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Abstract: Grain protein content (GPC) is an important indicator of nutritional quality of rice. In this
study, nitrogen fertilization experiments were conducted to monitor GPC for high-quality Indica rice
varieties Meixiangzhan 2 (V1) and Wufengyou 615 (V2) in 2019 and 2020. Three types of parameters,
including photosynthetic sensitive vegetation indices (VIs), canopy leaf area index (LAI), and crop
plant nitrogen accumulation (PNA), obtained from UAV hyperspectral images were used to estimate
rice GPC. Two-dimensional and three-dimensional GPC indices were constructed by combining any
two of the three types of parameters and all three, respectively, based on the Euclidean distance
method. The R2 and RMSE of the two-dimensional GPC index model for variety V1 at the tillering
stage were 0.81 and 0.40% for modeling and 0.95 and 0.38% for validation, and 0.91 and 0.27% for
modeling and 0.83 and 0.36% for validation for variety V2. The three-dimensional GPC index model
for variety V1 had R2 and RMSE of 0.86 and 0.34% for modeling and 0.78 and 0.45% for validation,
and 0.97 and 0.17% for modeling and 0.96 and 0.17% for validation for variety V2 at the panicle
initiation stage. At the heading stage, the R2 and RMSE of the three-dimensional model for variety V1
were 0.92 and 0.26% for modeling and 0.91 and 0.37% for validation, and 0.96 and 0.20% for modeling
and 0.99 and 0.15% for validation for variety V2. These results demonstrate that the GPC monitoring
models incorporating multiple crop growth parameters based on Euclidean distance can improve
GPC estimation accuracy and have the potential for field-scale GPC monitoring.

Keywords: UAV; hyperspectral remote sensing; grain protein content; Euclidean distance; rice

1. Introduction

Rice is one of the three major crops in the world, with a wide distribution and long
cultivation history [1]. As a main grain food crop, the rice planting area in China accounts
for 20% of the world’s planting area. Its output has been maintained at more than 200 mil-
lion tons, accounting for nearly 40% of the world’s total rice output. In recent years, with
improvement of the living and consumption standards, people’s demand for high-quality
and good-taste rice grows rapidly in China. Rice with good tasting quality is an important
factor in determining its market price. So, more farmers focus to improve the rice quality
in order to enhance their income from rice planting. The grain protein content (GPC) of
rice is an important factor affecting its nutrition and taste [2–4].

Remote sensing can be used to rapidly estimate crop nitrogen content and GPC. Some
studies predicted wheat GPC through remote sensing data based on the theory that crop
canopy spectral information can reveal the crop growth and nutrition status and which,
in turn, can be used to guide the fertilizer management and adjust the GPC and improve
cereal quality [5,6].
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Numerous previous studies have focused on establishing the relationship between
crop nitrogen status and spectral information. Wang et al. [7] used correlation analysis
and Gaussian process regression (GPR) methods to select nitrogen sensitive spectra from
the leaf and canopy level at different growth stages in rice. Yao et al. [8] found that
the sensitive spectral band of leaf nitrogen accumulation is mainly located in the visible
and near-infrared (NIR) portions by constructing a normalized difference spectral index
(NDSI) and ratio spectral index (RSI) using different band combinations. Some studies that
estimate GPC via remote sensing revealed the relationship between crop GPC and spectral
indices [9–12]. Zhang et al. [13] used principal component analysis to spectrally downscale
rice hyperspectral data. They selected the top four principal components to construct a rice
GPC monitoring model. The correlation of the validated data based on different regression
methods was greater than 0.9, indicating that the monitoring of grain crude protein content
can be performed using canopy spectral data. Bagchi et al. [14] found that the improved
partial least-squares method is most suitable for monitoring the straight-chain starch and
protein contents of brown rice. Liu et al. [15] analyzed the hyperspectral characteristics of
crude protein, crude starch, and amylose in rice. They considered that the absorption band
of 2020–2235 nm was significantly correlated to rice crude protein and crude starch, with
determination coefficients (R2) of 0.639 and 0.884, respectively. Most current monitoring
of GPC is based on ground-based hyperspectral or laboratory testing, which inevitably
involves destructive sampling and is labor intensive in field surveys [16].

Satellite or airborne remote sensing systems can also be used to estimate crop nitrogen
status and GPC for large areas [10,17]. However, acquiring airborne image data is usually
expensive. Meanwhile the spatial resolution of satellite images is generally low, and cloud-
free images can seldom be obtained during the cropping period in southern areas of China.
Unmanned aerial vehicle (UAV) data, which has high temporal and spatial resolution and
provides a high degree of versatility and flexibility compared to ground- measured and
satellite data, may have the potential to improve interpretation of crop parameters [18–20].
UAV-based remote sensing techniques have been shown to be feasible for the estimation of
crop indicators, such as leaf area index (LAI) [21], nitrogen [22], vegetation cover [23], and
biomass [24] at the field scale. Compared to satellite images, UAV images can capture more
accurate information of crop structure and greenness and facilitate the interpretation of
crop growth and nutritional status. UAV-based multispectral and hyperspectral remote
sensing have become important tools for precision crop management at the field level.

During the rice growth process, the formation of rice grain protein is often influenced
by multiple factors [25,26]. The photosynthesis, canopy structure, and nutrient uptake
affect the growth process of crop directly or indirectly. A single indicator often does not
completely reflect crop growth. Therefore, it is necessary to consider the combined effects
of different factors. The construction of vegetation indices (VIs) enhances the sensitive
properties of some spectra and reduces noise from the soil or atmosphere [27], making it a
more mainstream means of crop monitoring.

