciding with
the placement of the Florida Keys National Marine Sanctuary and Dry Tortugas National
Park. By restricting human activities within large aggregate areas, threats to survival can
be reduced.

4.2. Threat Exposure

We detected a significant relationship between individual threat exposure and species
within our study. Overall, Kemp’s ridley sea turtles faced the highest proportion threat
exposure for five threats, with three high threats found at 100% of points (Shipping, Light
Pollution, MPA) and the remaining two being 85.2% (Fishing) and 50.6% (Oil), respectively.
Loggerhead turtles spent the most amount of time inside coastal waters (30.3%) and had
the second highest scores of all tested threats for which they had values. Green turtles were
the only species that left the U.S. EEZ (5.3%) but scored lowest for all remaining variables
for which they had values except for coastal threats.

Several reasons are likely for Kemp’s ridley sea turtles being exposed to the highest
threats in our sample. For one, within our dataset, sites to which Kemp’s ridley have high
fidelity (aggregate clusters of SSM points) are unprotected, exposing turtles to increased
threat exposure. Secondly, Kemp’s ridley turtles are largely found within the Gulf of
Mexico, which has the highest levels of fishing threat exposure from our study, as well
as is documented as having the highest rates of recorded sea turtle bycatch within the
United States [122]. Research has found that sea turtle bycatch in the United States from
shrimp trawlers within the Gulf of Mexico was as high as 98% of total turtle bycatch from
1990–2007 [122]. Kemp’s ridley turtles are also caught by recreational fishermen in the Gulf
of Mexico. In one study, more than 12% of sampled turtles were found to have fishing
hooks in their gastrointestinal tract [123]. Lastly, because they are a primarily Gulf of
Mexico species, Kemp’s ridleys were affected by the Deepwater Horizon oil spill in 2010,
along with local populations of green, loggerhead, and hawksbill turtles [20]. Notable
side effects from the oil spill were deformities in developing embryos, increased mortality,
reduced immune systems, movement impairments, and other symptoms associated with
oil toxicity [82,124–126].

Despite setbacks, Kemp’s ridleys have been the subject of major efforts by multiple
federal and non-profit agencies to recover viable populations. In the 20th century, Kemp’s
ridleys experienced a population collapse, losing more than 98% of their population be-
tween censuses in the 1940s and 1980s [44]. Despite a population rebound in recent decades,
since 2010 nesting counts have plateaued in Texas and Rancho Nuevo, Tamaulipas, Mexico,
where the majority of nests are found [127,128]. Part of this decline in nesting numbers
has been hypothesized as a pulse event of a sudden drop in nesting females from the
Deepwater Horizon oil spill [129]. Researchers have hypothesized that recent declines in
nesting numbers are due to lack of available food resources. The lack of resources may stem
from increases in neritic populations, competition with loggerhead turtles and fish species
for food and discarded catch from fishing vessels, and increases in fishing pressure on crab
and shrimp fisheries within the Gulf of Mexico [121]. Degradation of habitat could lead to
further population declines in food resources for Gulf of Mexico resident sea turtles [127].
Due to the possibility that Kemp’s ridleys receive food from fishing vessels and are condi-
tioned to seek out humans for food, it is not unexpected that we found Shipping, Fishing,
and Light Pollution threats to be the highest among the tracked males of this species.

The trend in stagnant nesting success of Kemp’s ridleys could also be indicative of a
mismatch in placement and functionality of MPAs for sea turtles within the Gulf of Mexico.
Within the confines of our study, we found two clusters of high site fidelity for adult, male
Kemp’s ridleys off the coast of Louisiana (five males) and Alabama (being occupied by a
single male), and one for male loggerhead turtles off of the Florida Panhandle. The three
aggregates of SSM points almost entirely fall outside of any current, established MPA and
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are subjected to heavy exposure to anthropogenic threats that could be detrimental to
the success of the species as adult turtles represent the life stage contributing to future
generational growth [130].

