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Abstract: Remote sensing image scene classification (RSISC), which aims to classify scene categories
for remote sensing imagery, has broad applications in various fields. Recent deep learning (DL)
successes have led to a new wave of RSISC applications; however, they lack explainability and
trustworthiness. Here, we propose a bidirectional flow decision tree (BFDT) module to create a
reliable RS scene classification framework. Our algorithm combines BFDT and Convolutional Neural
Networks (CNNs) to make the decision process easily interpretable. First, we extract multilevel
feature information from the pretrained CNN model, which provides the basis for constructing the
subsequent hierarchical structure. Then the model uses the discriminative nature of scene features at
different levels to gradually refine similar subsets and learn the interclass hierarchy. Meanwhile, the
last fully connected layer embeds decision rules for the decision tree from the bottom up. Finally, the
cascading softmax loss is used to train and learn the depth features based on the hierarchical structure
formed by the tree structure that contains rich remote sensing information. We also discovered that
superclass results can be obtained well for unseen classes due to its unique tree structure hierarchical
property, which results in our model having a good generalization effect. The experimental results
align with theoretical predictions using three popular datasets. Our proposed framework provides
explainable results, leading to correctable and trustworthy approaches.

Keywords: explainable artificial intelligence (XAI); scene classification; decision tree; cascaded
softmax; remote sensing big data

1. Introduction

Recent advances in satellite sensor and remote sensing (RS) imaging technology enable
high-resolution RS images, providing detailed spatial information about our world. Under
this circumstance, remote sensing image scene classification (RSISC) has drawn significant
attention due to its wide range of applications, such as national defense security [1], natural
hazard detection [2], urban planning [3], and environmental monitoring [4]. While the high
resolution of remotely sensed images brings valuable data for subsequent vision tasks, the
intricate image details and structures make characterization modeling more challenging.

Early approaches mainly focused on handcrafted features, such as scale-invariant
feature transform (SIFT) [5] and Gabor [6], local binary patterns (LBPs) [7], and histograms
of oriented gradients (HOG) [8]. Thus, extracting high-level features from RS images
becomes quite challenging. Due to its excellent feature extraction capabilities, advanced
deep learning (DL) methods have been successfully applied to RSISC [9,10]. This approach
assumes that a filter describes a mixture of patterns with weak feature interpretability as a
data-driven method. For example, the filter may be activated by both the building and the
road of the residential area. It cannot represent the same object or part across different RS
images. The global features and detailed geometric information in RS images gradually
weaken in the layer-by-layer convolution and subsampling.
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In most RSISC tasks, maximizing classification accuracy is usually used as the sole
objective. However, many applications are also interested in finding a user-friendly ex-
plainable classifier. First, it helps identify the essential rules responsible for the RSISC
task. In addition, it provides a more direct relationship of features to gain better insight for
future developmental purposes. A key challenge to improving the model’s interpretability
is that the high-resolution properties of RS images are complicated to predict because DL
methods do not focus on distinguishing critical information from redundant features in
images. Meanwhile, explainability is often discussed as a technical challenge in designing
DL systems and decision procedures. In contrast, the end-to-end learning procedure of
DL causes it to be a black-box model. The “black box” raises questions about reliability,
significantly limiting the value of the data used. Nevertheless, RSISC tasks are related to
many critical applications, and explanations are essential for users to understand, trust,
and have confidence in the prediction results.

To date, the limitation of deep neural networks (DNNs) for RSISC has not been fully
explored. A strength of DL approaches is that they can learn independently without specific
previous knowledge. However, even a well-trained model cannot adapt to an uncertain
environment; thus, producing reliable results will be challenging because such models are
typically only adapted to a specific domain. RS images have a prominent spatial feature
correlation compared with the training image data for the traditional scene classification
tasks. As a result, RSISC suffers from many additional challenges, such as the dense
distribution of geospatial objects. Moreover, explainability is often a technical challenge
in designing DL-based systems and decision procedures. Developing more accurate and
reliable RSISC systems will improve and extend their applications.

Here, we address these issues by directly incorporating reliability and uncertainty
into the model and utilizing a decision tree as the low complexity and explainability
classifier. Decision trees (DTs) are widely used classifiers successfully employed in many
application domains. The popularity of DTs is mainly due to the simplicity of their learning
schema. Furthermore, DTs are considered among the most interpretable classifiers [8]. Note
that our task of improving the interpretability of an RSISC is essentially different from
conventional visualization. The BFDT visualizes the decision procedure with a tree-like
structure, whereas previous methods mainly explain model predictions by identifying
which pixels most affected the prediction. We provide two main components using the
DL framework and decision tree model techniques. First, we introduce the BFDT, a DT
algorithm with dynamic granularity. We progressively integrate rich spatial details and
high-level semantic information in a top-down manner to achieve interpretable paths
continuously. The weights of the corresponding parent nodes are obtained from the bottom-
up using the leaf node weight values. Second, we derive the cascading softmax loss to
train and learn the depth features based on the hierarchical structure with rich contextual
information. This paper’s main contributions can be summarized as follows:

• To preserve interpretability and achieve competitive accuracy, we integrate the decision
tree model into the CNNs and train it with the cascaded softmax loss to sufficiently
mine RS images’ scene structures and essential visual features. The proposed method
can learn more interpretable features instead of explaining pretrained neural networks.

• We efficiently incorporate the high performance of the bottom-up mode and the strong
interpretability of the top-down manner while constructing semantic and layer-based
visual remote sensing image hierarchies. Thus, it can capture the hierarchical structure
of images from remote sensing and make visual decisions based on them. In addition,
to the best of our knowledge, this work provides the first bidirectional feature-flow
decision tree, which provides a reliable RSISC.