Chlorophyll content is a key factor in the photosynthetic capacity of vegetation and
directly determines the ability of vegetation to respire and exchange energy with the outside
world [28]. Chlorophyll or photosynthetic sensitive VIs, which are widely used in identify-
ing the efficiency of photosynthetic light use in living plants, are good indicators of vegeta-
tion productivity and physiological status [29]. Crop plant nitrogen accumulation (PNA) is
a direct indicator for plant nitrogen status during the crop growth processes [30]. The leaf
area index (LAI) is one of the most important parameters of vegetation canopy structure,
which can represent the crop growth conditions effectively [31,32]. The overall goal of this
study was to estimate rice GPC using VIs related to chlorophyll and photosynthetic capacity,
canopy structure factor, and crop plant nitrogen. The specific objectives were to: (1) select
the appropriate hyperspectral indices for LAI and PNA inversion through arbitrary band
combination methods, (2) use the Euclidean distance method to construct two-dimensional
and three-dimensional GPC monitoring indices with different combinations of influence
factors, and (3) evaluate the optimal GPC inversion model (i.e., established by appropriate
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indices and algorithms) and generate field-scale rice grain protein monitoring maps by
using the data collected from an agricultural experiment.

2. Materials and Methods
2.1. Experimental Design

Two rice nitrogen fertilizer gradient trials were conducted at Zhongluotan Experimen-
tal Station (23◦23′24′′N–23◦23′59′′N,113◦25′48′′E–113◦26′24′′E), Baiyun District, Guangzhou
City, Guangdong Province, China, in the autumns of 2019 and 2020. The layout of the plots
in the experimental field is shown in Figure 1. In 2019, the rice variety was Meixiangzhan
2 (V1) and the planting date was 8 August. Rice was planted manually at a density of
20 cm × 20 cm in 60 plots with a plot dimension of 3.2 m × 3.2 m or an area of 10.24 m2.
Only 15 plots were sampled and tested. The planting specifications were 16 × 16 clusters,
making a total of 256 clusters/plot (Figure 1b). The rice varieties in the 2020 experiment
were Meixiangzhan 2 (V1) and Wufengyou 615 (V2) and the planting date was 8 August.
Manual planting was conducted at a density of 20 cm × 20 cm in 30 plots. The area of each
plot was 13.12 m2 (3.2 m × 4.1 m) and all plots were sampled and tested. The planting
specifications were 16 × 20 clusters per plot, with a total of 320 clusters/plot (Figure 1c).
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Figure 1. Study area and plot design for 2019 and 2020 experiments. (a) Location of test area, (b) Plot
test map in 2019, (c) Plot test map in 2020.

Both trials used the same rice planting and fertilization management. Each experiment
was designed with five nitrogen fertilization levels (N0, N1, N2, N3, and N4, corresponding
to application rates of 0, 60, 120, 180, and 240 kg N/ha) with three replicates of each
treatment. The ratio of basal fertilizer, tillering fertilizer, and spike fertilizer was 5:2:3.
The amounts of phosphorus and potassium fertilizer used were 54 kg/ha and 144 kg/ha,
respectively. The plots were separated by plastic film. A urea base fertilizer (46% N content)
was applied at the seedling transplanting stage in the test plots at rates of 0, 65.2, 130.4, 195.7,
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and 260.9 kg/ha for the five respective N levels; meanwhile, 120 kg/ha of potassium oxide
(60% K content) was applied in all plots. Urea tiller fertilizer was applied at the tillering
stage (mid-late August) at 0, 26.1, 52.2, 78.3, and 104.3 kg/ha for the five respective N levels.
Urea spike fertilizer was applied at the rice panicle initiation stage (mid-September) at rates
of 0, 39.1, 78.3, 117.4, and 156.5 kg/ha in the five respective N levels, while 120 kg/ha of
potassium oxide (60% K content) was applied in all plots.

2.2. Data Acquisition

Field sampling and UAV data acquisition were conducted at the tillering stage (23 August,
corresponding to Bundesanstalt, Bundessortenamt, Chemische Industrie (BBCH) phenological
stage 23), panicle initiation stage (10 September, corresponding to BBCH 32), and heading
stage (9 October, corresponding to BBCH-57) in 2020. UAV data and plant samples were
only acquired at the panicle initiation stage (13 September, corresponding to BBCH 32) in
2019 [33,34].

2.2.1. UAV Data Collection

A six-rotor UAV (DJI S1000) equipped with an imaging spectrometer (Cubert UHD185
Firefly-type) was used to acquire hyperspectral images during the rice tillering, pani-
cle initiation, and heading stages. Among them, the spectrometer had dimensions of
195 mm × 67 mm × 60 mm and was a full-frame, non-scanning, real-time imager that
did not require IMU and post-data correction. The parameters of the sensor are shown
in Table 1.

Table 1. Major specifications of Cubert UHD185 firefly imaging spectrometer.

Parameters Attributes

Place of origin Germany
Weight 0.47 kg

Spectral range 450–950 nm
Spectral resolution 8 nm@532 nm

Model UHD185
Spectral interval 4 nm

Pixel 1 million
Spatial resolution 1.3 cm × 1.3 cm

A whiteboard and a blackboard were used to radiometrically calibrate the UAV sensor
before each flight. Flights were conducted at an altitude of 30 m and hyperspectral image
cubes were captured at 5 frames per second, with an overlap rate of >50% per frame. The
acquired hyperspectral data were converted from image DN values to reflectance values,
and the reflectivity was calculated using Equations (1) and (2):

L∗ = gain·DN + bias (1)

ρ∗ =
L∗·d2·π
E0· cos θ

(2)

where DN is the grayscale value of the original image element, gian and bias are the
corresponding gain and bias values of the sensor, ρ∗ is the apparent reflectance of the
feature, d is the solar–terrestrial astronomical unit, which is generally taken as 1, E0 is the
solar irradiance, and θ is the solar zenith angle.