4.3. Threats and MPAs

At present data on the effectiveness of MPAs at protecting at-risk species are mixed.
Although some studies have found positive effects in establishing MPAs for threatened
species, others have indicated their effects are neutral or even negative. Without proper en-
forcement, anthropogenic activities such as fishing, can actually increase in MPAs, reducing
their protective potential [110,131,132]. Revuelta et al. [131] found that without enforce-
ment, MPAs in the Dominican Republic had significant increases in the aforementioned
activities, putting resident animal populations within those MPAs at risk.

MPAs can also suffer from overpopulation of the species they intended to protect
in the first place, which can lead to phenomena like overgrazing. Christianen et al. [133]
found that MPAs within Indonesia were too small to manage the success of green turtle
population increases, highlighting the need to incorporate necessary habitat into species
management plans. Lack of suitable habitat further highlights that MPAs are not a universal
solution to widespread habitat degradation within a region. Despite the shortcomings of
MPAs around the world, and the controversy on the actual effectiveness of MPAs to protect
marine life, our data indicate that MPAs significantly reduce exposure of three threats
(shipping, light pollution, and fishing) in areas that overlap with MPA boundaries.

Effective MPAs have been found to limit both extractive (fishing, oil exploration, etc.)
and non-extractive threats (recreational boating, shipping, etc.) [134] as well as include
active law enforcement to curb illegal activity [135]. Our dataset further supports evidence
that MPAs within the U.S. and Mexico are both effective and well-managed for male
sea turtles. When placed in proper locations, and with adequate laws and enforcement,
MPAs can help curb anthropogenic threats on sensitive marine species. Tracking data like
those presented here have helped establish areas that reduce the severity of anthropogenic
threats for resident animals [49,51,52]. Areas in Gabon, Mexico, and Indonesia with satellite
tracking studies have contributed to the creation of MPAs, which have helped at-risk species,
and many tracking papers like this one have found areas that MPAs could be created or
expanded [42,53,136]. If properly placed, MPAs that encompass aggregate populations of
male sea turtles could help reduce mortality from anthropogenic threats [136,137].

4.4. Future Research Directions

This paper currently contains the largest sample size of any male sea turtle study to
date, and is the first paper to quantify threats for male sea turtles beyond the scope of
fishing, recreation, or shipping by combining these threats with several other categories
that have been shown to reduce sea turtle fitness. Although widely encompassing, some
of our data layers fail to encompass seasonality, which could potentially increase threat
exposure for turtles [138,139]. For example, every year in October, amateur boaters gather
in large numbers to watch high-speed boat races through the Florida Keys [140]. This
influx of high-speed boating could lead to an increase in threat exposure through boats that
likely do not have AIS tags on board. Additional threats could also be seasonal, such as
from tourism and subsequent pollution [139]. Further quantification of threats for male sea
turtles in this area is warranted.

5. Conclusions

The data from this study provide us with more details on male sea turtle movements
with emphasis on the Gulf of Mexico and the Caribbean, and the threats they are exposed
to on a daily basis. Male sea turtles are an understudied group of their species, with most
tracking studies focused on females due to being easier to tag when they nest. This study
is the largest tracking study of male sea turtles to date, and reveals that although some
males exhibit high site fidelity, others will conduct lengthy migrations that put them in
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direct overlap with multiple anthropogenic threats. Using cumulative impact analysis, we
found a latitudinal gradient, with higher threat scores in northern and southern latitudes,
and an area of low threat for all species and two of three species when the MPA threat
category is removed. Our data provide evidence to the effectiveness of MPAs when actively
enforced. Lastly, we found that different species of male sea turtle face varying exposure
of the same threat category, with Kemp’s ridleys being the most widely exposed to high
threat. Kemp’s ridleys tracked here seem particularly vulnerable to the impacts from light
pollution, fishing, and shipping, as exposure was very high compared to other species.
Managers can use our results in the design of conservation measures for male sea turtles
that may help curb the continued population declines of these sensitive, marine reptiles.
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Figure A1. State-space model (SSM) points of Turtle #3, a green turtle (Chelonia mydas) that migrated 
from Dry Tortugas National Park to the Yucatan Peninsula between 13 April and 13 July 2019. Each 
color represents the number of unique high threat categories encountered on that given day within 
a 2 km buffer of the SSM point. Note that tracking data stops before this turtle returned. 