• The proposed framework has a degree of attribute discrimination that fully utilizes the
decision tree’s decision-making advantages. Moreover, it provides joint improvement
of accuracy and interpretability.
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2. Related Work
2.1. Conventional CNN Features-Based Methods

Due to its excellent feature extraction capabilities, CNNs have been widely utilized in
RSISC in recent competitive methods. Cheng et al. [11] extracted features from a pretrained
model and subsequently classified them using linear SVM. Compared to traditional manual
techniques such as SIFT [5], Gabor [6], histogram of oriented gradients (HOG) [8], etc.,
pretrained CNN features can provide more precise information to help the model describe
the semantic meaning. Although these methods all achieve good performance, they focus
only on the feature map of the final layer and ignore the vast amount of information
contained in the rich intermediate layers of CNN. The low-level features from the lower
convolutional layers are filled with symbolic spatial structure information. In contrast, the
mid-level features from the upper convolutional layers contain more abstract semantic
information that is not affected by pose, position, illumination, etc. [12]. Hence, utilizing
features from multiple CNN layers may provide richer semantic information. Zhu et al. [13]
proposed a method to integrate the completely sparse topic model with CNN and use the
multi-level semantics of HSR scenes for scene classification. Hydra [14] mainly builds a
CNN that provides a good starting point for rough optimization and further optimization
and then uses different methods to fine-tune the obtained weights many times.

N. He et al. [15] combined features extracted from multilayer networks, from low-level
figurative features to high-level abstract attributes, to learn more discriminative features
for RSISC. Similarly, Liu et al. [16] even integrated multiple CNNs to combine the network
layers to perform better. Akashdeep Goel et al. [17] further explored the apparent similarity
of scenes by proposing a hierarchical structure approach. Zhang X et al. [18] constructed
graph structures from objects generated from VHR RS images and used graph theory to
fully exploit the correlation between objects. Xu et al. [19] combined lie group learning
machine learning with CNN and proposed Lie Group Regional Influence Network (LGRIN)
to achieve advanced results. Huang et al. [20] proposed scalable subspace clustering meth-
ods for highly redundant dictionaries due to sparse subspace clustering and introduced
adaptive spatial regularization to improve the robustness of the model.

2.2. The Deep Learning Interpretable Method

While deep learning has been making enormous strides in various disciplines, its black-
box peculiarity remains an unsolved challenge. Multiple approaches have been proposed
to reveal the model’s decision-making basis or working mechanism [21]. Wei et al. [22]
validate the applicability of gradient-weighted class activation mapping (Grad-CAM) in
remote sensing image classification tasks and propose a new strategy to correct the visual
interpretation generated by Grad-CAM. Huang et al. [23] reconstructed a remote sensing
image using the extracted features, improving classification performance and obtaining
a better visual interpretation. Wei et al. [24] used median pools to capture the main
trends of gradients and approximate the contribution of feature maps to specific classes.
It provides a good compromise between the interpretability and visual interpretability
of RSISC models. These methods use significance maps to explain remote sensing image
classification. Zhao et al. [25] exploited Riemannian fluidic feature space’s strong feature
representation capability (RMFS) to bridge the gap between CNN and a priori knowledge of
remote sensing images, thus realizing a CNN model with reasonable feature interpretation.
However, they all pay attention to the inputs and ignore the model’s decision process.

Our BFDT model is inspired by the idea of using information from different CNN
layers to obtain sequential decision processes [26,27]. The advantage of tree-based methods
is that they efficiently describe decision manifolds with approximate hyperplane borders,
which can be explained by tracking decision nodes. Boualleg et al. [10] proposed an
integrated learning-based deep forest (DF) model that fully uses the CNN’s capability
to extract features and DF classification interpretability to mine high-quality information
from remote sensing scene images. A random forest classifier for hyperspectral remote
sensing image classification was proposed in [28,29], improving classification performance.
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However, the forest becomes intractable because of the decision paths that follow the set of
trees, thus sacrificing the intrinsic interpretability of the decision tree intuition. Chiranjibi
Shah et al. [30] apply tabular data learning networks (TabNet): sequential attention to
select the appropriate salient features at each decision step, resulting in interpretability,
efficient learning, and improved learning ability. Hehn et al. [31] proposed a greedy tree
structure formwork for constructing unbalanced DNDFs with data-specific structures
to improve interpretability. However, this scheme is only applicable to small datasets.
Hinton et al. [32] visualized high-dimensional data by giving each datapoint a location in a
two or three-dimensional map.

2.3. The Deep Learning Methods in RSISC

Many DL methods have achieved impressive progress in RSISC. With a large-scale
remote sensing image dataset [33–35] that contains rich scene categories, they use deep
CNN as a local feature extractor and combine it with feature coding approaches. For
example, Binary Patterns encoded CNNs [36], attention-based CNNs [37–40], lightweight
structure [41,42], and multi-scale classification [43]. When encountering an uncertain real-
world environment, it is necessary to approximate uncertainty in real-world environments [44].
In addition, many approaches have been developed for scale variation [45–49]. For example,
Shen et al. [45] developed a pluggable importance factor generator for highly different
scales, and Liu et al. [46] proposed a network to learn sparse and effective feature represen-
tations. The challenge, therefore, is in the unlabeled RS images. Consequently, Li et al. [50]
proposed a geographical knowledge-driven representation learning method for RS images.
Addressing time-consumption, Gao et al. [51] use the Low-Rank Nonlocal Representa-
tion, and He et al. [52] propose the Skip-Connected Covariance Network. The RSISC
methods based on CNNs can be categorized as (1) methods that involve training from
scratch and (2) using a pretrained CNN36 as a feature extractor. Moreover, various fusion
technologies have been addressed [53–57]. Ji et al. [53] localized multiscale regions of the
RS scene images, and combined features learned from the localized regions. Furthermore,
there are other new strategies to further improve further performance, such as multilevel
attention modules [19], multi-granularity appearance pooling models [58], self-training
algorithms [59], and joint decisions [60]. However, none of these methods achieved the
subgenus specificity required for discriminating.

