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Abstract: As one kind of remote sensing image (RSI), Directional Polarimetric Camera (DPC) data
are of great significance in atmospheric radiation transfer and climate feedback. The availability
of DPC images is often hindered by clouds, and effective cloud detection is the premise of many
applications. Conventional threshold-based cloud detection methods are limited in performance
and generalization capability. In this paper, we propose an effective learning-based 3D multimodal
fusion cloud detection network (MFCD-Net) model. The network is a three-input stream architecture
with a 3D-Unet-like encoder-decoder structure to fuse the multiple modalities of reflectance image,
polarization image Q, and polarization image U in DPC imagery, with consideration of the angle and
spectral information. Furthermore, cross attention is utilized in fusing the polarization features into
the spatial-angle-spectral features in the reflectance image to enhance the expression of the fused
features. The dataset used in this paper is obtained from the DPC cloud product and the cloud
mask product. The proposed MFCD-Net achieved excellent cloud detection performance, with a
recognition accuracy of 95.74%, according to the results of the experiments.

Keywords: cloud detection; polarization; multimodal fusion; cross attention

1. Introduction

In recent years, owing to the fast development of remote sensing technologies, remote
sensing images (RSI) have gained increasing application value in Earth observation [1],
resource investigation, environmental monitoring, and protection [2]. Cloud detection
is important in RSI processing since most RSI are contaminated by clouds [3–5], which
decreases the quality of RSI and influences the subsequent applications [6]. Simultaneously,
clouds play a crucial role in Earth’s radiation balance, water cycle, and climate change [7].
Rapid and accurate cloud detection can help provide an effective data source for the
inversion of cloud and aerosol parameters and the study of sea color characteristics.

Directional Polarimetric Cameras (DPC) have attracted much attention as an emerging
Earth observation technology [8]. Compared with traditional optical remote sensing means,
clouds and aerosols are more sensitive to polarization information, which makes satellite
polarimetric remote sensing more advantageous in atmosphere detection [9]. The main
task of DPC is to obtain multi-band and multi-angle polarized radiation and reflection in-
formation. They are used in researching the optical and physical properties of atmospheric
aerosols, clouds, and marine water observations. They also provide remote sensing data
support for global climate change and atmospheric environment monitoring [8,10–12]. The
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purpose of this paper is to explore effective cloud detection of DPC imagery, which is the
premise of cloud characteristic parameter inversion and ocean water color inversion.

Existing cloud detection methods for polarized RSI, such as DPC imagery, mainly use
the difference in reflectance and polarization reflectance between clouds and the ground to
set thresholds to detect cloud regions. However, these thresholding algorithms are often
limited in performance and generative ability. For example, certain bright surfaces with
high reflectance (ice and snow regions, ocean flare regions, etc.) have very small reflectance
differences with cloud regions, making threshold setting difficult. Second, different regions
often require setting different thresholds. It is, therefore, necessary to investigate more
precise and advanced cloud detection algorithms for DPC imagery cloud detection.

Recently, deep neural network-based methods have been used in the field of RSI cloud
detection, typically developed based on semantic segmentation networks, such as Fully
Convolutional Networks (FCN) [13], U-Net [14,15], and SegNet [16]. However, semantic
segmentation, as a pixel-level classification process, generally requires extremely high
image resolution. Their applications are generally for high-resolution RSI, whereas the
spatial resolution of DPC imagery is extremely low; therefore, these networks are not
suitable. This paper aims to explore effective cloud detection in DPC imagery.

DPC imagery differs from other RSI in that it has multi-spectrum, multi-angle, and
multi-polarization characteristics. DPC consists of eight bands with nine observations, each
from different angles, and three bands are polarized (with additional Stokes vector images
Q and U). Hence, DPC can produce 126 observations per pixel, providing rich information
for Earth observation [12,17,18]. To jointly utilize the information from multiple angles,
we proposed to use 3D convolution [19] to extract and use angle features. Furthermore,
the Squeeze-and-Excitation Network (Senet) [20] is applied to automatically extract the
essential spectrum information while avoiding losing spectral information during the
band selection process. Finally, some previous studies showed that using the polarization
information of clouds can detect cloud pixels in certain areas (such as flare areas) [9,12,17,21].
Polarization images, as another modality different from multi-spectral images, can provide
additional information for cloud detection. Inspired by that, we propose to fuse the DPC
multi-spectral image and polarization image with a multi-stream architecture, where each
stream corresponds to a modality.

Consequently, we propose MFCD-Net, a 3D multimodal fusion network based on
cross attention, which takes the multi-angle reflectance image, polarization image Q (Stokes
vector Q), and polarization image U (Stokes vector U) as inputs for cloud detection. First,
we use angle as the third dimension of the 3D convolution to extract the spatial-angle
information completely. The use of 3D convolution can greatly improve the ability to
represent multi-dimensional data [22,23]. In addition, we consider spectral bands as
channel dimensions and assign different weights to each band based on Senet. Furthermore,
we use the cross attention [24] fusion technique in the fusion stage, which enhances the
expression of the results of fusion between different modalities. Finally, the overall structure
of the whole network is similar to 3D-Unet, and the multimodal fusion operation is carried
out in four stages in the down-sampling part, which not only improves spatial feature
extraction but also strengthens feature fusion representation by repeated fusion.