Dense geographic point clouds, textured polygon models, and digital elevation models
were generated from the overlapping images using Agisoft PhotoScan software (Agisoft
LLC, St. Petersburg, Russia) to obtain orthomosaics of each rice growth stage. Finally, the
vector of each plot was drawn in ENVI software, and an 80 cm × 80 cm area of interest
was constructed in the center of each plot. The ENVI IDL program was used to extract
reflectance data for each plot.
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2.2.2. Plant Data Collection

1. Rice LAI determination

LAI is the index of the total area of plant leaves per unit area to the total land area [35].
Samples of rice plants were collected from six clusters in each plot. A leaf area of about
0.2 m2 (S) was measured and the leaves were dried and weighed (w1). The rest of the leaves
were also dried and weighed together (w2). Then, the dry mass of leaves in the plot sample
was w1 + w2(W). LAI was calculated using the following equation:

SLA = LA/w1 (3)

LAI = 1/6×W × SLA× D (4)

where LA is the measured leaf area (0.2 m2), w1 is the dry weight of leaves used to determine
leaf area, w2 is the dry weight of the remaining leaves, and D is the planting density, which
was obtained by dividing the number of rice planting clusters in each small area by the
plot area.

2. Rice PNA determination

Six rice plant samples were randomly selected from each plot. Then the rice roots were
removed by scissors and the numbers of stems and tillers counted manually. Rice leaves,
stems, and spikes were separated and placed in an oven at 105 ◦C to dry green for 30 min
firstly, then weighted after drying at 80 ◦C for 24 h. Then, the nitrogen contents for leaves,
stems, and spikes were measured separately using a Kjeldahl nitrogen tester according to
the equation:

NC = (V × 0.05× 14× 1000)/(1000×M) (5)

where NC is the nitrogen content (%), V is the volume of hydrochloric acid (mL), and M is
the sample mass (g).

The biomass and nitrogen accumulation (NA) per unit area of leaves and plants were
calculated based on the planting density and the dry weight of the rice samples according
to the following equation:

PNA = (LAGB× LNC + SAGB× SNC + EAGB× ENC)/100 (6)

where PNA is the plant nitrogen accumulation (kg/m2); LAGB, SAGB, and EAGB are the
biomass (g/m2) of leaves, stems, and spikes in the test samples, respectively; and LNC,
SNC, and ENC are the N concentrations (%) of leaves, stems, and spikes, respectively. At
the tillering and panicle initiation stages, only the relevant covariates of leaves and stems
were calculated because the spikes were not yet developed.

3. Rice yield and GPC determination

The yield was measured by harvesting 125 clusters of rice plants (5 m2) for each plot,
and then 100 g of rice grain was dried at 105 ◦C for 48 h to determine the moisture content
of the grain. The rice yield for each plot was adjusted according to a moisture content of
14%. The remaining rice plants were threshed, and the seeds were dried for 3 months,
hulled, and milled into fine rice, and then finely ground into flour. The grain nitrogen
content was determined using the semi-micro Kjeldahl method, where GPC (%) = grain
nitrogen content × 5.95 [36].

2.3. Data Analysis Methods
2.3.1. VI Calculation

Three VIs widely used in previous studies were constructed using the UAV reflectance
data (Table 2) [16]. The MERIS terrestrial chlorophyll index (MTCI) and the red edge
chlorophyll index (CIred edge) are related to chlorophyll, and the photochemical reflectance
index (PRI) is related to physiological status [37,38]. There are many factors affecting
GPC synthesis in rice. In this study, for the sake of model universality and simplicity,
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we selected several representative and highly recognized influencing factors in canopy
structure, light energy utilization, and vegetation respiration as the construction parameters
of the Euclidean distance method.

Table 2. Vegetation indices and formulas used in the study.

Spectral Feature Type Index Name (Abbreviation) Index Formulation Reference

Chl VI MERIS terrestrial chlorophyll index (MTCI) (R754-R709)/(R709-R681) [39]
Red edge chlorophyll index (CIred edge) (R800/R720)-1 [40]

physiological VI Photochemical reflectance index (PRI) (R531-R570)/(R531+R570) [41]

2.3.2. Arbitrary Band Combination Spectral Index Calculation

According to the construction forms of common spectral indices, a sampling method
was used to construct spectral indices of any two-band and three-band combinations. This
allowed rapid feature extraction and analysis from a large sample of observation data
and reduced the cost of feature selection [8]. Based on MATLAB programing, binary and
ternary matrices were calculated for bands in the 454–950 nm interval, and each spectral
band was added to the operation during the process. All possible VIs based on different
band combinations were correlated with the LAI and PNA. The best VIs and spectral bands
were obtained based on the two-dimensional and three-dimensional correlation coefficient
matrices. The main reference forms included the ratio index (RVI), differential vegetation
index (DVI), normalized difference vegetation index (NDVI), improved ratio vegetation
index (IRVI), plant senescence reflectance index (PSRI), structure insensitive pigment index
(SIPI), and arbitrary two- and three-band VIs according to the following equations:

RVI(λ1, λ2) = Rλ1/Rλ2 (7)

DVI(λ1, λ2) = Rλ1 − Rλ2 (8)

NDVI(λ1, λ2) = (Rλ1 − Rλ2)/(Rλ1 + Rλ2) (9)

IRVI(λ1, λ2, λ3) = Rλ1/(Rλ2 + Rλ3) (10)

PSRI(λ1, λ2, λ3) = (Rλ1 − Rλ2)/Rλ3 (11)

SIPI(λ1, λ2, λ3) = (Rλ1 − Rλ2)/(Rλ1 − Rλ3) (12)

where λ1, λ2 and λ3 are wavelengths (nm); Rλ1, Rλ2 and Rλ3 are reflectance corresponding
to the wavelengths, and Rλ1 6= Rλ2 6= Rλ3.

2.4. Construction of a GPC Monitoring Index Based on Euclidean Distances

Multiple factors that reflect crop growth conditions were considered in this study and
expressed by the concept of Euclidean distance [42]. The Euclidean distance considers the
real distance between two points in multidimensional space (Figure 2) and can be applied to
various aspects, such as dryness monitoring [43] and remote sensing image processing [44].
The change in distance between zero point and other points in multidimensional space is
influenced by multiple co-ordinate dimensions. This change in distance is regarded as the
superposition of positive and negative factors in rice grain protein synthesis. Rice canopy
spectral VIs expressing crop physiology and chlorophyll status, LAI representing canopy
structure and phenotypic information, and PNA indicating the crop nitrogen nutrition
condition were selected to construct the GPC monitoring index in this study. Two or three
factors were combined to the GPC monitoring index by the Euclidean distance method and
their accuracy for GPC estimation was investigated.

This study considered two- and three-dimensional monitoring indices constructed
using two or three variables. The absolute distance between points in multidimensional
space was measured by the Euclidean distance method to express crop growth under
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multiple influences. As shown in Figure 2, each axis in multidimensional space was used
to represent one variable affecting rice GPC, which was calculated as per Equation (13):

d(x, y) =

√
n

∑
i=1

(xi − yi)
2 (13)

where d(x, y) is the Euclidean distance between x(x1, x2, x3, · · · , xn) and y(y1, y2, y3, · · · , yn),
and n denotes the dimension of the space.
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The minimum point D (0,0) in the space was chosen as the lowest point of GPC, and
the distances from each point in the multidimensional space to this point were calculated.
The distances from point D (0,0) to point P1 (0.8,0.2) and to P5 (0.4,0.8) in Figure 2a ex-
plain this variation. A greater distance indicates that the plants in this state could bring
more positive effects on the formation of GPC. Conversely, a smaller distance means less
favorable plant state for grain protein synthesis. This is because a single point does not
necessarily control the distance from the point to the origin completely, but the distance is
determined by the individual points together, which reflects the multi-factor joint action of
rice GPC production. Considering that the Euclidean distance is affected by the dimension
between parameters, the variables were normalized to the range between 0 and 1 using the
following equation:

Xnorm =
X− Xmin

Xmax − Xmin
(14)

where X is the original data, Xmax and Xmin are the maximum and minimum values in the
original dataset, respectively, and Xnorm is the normalized value.

2.5. Modeling and Accuracy Evaluation Methods

A multiple stepwise regression method was used to select the sensitive spectral indices
obtained from the screening conducted by the arbitrary band combination approach. These
selected indices were then used to construct LAI and PNA estimating models. The GPC
monitoring index derived from Euclidean distances was used with linear, logarithmic,
exponential, quadratic, and power functions to construct one-dimensional linear and
nonlinear models of GPC. During modeling, two groups of nitrogen fertilizer gradient
plots were randomly selected for modeling in 2019 and 2020, and the rest were used to test
the accuracy of the models.
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All the rice parameter models were evaluated for accuracy in terms of coefficient of
determination (R2) and root mean square error (RMSE), which are calculated as:

R2 = 1− SSE/SST (15)

RMSE =

√
1
n

n

∑
i=1

( fi − si)
2 (16)

where SSE is the sum of the squares of residuals, SST is the sum of the squares of devi-
ations, n is the number of samples, and fi and si are the measured and predicted values,
respectively.

3. Results
3.1. Analysis of Canopy Reflectance for Different Rice Varieties and Nitrogen Levels

Figure 3 shows the hyperspectral reflectance of the rice canopies of varieties V1 and
V2 under different N treatments at the tillering stage (a, b), panicle initiation stage (c, d),
and heading stage (e, f) in 2020.
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Figure 3. Canopy reflectance spectra of different rice varieties (V1 = Meixiangzhan 2 and
V2 = Wufengyou 615) with different nitrogen fertilization levels. Reflectance of (a) V1 and (b) V2
at the tillering stage, (c) V1 and (d) V2 at the panicle initiation stage, and (e) V1 and (f) V2 at the
heading stage.