Compared to previous works, our approach visualizes the decision procedure with a
tree-like structure while protecting the accuracy of the RSISC. Moreover, the decision tree
in our work is close to the human reasoning process and more interpretable.

3. Methods
3.1. Overall Architecture

The BFDT algorithm determines a pretrained CNN architecture that utilizes the depen-
dency structure of a DT trained on the RS image dataset. The proposed algorithm consists
of the following three stages: (1) feature extraction, (2) decision process and (3) embedding
decision rules (Figure 1). The BFDT adaptively fuses the direct inference along with top-
down and bottom-up information for RSISC, leading to a bidirectional flow decision model.
We begin by featuring each image sample using the pretrained CNN backbone, such as
ResNet-18, ResNet-50 and AlexNet. Specifically, we use three separate public RS scene
datasets to fine-tune the model’s weight. In addition, we use the last fully connected
layer to build induced hierarchies. Moreover, decision nodes are labeled with RS expert
knowledge and fine-tuned with a loss function.
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Figure 1. A flowchart of the proposed BFDT method. (A) The feature extraction shows that coarse-
grained discrimination is attained in later layers of the early and fine-grained discrimination. Then,
LDA is used to reduce dimensions, and k-means is used to construct a tree-like clustering sim-
ilarity. (B) The decision process is based on clustering similarity and the decision rule weights.
(C) Embedded decision rules are based on associating the weight space with the last layer of the
pretrained neural network.

3.2. Feature Extraction

Most CNN models are trained to make decision-making procedures in a coarse-to-fine
way. Figure 2 shows that the extracted features become increasingly distinguishable at
various levels. The low level cannot differentiate the final categories; they capture shallow
features and obtain obvious visual cues to make coarse-grained and vague decisions. On
the other hand, the high level is amenable to making the final classification, such as the
features from the building categories tending to cluster.

For this purpose, we extract the features from the different layers of the pretrained
CNN model to the decision tree via the regularization term. Supposing there are N cate-
gories in the RSISC task, each with M-associated samples for training, for the i-th level in
the pretrained neural network, Fn

m ∈ Zwihici denotes the features in the m-th image in the
n-th classification category, where wi, hi, and ci indicate the width, height, and channels of
the feature map for the i-th level.

Because of the high feature dimensions and inconsistency at different levels, we use
global average pooling with an adaptive filter size. Subsequently, we reduce the input and
output data dimensions, i.e., Fn

m becomes a ci-dimensional vector. After that, we further use
Linear Discriminant Analysis (LDA) [61] to reduce the dimensions of features (c1, c2, . . .)
from different levels and compress them to a fixed scale c (c ≤ c1, c2, . . .). The widely
used dimensionality reduction methods include supervised approaches such as linear
discriminant analysis (LDA) and unsupervised approaches such as principal component
analysis (PCA) [62] In RSISC tasks, class labels are always available, and the supervised
approaches such as LDA are usually more effective than unsupervised approaches such
as PCA for classification. For this reason, we consider LDA to reduce the dimensions
and preserve as much of the class discriminatory information as possible. It also utilizes
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the Fisher criterion that tackles the intraclass and interclass correlation. Inspired by the
tree-like decision [27], we construct the intra-class scatter matrix Sw for similar data and
the inter-class scatter matrix Sb for dissimilar data. The aim is to seek an optimal projection
direction to maximize the interclass spread of distinct data and minimize the intraclass
scatter of similar data. We define the Fisher criterion, which is maximized over all linear
projections for each level W:

J (W) = argmaxW
WTSbW
WTSwW

(1)

The intra-class dispersion matrix Sw and interclass dispersion matrix Sb are defined
as follows:

Sb = ∑N
i=1 M · ( f n − f )( f n − f )

T
(2)

Sw = ∑N
i=1 ∑M

m=1 ( f n
m − f n)( f n

m − f n)
T

(3)

where f i and f represent the averages of feature vectors from the i-th and all categories.
Then, the corresponding categories are defined by averaging the feature vectors in the
subspace. For clarity, a list of key symbols is shown in Table 1.
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Figure 2. Visualizing feature distributions after linear discriminant analysis (LDA) from the raw
image, the 5-th, the 13-th and the last layers using T-SNE [32] and ResNet-18.

In the subspace, we adopt K-means to generate the tree-like similarity of categories
and calculate the average feature vectors to represent the corresponding categories. The
primary idea of clustering is to select K initial centroids based on a specific approach. The
remaining data are then observed, and the clusters closest to the K points are divided using
the Euclidean distance as the sample similarity measure. Finally, the centroids of each
cluster are recalculated in the generated new clusters. To demonstrate the coarse-to-fine
decision process underlying pretrained CNNs, we adopted k-means clustering with the
evaluation score of the SSE (sum of squared errors).
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Table 1. A list of symbols and descriptions.