So far, there is no DPC cloud detection dataset available. To evaluate the pro-
posed method, we use DPC’s Level-1 cloud products and corresponding Level-2 cloud
mask products as the data and label for our dataset, respectively. The dataset contains
126 observations per pixel of the DPC imagery. The main contributions of this paper can be
summarized as follows.

• To the best of our knowledge, ours is the first approach to introduce the notion of
multimodal learning for RSI cloud detection.

• The traditional thresholding algorithm has poor performance and limited generaliza-
tion ability. Furthermore, given the extremely low spatial resolution of DPC images,
conventional semantic segmentation-based methods also fail to achieve good perfor-
mance. To improve the detection performance, this paper proposes a 3D multimodal
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fusion network (MFCD-Net). It makes up for the lack of spatial features by extracting
and using angle features, spectral features, and polarization features, thus achieving
good performance.

• Simple concatenation and summation feature fusion methods can hardly solve the
feature fusion problem where there is an imbalance between features in multimodal
data and information inequality contained by different features [25]. In order to
enhance the feature fusion effect between different modalities, a cross-attention fusion
module is designed in this paper. It takes the attention map from the polarization
modality to enhance the representation of the reflectance modality.

The remainder of this paper is organized as follows. Section 2 reviews the related work.
Section 3 presents the GF-5 DPC and the corresponding cloud detection dataset. Section 4
describes our multimodal network in detail. Section 5 reports the experimental results and
discusses the experiment details. Finally, Section 6 offers the conclusion of this research.

2. Related Work

Up to the present, many efforts have been made for cloud detection of RSI, and a
variety of cloud detection methods have been proposed. These methods mainly rely on
spectral information, frequency information, spatial texture, and other information, in
combination with thresholding, clustering, support vector machines, neural networks,
and other algorithms for detection [26]. Roughly speaking, they can be summarized as
rule-based methods and machine learning-based methods.

The earliest and most generally used rule-based cloud detection method is the spectral
threshold method [27]. Several spectral threshold algorithms for DPC imagery have been
developed. These methods use reflectance or polarization reflectance to define the threshold.
For example, JinghanLi et al. [10] proposed a multi-information cooperation (MIC) method.
Rather than relying on a single constant threshold, the MIC utilizes dynamic thresholds
simulated by multiple atmospheric models, time intervals, and underlying surfaces. Some
other rule-based cloud detection methods were developed based on textural features. Gray
co-occurrence matrix, fractal dimension, and boundary features are the most widely used
among the different texture analysis methods [28] since they are compatible with the texture
properties of the cloud. Though straightforward, the rule-based methods have limited
generalization capability and are deficient in terms of performance.

Automatically learning from training data, machine learning algorithms such as
conventional random forest [29], K-nearest algorithm [28], and support vector machine [30]
have been applied to cloud detection algorithms. Owing to their excellent performance in
many vision tasks, deep learning algorithms have emerged as the most popular methods for
cloud detection. Fengying Xie et al. [31] proposed a cloud detection algorithm that divides
an image into super-pixels by improving simple linear clustering (SLIC) and designs a
CNN with two branches to extract multi-scale features of each super-pixel to distinguish
pixels. More cloud detection algorithms are based on semantic segmentation models.
JingyuYang et al. [6] proposed a cloud detection neural network (CDnet) with an encoder–
decoder structure, feature pyramid module, and boundary refinement block to detect cloud
areas in thumbnails effectively. Zhenfeng Shao et al. [32] superimposed the visible, near-
infrared, shortwave, cirrus, and thermal infrared bands of the Lansat8 satellite to obtain
complete spectral information and then proposed a convolution neural network based on
multi-scale features to identify thick clouds, thin clouds, and non-cloud regions. Weakly
supervised cloud detection methods have also been developed. Zou et al. [33] defined
cloud detection as a mixed energy separation process of image foreground and background.
The generative antagonistic framework is utilized to establish the groundwork for weak
supervision of the cloud image by combining the physical principles behind the cloud
image. Yansheng Li et al. [34] proposed a weakly supervised deep learning-based cloud
detection (WDCD) method that uses block-level labels to reduce the labor required for
annotating the pixel-level labels. In the past two years, the research of deep learning in the
field of cloud detection has gradually matured. The problems of cloud boundary blurring



Remote Sens. 2022, 14, 3905 4 of 20

and computational complexity have become recent research hotspots. Kai Hu et al. [35]
proposed Cloud Detection U-Net (CDUNet), which could refine the division boundary of
the cloud layer and capture its spatial position information. To reduce the computational
complexity without affecting the accuracy, Chen Luo et al. [36] developed a lightweight
autoencoder-based cloud detection network, LWCDNet. Qibin He et al. [37] proposed a
lightweight network (DABNet) to achieve high-accuracy detection of complex clouds, with
not only a clearer boundary but also a lower false-alarm rate.

Even though the deep learning-based methods discussed above have achieved im-
pressive performance, they are difficult to apply to DPC imagery due to the low spatial
resolution of DPC imagery. Therefore, this paper proposes a novel MFCD-Net using 3D
convolution, Senet, and cross attention fusion to extract and utilize angle, spectral, and
polarization information to compensate for the lack of spatial information and achieve
superior performance.