Figure A1. State-space model (SSM) points of Turtle #3, a green turtle (Chelonia mydas) that migrated
from Dry Tortugas National Park to the Yucatan Peninsula between 13 April and 13 July 2019. Each
color represents the number of unique high threat categories encountered on that given day within a
2 km buffer of the SSM point. Note that tracking data stops before this turtle returned.
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Figure A2. State-space model (SSM) points of Turtle #4, a green turtle (Chelonia mydas) that con-
ducted migratory movements from and then promptly returned to Dry Tortugas National Park be-
tween 2 June and 18 June 2017. Each color represents the number of unique high threat categories 
encountered on that given day within a 2 km buffer of the SSM point. 

 

Figure A2. State-space model (SSM) points of Turtle #4, a green turtle (Chelonia mydas) that conducted
migratory movements from and then promptly returned to Dry Tortugas National Park between 2
June and 18 June 2017. Each color represents the number of unique high threat categories encountered
on that given day within a 2 km buffer of the SSM point.



Remote Sens. 2022, 14, 3887 21 of 28

Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 30 
 

 

 
Figure A2. State-space model (SSM) points of Turtle #4, a green turtle (Chelonia mydas) that con-
ducted migratory movements from and then promptly returned to Dry Tortugas National Park be-
tween 2 June and 18 June 2017. Each color represents the number of unique high threat categories 
encountered on that given day within a 2 km buffer of the SSM point. 

 
Figure A3. State-space model (SSM) points of Turtle #8, a green turtle (Chelonia mydas) that migrated
from Dry Tortugas National Park to the Yucatan Peninsula between 7 June 2018 and 19 January 2019.
Each color represents the number of unique high threat categories encountered on that given day
within a 2 km buffer of the SSM point. Note that tracking data stops before this turtle returned.

Remote Sens. 2022, 14, x FOR PEER REVIEW 22 of 30 
 

 

Figure A3. State-space model (SSM) points of Turtle #8, a green turtle (Chelonia mydas) that migrated 
from Dry Tortugas National Park to the Yucatan Peninsula between 7 June 2018 and 19 January 
2019. Each color represents the number of unique high threat categories encountered on that given 
day within a 2 km buffer of the SSM point. Note that tracking data stops before this turtle returned. 

 

Figure A4: State-space model (SSM) points of Turtle #16, a green turtle (Chelonia mydas) that mi-
grated from Dry Tortugas National Park to the Florida Keys National Marine Sanctuary along the 
Straits of Florida between late November and May 2016 and 2018. Each color represents the number 
of unique high threat categories encountered on that given day within a 2 km buffer of the SSM 
point. 

Figure A4. State-space model (SSM) points of Turtle #16, a green turtle (Chelonia mydas) that migrated
from Dry Tortugas National Park to the Florida Keys National Marine Sanctuary along the Straits of
Florida between late November and May 2016 and 2018. Each color represents the number of unique
high threat categories encountered on that given day within a 2 km buffer of the SSM point.
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Figure A5. State-space model (SSM) points of Turtle #20, a green turtle (Chelonia mydas) that mi-
grated from the Florida Keys National Marine Sanctuary near Key West towards the Gulf of Mexico 
and north coast of Cuba between 28 May and 19 June 2020. Each color represents the number of 
unique high threat categories encountered on that given day within a 2 km buffer of the SSM point. 

 

Figure A5. State-space model (SSM) points of Turtle #20, a green turtle (Chelonia mydas) that migrated
from the Florida Keys National Marine Sanctuary near Key West towards the Gulf of Mexico and
north coast of Cuba between 28 May and 19 June 2020. Each color represents the number of unique
high threat categories encountered on that given day within a 2 km buffer of the SSM point.
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Figure A6. State-space model (SSM) points of Turtle #33, a green turtle (Chelonia mydas) that migrated
from Dry Tortugas National Park to the Yucatan Peninsula and back between 22 May and 8 August
2015. Each color represents the number of unique high threat categories encountered on that given
day within a 2 km buffer of the SSM point.
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