Symbols Descriptions

N The categories in a dataset

Fn
m

The features extracted from the m-th image in
the n-th classification category

Sw The intraclass scatter matrix

Sb The interclass scatter matrix

f i, f
The averages of feature vectors from the i-th

and all categories

M, N N categories in the RSISC task, and each with
M-associated training images

SSE The sum of squared errors

Ai, ai, The i-th cluster and the cluster’s center

vi The i-th node in the decision tree

wi The weights of the node

Yvi The category contained in the node vi

L(i) The path from the root to the node vi

p(Ln(i)|i)
The probability that node i traverses to the next

node on the path to class n

y The ground truth labels

As the number of clusters K increases, the sample division will be finer and the degree
of aggregation of each cluster will gradually increase, i.e., the squared error and SSE will
gradually decrease. When K is less than the optimal number of clusters, the decrease in SSE
will be large because the increase in K will increase the degree of aggregation of each cluster
significantly. When K reaches the optimal number of clusters, the degree of aggregation
obtained by increasing K decreases rapidly, so the decline in SSE decreases abruptly, i.e., it
tends to level off as the value of k continues to increase. In other words, the graph of SSE
and k is the shape of an elbow, and the value of K corresponding to this elbow is the optimal
number of clusters for the data. Figure 3 shows the SSE errors under the level-by-level
ConvBlock. As shown in Figure 3a, the number of clusters is 2 at the elbow of the curve. It
is defined as follows:

SSE = ∑k
i=1 ∑(x∈Ai)

dist(ai, x) (4)

ai =
1

sum ∑
x∈Ai

x (5)

where x represents the input sample, Ai represents the i-th cluster, ai represents the cluster’s
center, sum is the number of input samples, and dist(·) represents the Euclidean distance.

After k-means clustering, we construct a tree-like clustering similarity from training
feature vectors. They are clustered at the first level with the number of centers equal to the
initial centroids K. Each leaf node’s corresponding feature space partition is projected onto
the two-dimensional space. Thus, at the successive levels, it will continue splitting feature
vectors in each branch by the k-means until reaching the level.
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3.3. Decision Rules and Process

As shown in Figure 2, hierarchical clustering separates each category, and it is difficult
for users to understand what decision is made at each level. Therefore, the critical step of
the BFDT algorithm is constructing the decision tree-based model. This can be a single
decision tree from a single CNN. The tree depth is a hyperparameter that should be tuned
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for each RS image dataset. Our framework combines bottom-up and top-down information
to build a hierarchical RSISC.

3.3.1. Generating the Decision Path

The decision tree is a coarse-to-fine decision process from the root node to the leaf
nodes. The model makes the coarsest decision from the root node to its children. The
most precise output should be reached when the leaf layer is reached. We use a graph
G = {V, E} to describe the DT, where V = {v1, v2, . . .} is the node-set and E = {e1, e2, . . .}
is the edge set between the nodes. The number of leaf nodes is the number of categories,
and each leaf node contains only one category, while the root node contains all categories.
We use Yv to denote the category contained in node v. However, the intermediate layer
only makes a rough classification. To embed the decision process of each layer into the
decision tree, we use a top-down strategy to connect parent and child nodes. The distance
between two nodes of adjacent layers is measured as follows:

D = dist(ai, aj) (6)

where ai, aj denote the center of the i-th cluster and j-th cluster, respectively. dist(·) repre-
sents the Euclidean distance.

We obtain the distance D between the center of the upper cluster Ai and the adjacent
lower cluster Aj. If the lower node vj reaches the upper node vi at the closest distance, then
node vj is regarded as the child of node vi. Through this process, the categories contained
in the intermediate nodes are determined. Finally, we add edges to the upper-level node vi
and their children nodes vj to form an interpretable tree.

3.3.2. Decision Rule Weights

In this step, we adopt a bottom-up model to associate the weight space with each
node. For the weight w ∈ RD×N of a fully connected layer in the pretrained network, we
select each row w n ∈ w of the fully connected layer as the representative vector of the
corresponding leaf node (Figure 4).
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For each parent node in the decision tree, find all leaves n ∈ Yvi in the subtree of a
node vi and average the weights of the nodes:

Wi =
∑k∈Yvi

Wk

len(Yvi )
(7)

3.3.3. Node Probabilities

Figure 5 shows sample x traversing all intermediate nodes from top to bottom and
calculating the inner product. The final probability of a leaf node is the product of the
probabilities of each intermediate node on the path. Finally, the class to which x belongs
can be determined by comparing the magnitude of the final probability value on each leaf
node. The softmax inner product calculates the probability between nodes. We compute
the probability node vi with each child as:

S(j|i ) = so f tmax
(〈→

wl , x
〉)

[j], where
→
wl =

(〈
wj, x

〉)
j∈Yvi

(8)

where x represents the input sample, wi represents the i-th weight, and j represents the
child of node vi, j ∈ Yvi .
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Figure 5. The input image sample traverses all intermediate nodes in a top-down manner. The final
probability of a leaf node is the product of the probabilities of each intermediate node on the path.

3.3.4. Leaf Picking

Consider the category n, which has a path from the root node to the leaf node. For a
node vi, we define the probability that it traverses path Ln(i) to the next node as p(Ln(i)|i).
Then, the path probability p(Ln(i)) of reaching a leaf node vk is denoted as:

S(n) = ∏i∈pn
p(Ln(i)|i ) (9)

The final class prediction is defined over these class probabilities

_
n = argmaxn p(n) = argmaxn∏i∈pn

p(Ln(i)|i ) (10)

3.3.5. Loss Function

When training CNNs with standard losses, they face the problems of dramatic data
expansion, instability, and are not trained to separate representatives for each inner node.
To address this issue, we propose cascaded softmax, which considers multilevel decision-
making and measures the affinity between RS image scenes. At each decision level, the
children nodes have a different granularity of similarity. In shallow features, information
such as spatial texture works as a measure, while high-level semantics are used as the
division principle in deep features. In other words, our cascading loss can be regarded
as a soft constraint, where the penalty for misclassifying samples into different clusters
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is higher than belonging to the same cluster. The similarity measure between samples in
the same cluster decreases, and the similarity measure between different clusters becomes
larger, enabling the model to fully consider the intraclass and interclass relationships of
the samples.