3. Dataset

In this section, we detail the description of the dataset. First, we present the data
sources and descriptions. In addition, we explain the reasoning behind our data selection.
Finally, we discuss how the dataset was processed.

3.1. Data Sources and Description

As an important payload of the GF-5 satellite, the Directional Polarimetric Camera
(DPC) is the first Chinese multi-angle polarized observation sensor. DPC imagery has the
properties of multi-angle, multi-spectrum, and multi-polarization, with a spatial resolution
of 3.3 km × 3.3 km and a swath width of 1850 km. DPC has three polarized bands (490,
670, 865 nm) and five unpolarized bands (443, 565, 763, 765, and 910 nm). Table 1 lists the
precise details for each band. Based on the satellite platform’s ultra-wide (100◦) field of
view and continuous imaging capability, DPC can view targets from 9 various observation
angles, producing an observation vector with at least 126 measurements per pixel (shown
in Figure 1).

Table 1. The spectral band of DPC.

Band Central Wavelength Band Width Number of
Observations

Band1 443 nm 433~453 nm 9
Band2 (Polarization) 490 nm 480~500 nm 9 × 3 = 27

Band3 565 nm 555~575 nm 9
Band4 (Polarization) 670 nm 660~680 nm 9 × 3 = 27

Bnad5 763 nm 758~768 nm 9
Band6 765 nm 745~785 nm 9

Band7 (Polarization) 865 nm 845~885 nm 9 × 3 = 27
Band8 910 nm 900~920 nm 9

Our dataset is derived from DPC L1-level cloud products and the corresponding
L2-level cloud mask products produced by the Hefei Institute of Material Sciences of the
Chinese Academy of Sciences. There are 14 large DPC images and corresponding cloud
mask labels with a size of 12,168 × 6084. These images were selected based on cloud
coverage and the underlying surface. To enhance the usefulness of the dataset, all images
have high cloud coverage, with a small difference in the proportion of the lower underlying
surface being ocean and land.
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3.2. Data Selection

Reflectance is the ratio of the reflected energy from the surface of an object to the
incident energy reaching the surface of the object. There are many threshold cloud detection
algorithms that identify cloud pixels based on reflectance and brightness temperature [38].
This is due to the fact that cloud pixels have higher reflectance than clear sky pixels, and
this is also the core detection condition of the traditional threshold method. To deepen the
distinction between cloud and non-cloud pixels, we use the DPC reflectance data as part of
the dataset. The reflectance data are calculated based on the normalized radiance data and
solar zenith angle data in DPC L1-level cloud products by the formula:

R =
πL
µsE

(1)

where L represents radiation brightness, µS represents the cosine value of the solar zenith
angle, and E represents solar irradiance at the top of the atmosphere.

Middle-level clouds, low-level clouds, and thin cloud regions have low reflectance. The
difference between their reflectance and surface reflectance is not obvious, and it is difficult
to obtain satisfactory cloud detection results only by using reflectance images. There
is increasing evidence that polarized radiation information can contribute to improving
cloud recognition abilities for these areas [39,40]. Therefore, our dataset also includes
polarization radiation data, i.e., Stokes vector images Q and U. Q denotes the intensity
of linear polarization parallel or perpendicular to the reference plane, and U denotes the
intensity of linear polarization at the angle of 45 degrees to the reference plane.

Considering the high number of spectral bands presented in DPC imagery, the spectral
threshold method generally selects some appropriate band’s reflectance or polarization
reflectance data for threshold detection. The polarization reflectance RP is generally defined
by the following equation:

RP =

√
Q2 + U2

µsE
(2)

where Q and U represent Stokes vector Q and U, µS represents the cosine value of the solar
zenith angle, and E represents solar irradiance at the top of the atmosphere.

In our dataset, however, we have chosen the reflectance image of all eight bands and
the polarization image (Stokes vector images Q and U) of all three bands. There are four
main reasons:
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• There is useful information for cloud identification in the reflectivity and polarization
images of each band;

• By using the channel attention mechanism, the important band can be highlighted,
the unimportant band can be suppressed, and the information redundancy and inter-
ference caused by the large number of input bands can be avoided;

• The spatial resolution of the DPC imagery is quite low (3.3 km × 3.3 km), hard
to distinguish between cloud and the underlying surface, and the texture is not
discernible, particularly in areas where cloud and snow coexist. This means that its
spatial information is extremely limited. Hence, in this case, we collected rich spectral
data as well as polarization data to provide more precise cloud detection.

• Q and U images already contain all the polarization information, and the solar zenith
angle information is already included in the reflectance data, so there is no need to use
the polarization reflectance data in our dataset.

According to the related research, the nine angles of DPC imagery contain a consid-
erable amount of information, and the information contained within each of the angles
complements one another and can help increase the accuracy of cloud detection [41–43].
Thus, all nine angles of DPC imagery are utilized to compensate for this lack of spatial
information, thereby improving cloud detection accuracy. In order to more effectively
extract the features of each angle, we consider angle as the third dimension in the image
and then use 3D convolution to extract the spatial-angle features. We set spectral to the
channel dimension. In the proposed MFCD-Net, the input data is composed of three
modalities (including reflectance image, polarization image Q, and polarization image U),
and the output is binary label image (including two classes, cloud and non-cloud).