It can be seen from Figure 3 that the N treatments affected the canopy reflectance in
different rice growth stages. The overall trends in canopy reflectance in each stage were
similar. The reflectance increased rapidly after 690 nm, resulting in a steep NIR shoulder.
There was an obvious difference by nitrogen level, with the difference more obvious in
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the NIR region than that around the green peak at 550 nm. Except for the variety V2 at
the heading stage, all data showed that lower nitrogen levels were associated with higher
reflectance around the green peak. This trend became more obvious as the growth stage
progressed. The N0 treatment always had the lowest reflectance in the NIR region after
730 nm, while the N2 treatment had the highest reflectance at the tillering stage. During
this stage, the rice plant is immature, and the rhizomes and leaves are in the developmental
stage, which may inhibit the development of rice in cases of excess nitrogen. Meanwhile, the
fertility period affects the growth and coverage of rice, and the spectra inevitably contain
more background information when acquired during the tillering stage, which will affect
the trend analysis to some extent. In contrast, during the panicle initiation and heading
stages, when rice develops rapidly and tends to mature, the canopy cover increased and
the reflectance of both varieties under treatment N4 was highest. There was generally
an increase in reflectance with the amount of nitrogen applied, but the differences were
small between some nitrogen treatment classes. For example, there were small differences
between treatments N3 and N4 at tillering and between N2 and N3 at panicle initiation
for V1 and V2, and between N1 and N2 at heading for V1. The other data showed that
nitrogen application was the main influence on reflectance. Unlike leaf spectra, canopy
spectra were somewhat more influenced by background factors, which would reduce the
differences between adjacent nitrogen treatments. Comparing varieties V1 and V2, there
were still some differences in reflectance at the same nitrogen level in the same growth stage.
The reflectance of V1 at the tillering stage was higher than that of V2, but the difference
was small. In the panicle initiation stage, V2 had higher reflectance. With the progress
of the growth stage, this difference was more obvious in the NIR region. The reflectance
difference under the same N level was close to 0.1. The reflectance in this region mainly
comes from the internal vegetation structure. Different varieties will have different internal
structures. Hence, there may be differences in sensitive areas when using reflectance data
to retrieve agronomic parameters of different varieties of crops.

3.2. Agronomic Parameters and GPC Analysis of Different Rice Varieties

Figure 4 shows the distribution of LAI and PNA for the two rice varieties in the three
growth stages in 2020. The LAI was higher in V2 at the tillering stage, and higher in V1 at
the panicle initiation and heading stages, although the difference was small. The PNA was
higher in V2 at the tillering and heading stages, with mean values about 0.3 and 1.8 higher
than those in V1, respectively. The LAI and PNA of both varieties were closer at the panicle
initiation stage. At this stage, rice enters a period of concurrent vegetative growth and
reproduction and absorbs a large amount of nutrients from the soil. The biomass and N
are stored in the stems and leaves, and the plant development approaches maturity so that
differences between the varieties become smaller. In the heading stage, in addition to the
stems and leaves, the spikes also store some dry matter, so the PNA content increases more
than in the panicle initiation stage. The leaf area also increases as the reproductive stage
advances, but not as significantly as in the tillering to panicle initiation stages. For example,
the mean LAI of V1 increased from 0.62 in the tillering stage to 3.07 in the panicle initiation
stage, but only from 3.07 to 4.22 between the panicle initiation and heading stages. This
is mainly because the plants approached vegetative maturity from the tillering to panicle
initiation stages and the absorbed nutrients are used for stem and leaf growth. After the
panicle initiation stage, the plants tend to mature, the leaves gradually stop growing, and
more nutrients are allocated to reproductive organs. Figure 4g shows that V1 ended up
with a slightly higher GPC than V2, with a difference of about 0.1%, while there was a large
difference of 3.26% between the different nitrogen treatments.
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3.3. Monitoring of Factors Influencing Rice GPC
3.3.1. Calculation of VIs in the Study Area

Three VI maps associated with crop growth status were constructed for the three
growth stages in 2020 (Figure A1).

3.3.2. LAI Monitoring in the Study Area

A sampling method was used to construct spectral indices of any two-band and three-
band combinations for the UAV images. Similar methods were successfully applied to
relative water content (RWC) [45], LAI [46], and nitrogen [8] in wheat. Previous research
shows that the best spectral parameters constructed in different forms still have collinearity,
because the different forms may select the same or related sensitive bands [47]. In this
study, we used multiple stepwise regression to screen the three best spectral parameters for
modeling LAI and PNA. These models were evaluated in terms of R2 and RMSE.

Table 3 shows the band combinations that provided the best correlations between
VIs and LAI constructed using reflectance data for any two bands and any three bands
after screening by the multiple stepwise regression method. All spectral indices consisting
of the best bands had correlations with LAI (r ≥ 0.8). In the panicle initiation stage, all
the best spectral indices had correlations with LAI (r ≥ 0.95). Most of the sensitive bands
in the three growth stages were concentrated near 450 nm and between 670 and 730 nm,
and some of them were from the red-edge region, which is consistent with the results of
Tanaka et al. [46].

Table 3. Relationships between leaf area index (LAI) and the optimal spectral index of rice varieties
V1 (Meixiangzhan 2) and V2 (Wufengyou 615) at different growth stages (n = 15).

Variety VI

Tillering Stage Panicle Initiation Stage Heading Stage

Band
Combination

(nm)

Correlation
Coefficient

Band
Combination

(nm)

Correlation
Coefficient

Band
Combination

(nm)

Correlation
Coefficient

V1
RVI - - 462,694 0.955 782,774 0.847
DVI - - - - 930,934 0.901
IRVI 714,718,710 0.880 - - - -

V2

RVI 614,502 −0.803 - - 718,722 −0.917
NDVI - - 458,674 0.952 - -
PSRI 502,602,702 0.890 458,674,474 0.957 - -
SIPI - - - - 618,722,718 0.954



Remote Sens. 2022, 14, 3989 11 of 27

The LAI regression equations for each growth stage of V1 and V2 are given in Table 4.
It can be seen from Table 4 that the models based on spectral indices performed well on
the modeling set (Ms) and validation set (Vs), except in the V1 tillering stage, when the R2

of the validation set was only 0.55, which may have been influenced by the background
noise. The rest had low RMSE values, indicating that the obtained LAI had a certain degree
of confidence. Figure 5 shows scatterplots of the predicted and measured LAI values. All
points of the predicted and modeled values are located on both sides of the 1:1 line. The
LAI had higher estimation accuracy in the panicle initiation and heading stages than in the
tillering stage. The regression equations of V1 and V2 were used to invert the LAI of the
whole study area. The LAI distribution maps are shown in Figure 6.