Intuitively, the tree-like supervised loss is particularly well suited to this work, where
standard cross-entropy loss is not trained to separate representatives for each inner node.
To address this, we make full use of both modes. The two components play different roles
in the training process, with the tree-like loss focusing on improving top-1 accuracy and
the other on improving the overall structure of the output space. They can complement
each other well and avoid overfitting better, so we combine the standard loss with the tree
supervised loss to calculate the mixed loss:

L = CrossEntropy((αtStree(n) + βtSs tan dard(n)), yn) (11)

where Ss tan dard(n) is the standard score of the n-th category, Stree(n) is the tree score, α and
β represent the varying weights, and y is the ground truth label.

In summary, our strategy has two benefits: (1) The bottom-up embedded decision
rule model substitutes the data size limitation in the derivation process from root nodes
to leaf nodes in previous methods. (2) The model directly uses the fully connected layer,
maintaining the end-to-end high-performance advantage of the neural network.

3.4. Learning Procedure

BFDT-Train (Algorithm 1) learns a BFDT classifier from training samples. The algo-
rithm begins by performing the train-prune-retrain process to update the parameters by
maximizing Equation (1). It then computes the node probabilities and returns an oblique
decision tree by employing the hierarchical loss of Equation (11).

Algorithm 1 BFDT Train

Input: RS Image Samples, Pre-trained CNN, T (a pre-defined hierarchy structure)
Output: An BFDT model.
1: Let K be the number of samples and l indicate the level index;
2: for each l-th level in pretrained CNN do
3: for each image sample k ∈ {1, . . . , K} do
4: Adopt GAP to squeeze out the spatial dimensions.
5: end for
6: Adopt LDA to reduce dimension.
7: Update W, Sb, Sw by maximizing Equation (1).
8: end for
9: for each row in T do
10: Project all original features to the lower-dimensional subspace.
11: Generate nodes with k-means by Equations (4)–(6).
12: Seed decision rule weights from the pretrained CNN by Equation (7).
13: Compute node probabilities by Equation (8).
14: end for
15: Fine-tuning the BFDT model with tree supervision loss by Equation (11).

4. Experimental Results
4.1. Datasets

We perform experimental evaluations on three public RS scene datasets, and their
characteristics are shown in Table 2. These datasets are captured from different satellite sen-
sors under different conditions and over diverse locations of the ground surface, including
rich diversities across different datasets.
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Table 2. A detailed description of three datasets in the experiments.

Datasets
Number of

Scene Classes
Number of

Samples per Class
Total Number

of Images Spatial Resolution Image Size

RSSCN7 7 400 2800 - 400 × 400
AID 30 200–400 10,000 0.5–0.8 600 × 600

NWPU45 45 700 31,500 0.2–30 256 × 256

1. RSSCN7: The RSSCN7 dataset [33] was established by Zou, Q et al. of Wuhan
University in 2015. These images are from 7 specific scene categories: lakes, meadows,
forests, farmland, lots, industrial areas, residential areas, and rivers and parking. Each
scene consists of 400 images of 400 × 400 pixels, with four different scales for each
category and 100 samples for each scale. Some sample images are shown in Figure 6.
This paper uses training ratios of 20% and 50%, and the remaining values are used
for testing.

2. AID: The Aerial Image dataset [34] was established by Xia et al. of Wuhan University
in 2017, cropped and corrected at 600 × 600 pixels from Google Earth imagery. The
dataset consists of 30 scenes with 200 to 400 images per class, and the spatial resolution
of each class ranges from 0.8 m to 0.5 m. Some sample images are shown in Figure 7.
As above, 20% and 50% are used as the training ratios, and the rest are used as tests.

3. NWPU: The NWPU-RESISC45 dataset [35] was published by Northwestern Polytech-
nic University and was obtained from Google Earth. The dataset comprises 45 scenes
with 700 images per scene, totaling 31,500 samples. The image size is 256 × 256, and
the pixel resolution varies from 30 to 0.2 m. This dataset is the largest in scene classes
and the total number of images. Therefore, it contains richer image variation, greater
internal diversity, and higher interclass similarity than the other datasets considered.
Some sample images are shown in Figure 8. We utilize the training ratio of 20% and
the remaining 80% as test data.
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Figure 6. Sample images from the RSSCN7 database: (a) Farmland; (b) Forest; (c) Grassland;
(d) Industrial and Commercial region; (e) Parking; (f) Residential Region; (g) Rive and Lake. There
are four scales, from top to bottom (in rows): 1:700, 1:1300, 1:2600, and 1:5200.



Remote Sens. 2022, 14, 3943 13 of 25Remote Sens. 2022, 14, 3943 13 of 26 
 

 

 

Figure 7. Example images from the AID dataset. 

  

Figure 7. Example images from the AID dataset.

4.2. Evaluation Metrics

We evaluate remote sensing scene classification using the overall accuracy (OA) and
confusion matrix (CM).

1. Overall accuracy represents the ratio of correctly classified samples in the test set to
the total number of samples and demonstrates the classification performance of the
entire test dataset. It is common to see how well a scene classification method works
in RS images.

2. The confusion matrix visualizes and summarizes the performance of a classification
algorithm. It is an N × N squared matrix where N denotes the number of classes
under consideration. Note that we used the normalized values and that the values on
each row sum up to 1.