3.3. Data Processing

According to the requirements of the experiments, we split 12 images into a training
dataset and the other 2 images into a validation dataset. However, due to the DPC’s
imaging mode’s characteristics, each image’s effective zones are limited (shown in Figure 2).
As a result, before using data, we must delete invalid filling zones and edge zones lacking
angle information (as shown in Figure 3) to reduce data contamination. Coupled with
the hardware device performance constraints, it is necessary to reduce the size of the
input images. We selected the effective zones from the images in our research by going
through a series of screening steps and obtained image blocks that are 32 × 32 pixels in size.
Table 2 provides the summarized information of the dataset. Due to the limited amount
of experimental data, our experiments use the validation set when testing experimental
precision and do not create additional test datasets. Meanwhile, for the qualitative analysis
of our experiments, we cropped five representative examples of size 160 × 160 in the two
large images of the validation dataset as test images.

Table 2. Detailed information of dataset.

Dataset Image Type Block Size Number of Blocks

Training dataset

Reflectance image 32 × 32 × 9 × 8

21,164
Polarization image Q 32 × 32 × 9 × 3
Polarization image U 32 × 32 × 9 × 3

Label image 32 × 32

Validation dataset

Reflectance image 32 × 32 × 9 × 8

2849
Polarization image Q 32 × 32 × 9 × 3
Polarization image U 32 × 32 × 9 × 3

Label image 32 × 32
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color image shows that the edge zone of the images from different angles does not overlap. These
areas lacking certain angle information are invalid edge areas.
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4. Proposed Method

The purpose of this research is to use deep learning technology for pixel-level DPC
imagery cloud detection. To accomplish this task, we propose a 3D multimodal fusion
network based on cross attention (MFCD-Net). In this part, we first introduce the overall
overview and specific framework of MFCD-Net and then focus on the cross-attention (CA)
fusion module.

4.1. Model Overview

As shown in Figure 4, our network framework is an end-to-end network with three
inputs and one output (cloud mask label). Specifically, our input data consists of three
modalities: reflectance image R (32 × 32 × 9 × 8), polarization image Q (32 × 32 × 9 × 3),
and polarization image U (32× 32× 9× 3). The output of the network is a cloud mask label
image. In order to extract the feature of variation between angles, we use angle as the third
dimension of 3D convolution. To highlight the spectral information of important bands, we
set the spectral band as the channel dimension, thus using Senet to attach different weights
to different bands. The key point of this model is to use the CA module to synergistically
fuse the spectral-spatial-angle features of reflectance images and the polarization features
of polarization images.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 21 
 

 

Table 2. Detailed information of dataset. 

Dataset Image Type Block Size Number of Blocks 

Training dataset 

Reflectance image 32 × 32 × 9 × 8 

21,164 Polarization image Q 32 × 32 × 9 × 3 
Polarization image U 32 × 32 × 9 × 3 

Label image 32 × 32 

Validation dataset 

Reflectance image 32 × 32 × 9 × 8 

2849 Polarization image Q 32 × 32 × 9 × 3 
Polarization image U 32 × 32 × 9 × 3 

Label image 32 × 32 

4. Proposed Method 
The purpose of this research is to use deep learning technology for pixel-level DPC 

imagery cloud detection. To accomplish this task, we propose a 3D multimodal fusion 
network based on cross attention (MFCD-Net). In this part, we first introduce the overall 
overview and specific framework of MFCD-Net and then focus on the cross-attention (CA) 
fusion module. 

4.1. Model Overview 
As shown in Figure 4, our network framework is an end-to-end network with three 

inputs and one output (cloud mask label). Specifically, our input data consists of three 
modalities: reflectance image R (32 × 32 × 9 × 8), polarization image Q (32 × 32 × 9 × 3), and 
polarization image U (32 × 32 × 9 × 3). The output of the network is a cloud mask label 
image. In order to extract the feature of variation between angles, we use angle as the third 
dimension of 3D convolution. To highlight the spectral information of important bands, 
we set the spectral band as the channel dimension, thus using Senet to attach different 
weights to different bands. The key point of this model is to use the CA module to syner-
gistically fuse the spectral-spatial-angle features of reflectance images and the polariza-
tion features of polarization images. 

 
Figure 4. Schematic of MFCD-Net. 

  

Figure 4. Schematic of MFCD-Net.

4.2. Network Architecture

The accuracy of feature extraction directly affects the accuracy of the final classification.
For very deep networks, networks with a residual structure are easier to train and optimize
and achieve impressive performance in a variety of visual tasks [44]. According to the
structure of 3D-ResNet-18 [45], we design a Res-block (shown in Figure 5) with two skip
connections. The Res-block replaces the ordinary convolutional in the feature extraction
process of our model and enhances the feature extraction performance.