Table 4. Leaf area index (LAI) regression models and their accuracy for rice varieties V1 (Meixi-
angzhan 2) and V2 (Wufengyou 615) at different growth stages.

Variety Stage Model
Ms Vs

R2 RMSE R2 RMSE

V1
Tillering LAI = −184.685× IRVI + 93.1335 0.81 0.05 0.55 0.04

Panicle Initiation LAI = 14.1343× RVI− 6.993 0.90 0.30 0.97 0.16
Heading LAI = 100.104× RVI + 583.291×DVI− 101.89 0.80 0.74 0.97 0.28

V2
Tillering LAI = 2.0792× RVI + 13.6268× PSRI + 1.767 0.77 0.07 0.96 0.06

Panicle Initiation LAI = −13.348×NDVI+ 13.0938×PSRI+ 2.274 0.95 0.20 0.92 0.26
Heading LAI = 61.34× RVI + 121.061× SIPI− 199.203 0.97 0.32 0.98 0.48
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(Wufengyou 615) at (d) the tillering stage, (e) panicle initiation stage, and (f) heading stage.
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(d) the tillering stage, (e) panicle initiation stage, and (f) heading stage.

3.3.3. PNA Monitoring in the Study Area

Nitrogen has an important role in crop growth and grain quality. Crop nitrogen
accumulation (NA) is the product of crop nitrogen content (NC) and aboveground biomass
(AGB). It contains information on N status and growth status [48,49] and can reflect the
overall nutrient uptake of the crop well. Table 5 shows the band combinations with the
best correlations between PNA and constructed VIs using UAV reflectance data selected
by multiple stepwise regression methods for varieties V1 and V2. Bands more sensitive
to PNA appear in the NIR region above 730 nm. It has been shown that reflectance in the
NIR region is a good indicator of N status in many crops [50,51] and can indicate tissue N
concentration (TNC) and biomass [52,53].

Table 5. Relationships between plant nitrogen accumulation (PNA) and optimal spectral indices for
different rice varieties (n = 15).

Variety VI

Tillering Stage Panicle Initiation Stage Heading Stage

Band
Combination

(nm)

Correlation
Coefficient

Band
Combination

(nm)

Correlation
Coefficient

Band
Combination

(nm)

Correlation
Coefficient

V1
RVI - - 786,762 0.954 - -
IRVI 754,762,746 0.914 462,694,638 0.962 598,666,534 −0.934
PSRI 498,514,898 0.887 - - 718,722,778 0.917

V2

RVI 502,618 0.827 726,718 0.964 534,582 0.879
NDVI 618,502 −0.876 - - - -
IRVI 602,690,562 −0.909 842,902,754 0.976 - -
SIPI - - - - 858,898,794 0.954
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Both rice varieties V1 and V2 had good modeling and validation accuracy in all three
growth stages (Table 6). Figure 7 shows scatterplots of the predicted and measured PNA
values, which are more closely distributed on both sides of the 1:1 line. The R2 values of
the modeling and validation sets were greater than 0.86 in all three stages, except for the
validation set in the tillering stage (0.79). The PNA distribution maps of the study area
were obtained based on the regression equations for each growth stage (Figure 8).

Table 6. Plant nitrogen accumulation (PNA) regression models and their accuracy for different rice
varieties (n = 15).

Variety Stage Model
Ms Vs

R2 RMSE R2 RMSE

V1
Tillering PNA = 348.896× IRVI + 43.39× PSRI− 172.36 0.91 0.11 0.79 0.13

Panicle Initiation PNA = 35.578× RVI + 28.603× IRVI− 41.189 0.95 0.34 0.96 0.41
Heading PNA = −265.57× IRVI + 813.05× PSRI− 203.48 0.88 0.83 0.99 0.47

V2
Tillering PNA = 63.159× RVI + 86.91×NDVI− 41.01×

IRVI− 37.202 0.87 0.15 0.88 0.22

Panicle Initiation PNA = 7.615× RVI + 96.189× IRVI− 58.412 0.97 0.26 0.94 0.33
Heading PNA = 39.545× RVI + 1612.91× SIPI− 852.072 0.90 1.09 0.99 0.70
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Figure 7. Scatterplots of measured and predicted plant nitrogen accumulation (PNA) values in
variety V1 (Meixiangzhan 2) at (a) the tillering stage, (b) panicle initiation stage, and (c) heading
stage; and in variety V2 (Wufengyou 615) at (d) the tillering stage, (e) panicle initiation stage, and
(f) heading stage.
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3.4. GPC Monitoring Index Model Construction
3.4.1. Correlation Analysis of Each Parameter with GPC

Table 7 shows the coefficients of correlation of rice GPC with three VIs, LAI, and
PNA. Then, the best VI that was most closely related to GPC was selected and combined
with LAI and PNA by the Euclidean distance method to explore their effects on GPC
monitoring. From Table 7, PRI, LAI, and PNA were selected as indicators for constructing
GPC monitoring indices for both varieties at the tillering stage. MTCI was selected for
variety V1 and CIred edge for variety V2 to integrate LAI and PNA at the panicle initiation
stage as indicators for the construction of the GPC monitoring index. PRI was selected
for variety V1 and MTCI for variety V2 to incorporate LAI and PNA as indicators for
constructing GPC monitoring indices at the heading stage.