4.3. Experimental Settings

All experiments are implemented with the open-source library PyTorch. We use
ResNet-18, ResNet-50 and AlexNet as the backbones. For multiple feature extraction layers,
we use 5, 13 and the last Conv layer in ResNet-18; in ResNet-50, we use 22, 40, and the
last Conv layer; in AlexNet, we use 2, 4, and the last Conv layer. Note that here we do not
train the networks from scratch. In contrast, we use backbone networks pre-trained on
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ImageNet and fine-tuning them on the three RS datasets. The Adam optimizer is employed
while the momentum is set to 0.7, and the learning rate is initialized to 1 × 10−4. We set the
input size to 224 × 224 and used random horizontal flipping to enhance the image. The
implementations are conducted on the Canonical Ubuntu 18.04 system equipped with an
Nvidia Corp., Santa Clara, CA, USA, GeForce RTX 3080 GPU and Intel Corp., Santa Clara,
CA, USA, i9-10920x CPU.
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4.4. The Performance of the Proposed Method

The RS images from different datasets are collected by different sensors and over
diverse locations of the ground surface, resulting in significant discrepancies in semantic
information between different databases. In addition, various experts annotate different
datasets, and the same scene from different datasets may be labeled with other class
names. Our work aims to search for a network architecture with satisfactory accuracy
and explainability. As a result, we further evaluated the proposed model for performance
analysis on three datasets separately. The state-of-the-art RSISC methods based on DNNs
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were compared, including various classifiers and architectures. In particular, ResNet-18,
ResNet-50 and AlexNet were used as the backbone networks to evaluate the relevance of the
network depth and accuracy. Table 3 shows the dataset’s training and testing proportions,
which is the proportion of training samples to the total samples of the dataset.

Table 3. Dataset training and testing ratio for three datasets in the experiments.

Datasets Train Test

RSSCN7 20%/50% 80%/50%
AID 20%/50% 80%/50%

NWPU45 20% 80%

4.4.1. Results on RSSCN7

We followed the training ratios proposed by [36]. Table 4 compares the proposed
model with some state-of-the-art methods in recent years on RSSCN7 datasets. The algo-
rithm reaches 95.15% and 97.05% accuracy for remote sensing image scene classification,
outperforming all comparative methods. With a training ratio of 20%, our method is
2.7% higher than TEX-Net-LF [36], 2.5% higher than SE-MDPMNet [41], 1.85% higher
than EfficientNetB3-Attn-2 [42], and 1.26% higher than global-local dual-stream networks
(ResNet18 (global + local)) [43]. With a training ratio of 50%, our method is 2.34% higher
than SE-MDPMNet [41], 1.98% higher than GLNet (VGG) [44], 1.56% higher than multi-
layer feature decision-level fusion (DLFP) [45], 1.51% higher than the multidilation pooling
module Contourlet CNN [46], and 1.01% higher than global-local dual-stream networks
(ResNet18 (global + local)) [43]. The results show that our method achieves the best classifi-
cation accuracy regardless of the training ratio. From the tables, we can observe that ResNet
achieves better performance in our method than the feature maps of AlexNet. Intuitively,
the difference is caused by the depths of different models. AlexNet has just five convolu-
tional layers, ResNet-18 has 17 convolutional layers, and ResNet-50 has 49 convolutional
layers. However, the classification accuracy for ResNet18 as the backbone is still better
than that of ResNet-50. This indicates that the depth of the backbone DNNs does not
determine the classification accuracy in this strategy. In this case, the latent variable “level”
also played an important role in the overall framework.

Table 4. Performance comparison results with different state-of-the-art methods of OA on the RSSCN7
dataset under training ratios of 20% and 50%.

Methods Year
Training Ratio

20% 50%

TEX-Net-LF [36] 2018 92.45 ± 0.45 94.0 ± 0.57
Fine-tune MobileNet V2 [41] 2019 89.04 ± 0.17 92.46 ± 0.66

SE-MDPMNet [41] 2019 92.65 ± 0.13 94.71 ± 0.15
Dual Attention-aware features [47] 2020 91.07 ± 0.65 93.25 ± 0.28

LCNN-BFF [48] 2020 - 94.64 ± 0.21
Contourlet CNN [46] 2020 - 95.54 ± 0.71

ResNet18 (global + local) [43] 2020 93.89 ± 0.52 96.04 ± 0.68
CGDSN [49] 2021 - 95.46 ± 0.18

DLFP [45] 2021 - 95.49 ± 0.55
GLNet (VGG) [44] 2021 - 95.07

GeoKR(ResNet50) [50] 2021 89.33 91.52
EfficientNetB3-Basic [42] 2021 92.06 ± 0.39 94.39 ± 0.10

EfficientNetB3-Attn-2 [42] 2021 93.30 ± 0.19 96.17 ± 0.23
LNR-ResNet50 [51] 2022 - 96.8 ± 0.32

BDFT (ResNet50) 2022 94.11 96.50
BDFT (AlexNet) 2022 92.71 93.54

BDFT (ResNet18) 2022 95.15 ± 0.41 97.05 ± 0.35
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An overview of the performance of BFDT is shown in the confusion matrix in Figures 9 and 10.
All of the scene categories can be fully recognized by BFDT, except for the industry scene;
there is some confusion between the parking and industry scenes. This may be because
the two categories are a mixture of pavement cover and car. For the RSSCN7 dataset, we
conduct a detailed performance analysis of the proposed model adopting the confusion
matrix, and the results are shown in Figures 9 and 10. When the training sample is 20%,
except for the Industry category, the accuracy rate can reach more than 90%. When the
training sample is 50%, the classification accuracy of all scenarios is higher than 97%.
Overall, the classification accuracy of “Industry” scenes is the lowest at both training ratios,
83% and 97%, respectively. Mainly due to the extreme similarity between “parking” and
“Industry”, some are incorrectly classified as “parking”.
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Figure 9. The normalized confusion matrix for the BFDT with the RSSCN7 dataset (20%/80%).
Each row represents the ground-truth label, while each column shows the label obtained by the
BFDT. Large values outside the main diagonal indicate that the corresponding classes are hard
to discriminate.
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4.4.2. Results on AID