As shown in Figure 4, the MFCD-Net architecture is an encoder–decoder structure
similar to 3D-UNet. It is divided into four parts: the polarization feature extraction module
(PFE), the backbone feature extraction and fusion module (BFEF), the up-sampling module,
and the detection module. Each feature map in the model except the detection module is a
4D array with the size of height × width × depth × channel, where height and width are
spatial dimensions, depth is angle dimension, and the channel is spectral dimension.
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In the overall MFCD-Net, the PFE module is used to extract the polarization features
of polarization images Q and U at different levels. In the BFEF module, we fuse these
polarization features using the CA module at different scales with the spatial-angle-spectral
features extracted from the reflectance images. Next, we decode these fused high-level
features in the up-sampling module. Finally, the fused features are output as cloud masks
through the detection module. These modules are discussed as follows.

• Polarization feature extraction module. In the PFE module, we first utilize the con-
catenation operation to fuse the features of polarization components Q and U. Mean-
while, we use theSenet (shown in Figure 6) before and after the concatenation operation
to highlight useful bands and suppress inefficient bands. Then, to extract different
levels of polarization features for the fused polarization features, we employ Res-block
and the max-pooling operation to extract different levels of polarization features in the
extraction structure to adequately fuse polarization features with backbone features
(spatial-angle-spectral features). The number of channels in different stages is set to
64, 128, 256, and 512, respectively. Max-pooling operation parameter set to (2,2,1). The
size of the feature map at different stages is 32 × 32 × 9, 16 × 16× 9, 8 × 8 × 9, and
4 × 4 × 9. The convolution kernel is set to size 3 × 3 × 3, and the stride is 1.

• Backbone feature extraction and fusion module. The structure of the BFEF module
is similar to that of the PFE module, which is based on Res-block and max-pooling. In
addition, Senet is also utilized to highlight the information of important bands for the
input original feature. Furthermore, the BFEF module additionally contains a step for
feature fusion. We fuse the polarization features with the backbone features on the
equal stage to reduce information loss as much as possible. The number of channels in
each stage, the max-pooling parameter, convolution parameter, and the feature map
size are all the same as those in the PFE model.
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• Up-sampling module. The decoder part of the entire network is the up-sampling
module. The up-sampling module’s purpose is to restore the size of the high-level
fused features output by the BFEF module to that of the original input features. As
shown in Figure 4, after each up-sampling, a convolution is applied to adjust the
number of channels, and we represent this operation as up-conv. The size of up-
sampling and the convolution kernel is set to (2,2,1), (2,2,2). After each up-conv,
the feature maps of each stage in the BFEF are merged with the feature maps in the
up-sampling module via a skip connection to enhance the fusion of features.

• Detection module. The detection module’s purpose is to convert the fused feature
maps into cloud masks. Since the feature maps input to the detection module are 3D,
and the cloud mask is 2D, we first need to reshape them to 2D. Specifically, in order
not to change the spatial representation of the feature maps, the reshaping operation
aggregates the third dimension and the channel dimension of the 3D feature maps
into the channel dimension and does not change the content of the spatial dimension.
That is followed by a convolution layer with a 1 × 1 kernel, two filters (indicating
two classes, cloud and non-cloud), and a softmax activation function. In the end, the
classification result of cloud and non-cloud at the pixel level will be obtained.
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4.3. Cross Attention Fusion

In multimodal learning, feature extraction for different modalities is often performed
separately rather than jointly using features from both modalities. This leads to the omis-
sion of some important shared high-level features in both modalities. Moreover, a simple
concatenation fusion would make the features of different modalities significantly unbal-
anced. In general, attention-based learning focuses on a single modality; thus, only features
that are similar are highlighted. The goal of the CA module is to take the polarization
modality’s attention map and utilize it to improve the representation of the reflectance
modality. Simultaneously, the reflectance modality’s attention map is multiplied with
reflectance features to obtain the self-attentional feature map. It can reduce the information
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loss of reflectance modality in the fusion process. In order to enhance the fusion effect, the
whole process was carried out successively in the channel dimension and the spatial-angle
dimension, and the channel attention and spatial-angle attention were used to generate the
attention maps, respectively.

As shown in Figure 7, given a reflectance modality feature map R ∈ RH×W×D×C and
polarization modality feature map P ∈ RH×W×D×C as inputs, the CA module output the
fused feature map F

′′ ∈ RH×W×D×C. The overall process can be summarized as follows:

F′ = f 3×3×3([R
⊗

MC(R) ; R
⊗

MC(P)])

= f 3×3×3
([

F′sel f ; F′cross

]) (3)

F
′′
= f 3×3×3([F′

⊗
MSA(R) ; F′

⊗
MSA(P)])

= f 3×3×3
([

F′′sel f ; F′′cross

]) (4)

where F′sel f ∈ RH×W×D×C and F′cross ∈ RH×W×D×C represent the self-attention and cross-

attention feature map in channel dimension, respectively, F′ ∈ RH×W×D×C is the fused
feature map in channel dimension, f 3×3×3 means a 3D convolution operation with the
filter size of 3× 3× 3,

⊗
means the element-wise multiplication, MC means the channel

attention module, MSA means the spatial-angle attention module, and F′′sel f ∈ RH×W×D×C

and F′′cross ∈ RH×W×D×C represent the self-attention and cross-attention feature map in
spatial-angle dimension, respectively.
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Channel attention module MC and spatial-angle attention module MSA are two im-
portant parts of the CA module, which generate attention weight in channel dimension
and spatial-angle dimension, respectively. Figures 8 and 9 depict the computation process
of each attention map. The following describes the details of each attention module.
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Figure 9. Detailed structure of spatial-angle attention module.