Table 7. Correlations of grain protein content (GPC) with vegetation indices, leaf area index (LAI), and
plant nitrogen accumulation (PNA) for rice varieties V1 (Meixiangzhan 2) and V2 (Wufengyou 615)
at different growth stages (n = 15).

Stage Tillering Stage Panicle Initiation Stage Heading Stage

Variety V1 V2 V1 V2 V1 V2

CIred edge 0.80 * 0.75 0.89 * 0.96 * 0.89 * 0.94 *
MTCI 0.86 * 0.84 * 0.90 * 0.94 * 0.83 * 0.96 *
PRI 0.87 * 0.92 * 0.81 * 0.93 * 0.90 * 0.93 *
LAI 0.74 0.79 * 0.76 * 0.92 * 0.86 * 0.94 *
PNA 0.72 0.80 * 0.88 * 0.93 * 0.94 * 0.91 *

Notes: r (0.001) = 0.760, * means significance at the 0.001 level.

3.4.2. Monitoring GPC with Original Parameters

Based on the plot means of the parameters (VIs, LAI, and PNA) for V1 and V2,
regression models based on each of the factors were constructed. The model equations
and their accuracy are given for each growth stage of the two rice varieties in Table 8. All
single-factor parameters showed some potential for GPC monitoring. Figure 9 shows the
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GPC estimation map using the single factors with optimal GPC for each growth stage for
varieties V1 and V2. It was found that the PRI-based GPC monitoring models for varieties
V1 and V2 had slightly lower performance in the tillering stage than in the other stages,
which was related to the lower rice canopy cover. The monitoring model constructed
using PNA at the heading stage for variety V1 obtained optimal accuracy (R2 = 0.90,
RMSE = 0.29% for the modeling set and R2 = 0.94 and RMSE = 0.36% for the validation
set). The monitoring model for variety V2 obtained optimal accuracy using CIred edge at
the panicle initiation stage. The R2 and RMSE of the modeling set reached 0.92 and 0.26%,
respectively, while the R2 and RMSE of the validation set reached 0.96 and 0.16%. In
addition, the R2 of the monitoring model for variety V2 constructed based on MTCI at the
heading stage was also greater than 0.9, showing certain monitoring stability. Nevertheless,
it can be seen from the scatterplots that some of the points deviate more on both sides of
the fitted line, indicating that the single-factor variables alone may not accurately express
the status of the grain proteins for GPC monitoring.

Table 8. Rice grain protein content (GPC) estimation models based on single-factor index parameters
and their accuracy (n = 15).

Variety Stage Index Model
Ms Vs

R2 RMSE R2 RMSE

V1

Tillering
PRI y = 56.6x + 12.01 0.74 0.47 0.78 0.38
LAI y = −45.77x2 + 63.38x− 13.38 0.46 0.67 0.71 0.42
PNA y = −6.74x2 + 18.60x− 4.13 0.74 0.46 0.58 1.27

Panicle initiation

MTCI y = 1.2408x + 3.6439 0.84 0.37 0.77 0.43
LAI y = −0.697x2 + 5.47x− 1.85 0.72 0.48 0.54 0.76
PNA y = −0.256x2 + 3.18x− 1.06 0.80 0.40 0.65 0.67

Heading
PRI y = −1809.4x2 − 88.08x + 9.98 0.86 0.34 0.80 0.61
LAI y = 0.7053x + 5.221 0.76 0.49 0.73 0.46
PNA y = 0.2152x + 5.7021 0.90 0.29 0.94 0.36

V2

Tillering
PRI y = 55.53x + 11.49 0.86 0.35 0.87 0.36
LAI y = 4.23lnx + 9.42 0.73 0.45 0.76 1.10
PNA y = −1.92x2 + 9.52x− 3.08 0.76 0.46 0.56 1.28

Panicle initiation

CIred edge y = 2.2041x + 3.9689 0.92 0.26 0.96 0.23
LAI y = −0.32x2 + 2.94x + 2.33 0.89 0.30 0.93 0.47
PNA y = 4.8003e0.1002x 0.89 0.33 0.89 0.29

Heading
MTCI y = 3.81e0.1878x 0.91 0.28 0.96 0.16
LAI y = 0.7026x + 5.014 0.88 0.33 0.93 0.25
PNA y = 0.267x + 4.594 0.86 0.36 0.86 0.32
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Figure 9. Scatterplots and regression models of grain protein content (GPC) and optimal monitoring
parameters for different growth stages for variety V1 (Meixiangzhan 2) at (a) the tillering stage,
(b) panicle initiation stage, and (c) heading stage; and for variety V2 (Wufengyou 615) at (d) the
tillering stage, (e) panicle initiation stage, and (f) heading stage.