We followed the training ratios proposed by [36]. Table 5 compares the proposed model
with some state-of-the-art methods in recent years on AID datasets. The algorithm reaches
95.05% and 97.76% accuracy for remote sensing image scene classification, outperforming
all comparative methods. With a training ratio of 20%, our method is 2.34% higher than
RANet [37], 1.99% higher than CNN-CapsNet [38], 1.52% higher than MSA-Network [39],
1.24% higher than TEX-Net-LF [36], and 1.16% higher than global-local dual-stream net-
works (ResNet18 (global + local)) [43]. With a training ratio of 50%, our method is 4.66%
higher than ARCNet-VGG16 [40], 2.22% higher than multidilation pooling module Con-
tourlet CNN [46], 2.03% higher than TEX-Net-LF [36], 1.75% higher than MSA-Network [39],
1.72% higher than global-local dual-stream networks (ResNet18 (global + local)) [43], and
1.09% higher than multilayer feature decision-level fusion (DLFP) [45]. The results show
that our method achieves the best classification accuracy regardless of the training ratio.
Compared with using ResNet50 and AlexNet, the classification accuracy for ResNet18 as
the backbone is still the best.

Table 5. Performance comparison of different methods of OA on the AID dataset under a training
ratios of 20% and 50%.

Methods Year
Training Ratio

20% 50%

TEX-Net-LF [36] 2018 93.81 ± 0.12 95.73 ± 0.0.16
ARCNet-VGG16 [40] 2019 88.75 ± 0.40 93.10 ± 0.55

SCCov [52] 2019 93.12 ± 0.25 96.10 ± 0.16
CNN-CapsNet [38] 2019 93.60 ± 0.12 96.66 ± 0.11

Dual Attention-aware [47] 2020 94.36 ± 0.54 95.53 ± 0.30
Contourlet CNN [46] 2020 - 95.54 ± 0.71

ResNet18(global + local) [43] 2020 93.89 ± 0.52 96.04 ± 0.68
VGG-VD16 [53] 2020 94.75 ± 0.23 96.93 ± 0.16

EfficientNetB3-Attn-2 [42] 2021 94.45 ± 0.76 96.56 ± 0.12
LCNN-CMGF [54] 2021 93.63 ± 0.1 97.54 ± 0.25

D-CNN [55] 2021 94.63 96.43
DLFP [45] 2021 94.69 ± 0.23 96.67 ± 0.28

MSA-Network [39] 2021 93.53 ± 0.21 96.01 ± 0.43
LGRIN [19] 2021 94.74 ± 0.23 97.65 ± 0.25
RANet [37] 2021 92.71 ± 0.14 95.31 ± 0.37

GRMA-Net-ResNet18 [56] 2021 94.58 ± 0.25 97.05 ± 0.37

BDFT (ResNet50) 2022 94.85 96.88
BDFT (AlexNet) 2022 86.60 91.98

BDFT (ResNet18) 2022 95.05 ± 0.49 97.76 ± 0.87

Then, the confusion matrix with 20% and 50% training ratios is displayed in Figures 11 and 12.
When the training sample is 20%, 24 scene categories have an accuracy higher than 90%
among the 30 categories in the AID dataset. When the training ratio is 50%, 20 scene
categories can reach more than 95%, and the classification accuracy of “Parking” and
“Viaduct” is 100%. Among the misclassified samples, “Resort” accounted for a considerable
percentage. Some are incorrectly classified as “Park” because both the “Resort” and “Park”
samples have trees, water, and sparse buildings, making them difficult to distinguish and
resulting in poor classification.
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4.4.3. Results on NWPU-RESISC45

To keep pace with the compared method on NWPU-RESISC45, we set a training
ratio of 20%. Table 6 compares the proposed model with some state-of-the-art methods in
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recent years on the NWPU-45 datasets. With 20% of training samples, the algorithm reaches
94.07% accuracy for RSISC, which is 6.83% higher than Discriminative + AlexNet [57], 4.89%
higher than CNN-CapsNet [38], 2.35% higher than MG-CAP with Biliner [58], 2.90% higher
than MobileNetV2-SCS [59] and 4.50% higher than Contourlet CNN [46]. The classification
accuracy of BFDT with ResNet50 is very close to the classification accuracy of ADSSM [13]
and Hydra (DenseNet + ResNet) [14], which is better than Hydra with ResNet-50. To
obtain a similar performance, Hydra uses two CNN architectures, ADSSM combines sparse
topics and deep features with late fusion, and the construction of our method is simpler.
Regarding computational resource consumption, BFDT has some advantages compared to
state-of-the-art classifiers.

Table 6. Performance comparison of different methods of OA on the NWPU-RESISC45 dataset under
a training ratio of 20%.

Methods Year OA (%)

Discriminative + AlexNet [57] 2018 87.24 ± 0.12
ADSSM [13] 2018 94.29 ± 0.14

RD [60] 2019 91.03
VGG-16-CapsNet [38] 2019 89.18 ± 0.14
Contourlet CNN [46] 2020 89.57 ± 0.45

Hydra (DenseNet + ResNet) [14] 2019 94.51 ± 0.21
Hydra (ResNet) [14] 2019 91.96 ± 0.71

MG-CAP with Biliner [58] 2020 91.72 ± 0.16
EfficientNet [63] 2020 81.83 ± 0.15
LCNN-BFF [48] 2020 91.73 ± 0.17

ResNet18(global + local) [43] 2020 92.79 ± 0.11
VGG_VD16 with SAFF [64] 2020 87.86 ± 0.14

MobileNetV2-SCS [59] 2021 91.17
ResNet50-SCS [59] 2021 91.83

ResNet101-SCS [59] 2021 91.91
VGG-19-0.3 [65] 2021 90.19
AMB-CNN [66] 2021 92.42

BDFT (AlexNet) 2022 86.44
BDFT (ResNet50) 2022 94.07
BDFT (ResNet18) 2022 92.83 ± 0.11

Then, we conduct a detailed performance analysis of the proposed model adopting
the confusion matrix, and the result is shown in Figure 13. Among the 45 categories in the
NWPU-RESISC45 dataset, the accuracy of 37 scene categories can reach more than 90%.
Among the misclassified samples, “Palace” accounted for the most significant percentage.
Some are incorrectly classified as “Church” because both the “Palace” and “Church” sam-
ples have the same spatial layout and similar color distribution, making them difficult to
distinguish and resulting in poor classification.