For aggregating spatial information, average-polling has been proven to be effec-
tive [46]. However, some studies have demonstrated that max-pooling can obtain another
important feature, and using both average-polling and max-pooling features simultane-
ously can obtain better performance [47]. In contrast, what we need in the process of
obtaining channel weights is the aggregation of spatial-angle three-dimensional infor-
mation. Here we utilize average-pooling and max-pooling simultaneously to generate
two different feature descriptors: FC

avg ∈ R1×1×1×C and FC
max ∈ R1×1×1×C. The detailed

operation is computed as:

Mc(F) = W2(W1(GAP(F)) + W1(GMP(F)))
= W2

(
W1

(
FC

avg

)
+ W1

(
FC

max
)) (5)
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where F ∈ RH×W×D×C is the input feature map, GAP and GMP denote the GlobleAverage-
Pooling3D and GlobleMaxPooling3D operation, respectively, W1 ∈ R1×1×1×C/2 denotes
the full connection layer with the ReLU activation function, W2 ∈ R1×1×1×C denotes the
full connection layer with the sigmoid function, and Mc(F) ∈ R1×1×1×C is the output
weight feature vector.

For 2D feature maps, a spatial attention map is generally used to express the impor-
tance of each spatial pixel. In this paper, we generate the spatial-angle attention map to
represent the degree of importance of each point in a 3D feature map. We compute the
spatial-angle attention by applying average-pooling and max-pooling operations along the
channel axis and concatenating them to generate an efficient feature descriptor. Convolu-
tion is applied to the concatenated feature descriptors in order to generate the spatial-angle
attention map, which indicates where to emphasize or suppress information. The detailed
operation is computed as:

MSA(F) = f 3×3×3([AvgPool(F); MaxPool(F)])
= f 3×3×3

([
FSA

avg; FSA
max

]) (6)

where F ∈ RH×W×D×C is the input feature map, f 3×3×3 represents a convolution layer with
the filter size of 3 × 3 × 3 and the sigmoid function, FSA

avg ∈ RH×W×D×1 and
FSA

max ∈ RH×W×D×1 are two 3D maps after aggregating channel information of a feature
map by using two pooling operations AvgPool and MaxPool, and MSA(F) ∈ RH×W×D×1

is the output weight feature map.

5. Experiments

In this section, we comprehensively evaluate the proposed MFCD-Net on DPC imagery.
Specifically, we first describe the experimental setup and the evaluation metrics. Then, we
evaluate the performance of our proposed MFCD-Net qualitatively and quantitatively. Third,
we further investigate the performance of the CA module, Senet, and Res-block. Finally, we
demonstrate the effectiveness of our method of DPC imagery selection and processing.

5.1. Experimental Settings
5.1.1. Training Details

All networks were trained under the Keras framework and optimized by the Adam
algorithm [48]. The proposed MFCD-Net is trained in an end-to-end manner. The learning
rate starts from 10−5, and is then dynamically changed by the ‘Reduce LR On Plateau’ func-
tion. Specifically, when the validation-loss does not decrease for three epochs, the learning
rate will drop to the original 0.8. The whole training process has a total of 100 epochs, and
the training will end when the validation-loss does not decrease for 30 epochs. The loss
function used in the experiment is the cross-entropy loss function. Comparison methods
are trained with the same settings as the MFCD-Net.

5.1.2. Evaluation Metrics

Such commonly used semantic segmentation metrics as overall accuracy (OA), pro-
ducer accuracy (PA), user accuracy (UA), and MIoU (Mean Intersection over Union) have
been employed as evaluation metrics to examine the performance of the cloud detection
methods. The formulas for calculating these evaluation indicators are as follows:

OA =
TP + TN

TP + TN + FP + FN
(7)

PA =
TP

TP + FN
(8)

UA =
TP

TP + FP
(9)
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MIoU =
(IoUP + IoUN)

2
=

TP
TP+FP+FN + TN

TN+FN+FP
2

(10)

where TP, TN, FP, and FN denote the number of correctly identified cloud pixels, the number
of correctly identified non-cloud pixels, the number of incorrectly identified cloud pixels, and
the number of incorrectly identified non-cloud pixels, respectively, IoUP represents the IoU
(Intersection over Union) of cloud pixel, and IoUN represents the IoU of non-cloud pixels.

5.1.3. Data Augmentation

The use of data augmentation techniques can, to a certain extent, avoid the overfitting
problem and improve the generalization ability of the model [49]. The MFCD-Net is based
on three-dimensional convolution, with a considerable number of parameters and a large
demand for training data. Because of the poor resolution of DPC imagery, obtaining a large
number of label images is challenging; hence the dataset we use is limited and cannot match
the network model’s requirements. We have performed data enhancement operations on
the training data and label, such as vertical flipping, horizontal flipping, and diagonal
mirror flipping, to improve the robustness of the network model.