4.5. Reliability with Tree Traversal

The so-called “big data” era has increasing potential for RSISC. However, the gap
between a finite class of labels and an infinite class of realistic scenarios makes the model
critically generalizable. In our study, we define superclasses as the parents of several
categories. (e.g., the nonresidential area is a superclass of parking and industry). Inspired
by [67], we find that unseen classes from other datasets belong to the same superclass; for
example, Pull BareLand and Port images from the AID dataset. The key to unseen scenes
is that they are classified as the correct superclass; for example, make sure BareLand is
classified as Natural Landscape). Recent advances in explainable DL can be grouped into
saliency maps and ordered decision processes. The former explains model predictions
by identifying which pixels most affected the forecast. However, by focusing on the
input, saliency maps fail to capture the model’s decision-making process. From a practical
perspective, explanations are essential for RSISC users to understand and trust the decision
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process. Therefore, there is a need to develop methods that provide a reliable decision
process and, by doing so, to make models correctable and eventually trustworthy for
predictions and design tasks.
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We visualize the decision path on AID to demonstrate the process underlying pre-
trained models. There are several classes of AID, which are unseen classes for RSSCN7.
Figures 14a and 15a show that our model making decisions between equal likelihood
classes will have lower certainty. Other choices have a high degree of certainty. The Port
scene has the background of a natural landscape but also assumes the function of city
buildings, so the accuracy of the two will be slightly lower compared to each other. In
contrast, the functional attributes of the port are more robust than the presence of the back-
ground, so the port is more inclined to city building (Natural Landscape 30%, City Building
70%). However, as shown in Figures 14b and 15b, the CAM diagram only gives the area of
concern for each convblock and does not provide assistance to the decision-making process.

A fundamental element of the demand for explainability is the explanation of what
the system is trying to achieve. The proposed approach decomposed the RSISC task into a
sequence of decisions without human intervention in the decision process, which provides
a structure to systematically integrate disparate components and correlations among data
and causality between variables. For example, in Figure 15, the root note differentiates
between city buildings and natural landscapes. These results also validate that although
the low-level layers cannot make accurate predictions, they can differentiate between
coarser-grained categories.
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5. Discussion

Recent deep learning approaches have primarily focused on big data, but for many
RSISC applications, samples are insufficient and spatially correlated with various noise.
The DT is a classic machine learning method for classification. It is well understood and
interpretable, but the classification effect is strongly affected by the size of the dataset. In
contrast, CNN exhibits high performance but is opaque in explainability. In this work, we
adopted a decision tree structure to maintain interpretability while preserving competitive
reliability, with the results shown in Tables 4–6. In such a case, the bidirectional feature-flow
mode enhances model interpretability. Previous methods used the bottom-up embedded
approach from root to leaf nodes in derivation. In contrast, we combine the unique
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properties of RS images to construct a cascade loss, using the discriminative properties of
various layers to improve the reliability.

We focus on RSISC decision-making using tree-based algorithms that learn the rela-
tionships between data inputs and decision outputs. Taking explainability as the demand
for RSISC, the aim is that it could lead to human-like decisions. Significantly, the BFDT
algorithm maps an ensemble of neural networks into an initialized DT ensemble. The pow-
erful capabilities of CNNs are combined with DT models to create explainable and accurate
approaches. The information mapped from the last layer into initial weights provides a
user-friendly start to the DT training process because the deeper convolutional layer in the
CNNs is more inclined to mine deeper information, for example, global feature information.

6. Conclusions

In this work, we described BFDT, a new approach for RSISC. In addition to reliability,
it also preserves competitive accuracy. The primary significance of decision trees is that
they provide the results and the decision process, which is a side effect of the way humans
mind when making inferences. Specifically, we adopt a pretrained CNN model to construct
the tree structure by parsing layer by layer through a top-down model. Meanwhile, the
bottom-up model circumvents the overfitting defect caused by the branch structure of
the traditional tree structure and fully guarantees the classification performance. Finally,
we constructed the cascading softmax loss to compensate for the neglected interclass
relationships by exploiting the rich interlayer relationships in the tree structure. Due to the
unique tree structure, a specific reference value can be generated for unseen classes. We
evaluate the proposed method on three mainstream RSI datasets, and the experimental
results demonstrate the superior classification performance of our model compared to
the state-of-the-art techniques. Extensive experiments show that our approach has higher
accuracy, better interpretability, and stronger generalizability.

Explanations may be essential for users to understand and effectively manage RSISC
tasks. However, every explanation within a context depends on the task and user expecta-
tions. Because the BFDT is compatible with various CNNs, the model could dynamically
adapt to the non-stationary nature of scenes, which is the focus of our future work. From
a human-centered perspective, research on competencies and knowledge could take ex-
plainable RSISC beyond explaining a decision procedure and helping its users determine
appropriate trust. In the future, it may eventually have substantial roles, including learning
and presenting to individuals and coordinating to connect knowledge. Moreover, CAM
methods have been successful for explainable tasks, and incorporating these techniques
into our proposed methods is an interesting direction for future work.
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