5.2. Comparative Experiment of Different Methods

The compared methods include the classical semantic segmentation method: FCN,
U-Net, Seg-Net, PSP-Net, and DeepLab-V3. In addition, a comparison is made with some
advanced cloud detection methods: deformable contextual and boundary-weighted net-
work (DABNet) [37], lightweight cloud detection network (LWCDnet) [36], and cloud
detection UNet (CDUNet) [35]. In order to compare objectively and effectively, the parame-
ters of the experiment are kept consistent. Since the above comparison methods are based
on 2D-CNN, we modified the reflectance image and polarization images into 2D form to
form multi-channel data. The block size of the input image in 2D-CNN-based networks is
32 × 32 × 126.

Figure 10 shows the experiment’s qualitative comparison results on five examples from
our dataset. These examples include different backgrounds, such as sea and land regions and
special ocean flare regions. In addition, thick and thin cloud scenarios are included. It can be
seen that the proposed MFCD-Net has the fewest misclassified pixels in all cases, showing
that it has the best capacity to distinguish cloud pixels. It should be noted that our method
has significantly fewer misclassified pixels in the edge region than other methods, proving
that it can solve the problem of difficult cloud boundary identification well.
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Figure 10. Experiment’s qualitative comparison results. The size of all images is 160 × 160. The
thumbnails are the RGB pseudo-color composition of the third angle reflectance image of 670 nm
band, 565 nm band, and 490 nm band. (a–e) are examples of five different situations; (a) is the
sea–land mixed case, (b) is the thin cloud case in the ocean region, (c) is the land region, (d) is the
thick cloud case, and (e) is the flare region. Gray represents cloud, black represents non-cloud, and
red represents misclassification result.
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Quantitative comparison results are shown in Table 3. In all the evaluation metrics,
our method achieves the best performance, especially MIoU, which is improved by at least
3.38% compared with other methods. The results indicate that the proposed MFCD-Net
outperforms 2D-CNN-based comparison methods, showing the superiority of 3D convolu-
tion in feature extraction of multi-dimensional data. Along with the proposed MFCD-Net,
the U-net and CDUNet achieved 92.95% and 93.82% in terms of OA, respectively, demon-
strating that the U-shaped encoder–decoder structure has a strong ability to extract the
features of the multi-channel data. This is why we choose an encoder–decoder structure
similar to U-net in the proposed MFCD-Net.

Table 3. Cloud detection accuracy of different methods (%).

Method OA UA PA MIoU

FCN 86.45 89.24 88.84 75.06
Seg-net 89.95 90.11 92.81 80.41
U-net 92.95 93.30 95.17 86.24

PSP-Net 91.18 94.38 91.58 82.87
Deeplab-V3 92.76 93.66 94.56 85.88
LWCDNet 92.37 91.78 95.67 85.26
DABNet 92.36 92.46 95.02 85.20
CDUNet 93.82 94.37 95.56 87.82

MFCD-Net 95.74 96.38 96.96 91.20

5.3. Ablation Study

To demonstrate the advancement and effectiveness of our designed network, we imple-
mented ablation experiments on the DPC dataset for the Res-block, Senet, and CA modules.
We list the evaluation performance of the backbone network, as shown in Table 4. The experi-
ments have been carried out on both unimodal data (input reflectance data only, represented
as (R) in Table 4) as well as multimodal data (input both reflectance and polarization data,
represented as (R+P) in Table 4) to eliminate the effect of data on experiments.

Table 4. The cloud detection accuracy (%) for ablation study.

Method. OA UA PA MIoU

3D-UNet (R) 93.69 94.66 90.93 87.95
3D-UNet (R+P) 94.56 93.76 94.02 89.57

3D-UNet + Senet(R) 94.18 95.63 95.31 88.15
3D-UNet + Senet(R+P) 95.03 96.60 95.64 89.73

3D-UNet + Senet + Res-block (R) 95.00 96.36 95.86 89.72
3D-UNet + Senet + Res-block (R+P) 95.31 97.01 95.74 90.29
3D-UNet + Senet + Res-block + CA 95.74 96.38 96.96 91.20

Our network structure is improved based on the 3D-UNet. In order to highlight the
important band information of the input data, Senet is used to attach different weights to
the features of different bands. It can be seen that the Senet improves the performance from
93.69% to 94.18% in the unimodal case and from 94.56% to 95.03% in the multimodal case
in terms of OA. Based on the incorporation of Senet, we further introduce Res-block to
replace the normal CBR-block (Conv+ BatchNormalization+Relu) in the feature extraction
process in 3D-Unet and thus steadily improve the model by deepening the number of
network layers. The experimental results show that the use of Res-blocks has a significant
improvement in the performance of the model in all evaluation metrics. The CA module
is the core part of MFCD-Net. Different from the commonly used feature concatenation
fusion method, it highlights the reflectance feature by an attentional map of the polarization
feature, synergistically fusing the multimodal feature. The ablation networks without the
CA module use a feature concatenation fusion method in the case of multimodal data. It
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can be seen that MFCD-Net (3D-UNet + Senet + Res-block + CA) achieves the highest
performance in terms of OA, MIoU, and PA compared with other ablation networks.

5.4. Selection of Dataset

Considering DPC imagery’s multi-spectral, multi-angle, and multi-polarization proper-
ties, the selection of band and angle and the use of polarization images are very important
steps. We conducted a series of experiments to illustrate the effectiveness of our data selection
strategy of separating all data into three modalities and then performing multimodal fusion.

First, in the case of using multi-angle data, we respectively input the R (reflectance)
image, Q (Stokes vector Q) image, and U (Stokes vector U) image of each band into the
single modality MFCD-Net network for experiments. Specifically, by altering the input
data, we conducted the following experiments to demonstrate the effectiveness of using
multi-band combined images: inputting 3-band (including various combinations) R images,
8-band R images, 3-band Q images, and 3-band U images. As shown in Table 5, 8-band
R image input outperforms 3-band and single-band R image input. Simultaneously, the
performance of 3-band polarization images (Q and U) input is superior to that of single-
band polarization image input, demonstrating the effectiveness of using multi-band data
input in this research. The detection effect of employing merely R image input, Q image
input, or U image input is not as good as the proposed method in this research. This
demonstrates that neither the polarization image nor the reflectance image can include all
of the necessary information, demonstrating the efficacy of the data use method presented
in this study.

Table 5. The cloud detection accuracy (%) of different input bands.

Data OA UA PA MIoU

Single-band

443 nm 91.42 89.49 91.43 84.06
490 nm 92.25 89.93 92.98 85.50
565 nm 92.36 90.15 92.98 85.69
670 nm 92.58 90.58 92.98 86.06
763 nm 91.89 89.81 92.22 84.87
765 nm 91.56 90.38 90.67 84.27
865 nm 92.96 90.93 91.73 85.49
910 nm 91.47 90.22 90.67 84.12

Q490 nm 78.85 75.19 78.32 64.89
Q670 nm 79.86 76.52 78.32 65.99
Q865 nm 80.21 76.88 79.33 66.74
U490 nm 79.25 75.31 79.33 65.46
U670 nm 80.21 76.95 79.20 66.74
U865 nm 82.25 79.86 80.32 69.60

3-band

Q490-Q670-Q865 85.46 84.34 82.63 74.33
U490-U670-U865 86.52 86.03 83.17 75.95

443-490-865 93.56 92.38 93.20 87.78
490-670-865 94.35 94.73 92.42 89.16
443-670-865 93.86 94.26 91.78 88.27
763-765-910 93.04 93.12 91.06 86.82
565-765-910 93.53 92.86 92.56 87.71

8-band 95.00 96.36 95.86 89.72

Next, a few experiments on multi-angle and single-angle cases were carried out under
the adjusted single modality input MFCD-Net network to demonstrate the importance of
multi-angle data. Because the size of the third dimension (angle dimension) of the feature
maps is 1 in the case of single-angle input, we need to alter the size of the convolution
kernel (must be larger than the size of the feature map’s third dimension). We added two
groups of experiments to increase the credibility of the experiment, input 3-angle data and
input 6-angle data, to compare with the approach of input 9-angle data in this paper. Table 6
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shows that the 1h ∼ 9th-angle input achieved the best performance, and the experimental
effect improved as input angle numbers rose. This highlights the role of each angle and the
effectiveness of using multi-angle data.

Finally, we replace the reflectance image input with the radiance image input in this
approach to show that the reflectance image has more information than the radiance image
discussed in Section 3. The detection performance of the approach utilizing radiance input
is not as good as that of the method in this paper using reflectance input, as shown in
Table 7. As this experiment illustrates, reflectance data can provide more information than
radiant brightness data. As a consequence, in our dataset, we used reflectance data rather
than radiance data.

Table 6. The cloud detection accuracy (%) of different input angles.

Data OA UA PA MIoU

1h-angle 87.53 88.24 91.99 78.11
2h-angle 87.79 82.21 92.56 78.18
3th-angle 87.63 83.66 95.60 77.28
4th-angle 88.56 83.02 93.35 79.42
5th-angle 88.91 89.20 93.22 78.92
6th-angle 89.06 83.86 93.35 80.21
7th-angle 89.73 88.11 95.53 80.50
8th-angle 88.86 83.52 93.35 79.90
9th-angle 88.54 88.49 90.83 78.36

1h ∼ 3th-angle 92.03 93.06 93.06 85.01
4th ∼ 6th-angle 92.85 94.90 88.68 86.42
7th ∼ 9th-angle 92.99 94.49 89.45 86.69
1h ∼ 6th-angle 93.89 94.88 95.56 88.55
3th ∼ 9th-angle 94.12 95.63 90.93 88.72

1h ∼ 9th-angle 95.00 96.36 95.86 89.72

Table 7. The cloud detection accuracy (%) for evaluating reflectance image.

Data OA UA PA MIoU

Radiance image input 95.01 95.87 95.52 89.56
Reflectance image input 95.74 96.38 96.96 91.20

6. Conclusions

DPC on GF-5 satellite is the only on-orbit polarization detector in the world at present,
which can provide multi-spectral, multi-angle and multi-polarization observations. Cloud
detection is the cornerstone of DPC imagery application. In this paper, we propose a neural
network (MFCD-Net) to extract cloud masks from DPC imagery. MFCD-Net has three key
innovations: (1) It extracts spatial-angular-spectral information by 3D convolution; (2) it
uses the cross-attention fusion mechanism to fuse polarization information; (3) its overall
structure is similar to 3D-Unet, and at all feature levels, the features of the same level are
fully extracted and fused. The effectiveness of the proposed MFCD-Net is verified with the
experimental results compared with various methods.
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