3.4.3. Two-Dimensional GPC Monitoring Index Construction and Modeling

Three Euclidean distance monitoring indices were established to monitor GPC in
two-dimensional space: vegetation index–structure index, vegetation index–nitrogen index,
and structure index–nitrogen index (Table 9). The constructed two-dimensional monitoring
indices improved the GPC monitoring accuracy in each stage for both varieties, and the
optimal monitoring accuracy R2 for the modeling set of V1 at the tillering stage improved
from 0.74 to 0.81 (PRI–PNA), and the accuracy of the validation set reached 0.95, and
the optimal monitoring accuracy R2 for the modeling set of V2 improved from 0.86 to
0.91 (PRI–LAI). The accuracy improvement in the panicle initiation and heading stages was
not as great as that in the tillering stage but still improved. The GPC monitoring accuracy
of variety V1 improved to 0.91 in the modeling set R2 and to 0.90 in the validation set
in the heading stage, and the optimal monitoring accuracy of variety V2 reached 0.94 in
the modeling set R2 in the panicle initiation and heading stages and reached more than
0.97 in the validation set R2. Some of the GPC monitoring models had similar or even
lower GPC monitoring accuracy than the original single-factor models, so it was necessary
to re-evaluate and select the factors for GPC monitoring index construction by Euclidean
distance, and the two-dimensional monitoring index models had more nonlinear regression
equations than the single-factor models, and the larger the “distance” of these curves, the
less obvious the GPC improvement effect. Figure 10 shows the scatterplots and regression
models of GPC and the two-dimensional monitoring indices. Figure 10a,e reflect the
nonlinear feature but, in general, the higher the index value, the higher the resulting GPC.

Table 9. Two-dimensional rice grain protein content (GPC) monitoring index models and their
accuracy (n = 15).

Variety Stage Index Model
Ms Vs

R2 RMSE R2 RMSE

V1

Tillering
PRI–LAI y = 1.664x + 6.597 0.65 0.54 0.95 0.22
PRI–PNA y = −1.264x2 + 3.809x + 5.958 0.81 0.40 0.95 0.38
LAI–PNA y = −5.54x2 + 9.12x− 5.116 0.72 0.48 0.65 0.87

Panicle Initiation

MTCI–LAI y = 1.021 ln x + 8.42 0.84 0.37 0.55 0.63
MTCI–PNA y = −0.214x2 + 2.169x + 6.36 0.85 0.34 0.79 0.44
LAI–PNA y = −2.324x2 + 5.333x− 5.771 0.80 0.47 0.50 0.86

Heading
PRI–LAI y = 2.3522x + 6.137 0.86 0.34 0.84 0.41
PRI–PNA y = 2.114x + 6.238 0.91 0.28 0.90 0.37
LAI–PNA y = −0.859x2 + 3.019x + 6.23 0.88 0.31 0.81 0.47
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Table 9. Cont.

Variety Stage Index Model
Ms Vs

R2 RMSE R2 RMSE

V2

Tillering
PRI–LAI y = −0.202x2 + 3.06x + 5.211 0.91 0.27 0.83 0.36
PRI–PNA y = −1.028x2 + 3.93x + 5.41 0.82 0.44 0.78 0.63
LAI–PNA y = −2.420x2 + 7.10x + 3.57 0.78 0.40 0.71 0.49

Panicle Initiation

CIred edge–LAI y = −0.547x2 + 2.947x + 6.09 0.94 0.23 0.98 0.14
CIred edge–PNA y = 2.103x + 6.216 0.89 0.31 0.93 0.26

LAI–PNA y = −0.811x2 + 3.361x + 6.03 0.92 0.28 0.87 0.22

Heading
MTCI–LAI y = 1.9538x + 6.185 0.94 0.23 0.97 0.16
MTCI–PNA y = 6.283e0.2476x 0.89 0.31 0.94 0.20
LAI–PNA y = 0.275x2 + 1.571x + 6.311 0.89 0.31 0.92 0.22
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Figure 10. Scatterplots and regression models of grain protein content (GPC) and optimal two-
dimensional monitoring indices for rice variety V1 (Meixiangzhan 2) at (a) the tillering stage, (b) pan-
icle initiation stage, and (c) heading stage; and for variety V2 (Wufengyou 615) at (d) the tillering
stage, (e) panicle initiation stage, and (f) heading stage.

3.4.4. Three-Dimensional GPC Monitoring Index Construction and Modelling

We constructed GPC monitoring indices based on VI, LAI, and PNA in three-dimensional
space. Table 10 lists the three-dimensional rice GPC monitoring index models and their accuracy.

Table 10. Three-dimensional rice grain protein content (GPC) monitoring index models and their
accuracy (n = 15).

Variety Stage Index Model
Ms Vs

R2 RMSE R2 RMSE

V1
Tillering PRI–LAI–PNA y = −1.71x2 + 4.564x + 5.549 0.76 0.45 0.86 0.37

Panicle Initiation MTCI–LAI–PNA y = −1.05x2 + 3.442x + 5.971 0.86 0.35 0.79 0.44
Heading PRI–LAI–PNA y = 1.878x + 6.147 0.92 0.26 0.91 0.37

V2
Tillering PRI–LAI–PNA y = −0.18x2 + 2.833x + 5.04 0.87 0.34 0.77 0.59

Panicle Initiation CIred edge–LAI–PNA y = −0.22x2 + 2.153x + 6.12 0.97 0.17 0.96 0.17
Heading MTCI–LAI–PNA y = 6.199e0.22326x 0.96 0.20 0.99 0.15
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Figure 11 shows the three-dimensional index models and their accuracy. The accuracy
for monitoring both rice varieties at the tillering stage was no better than that with the
two-dimensional monitoring index models. However, at the panicle initiation and heading
stages, the three-dimensional index models were better. The modeling set R2 of the three-
dimensional monitoring index model constructed by PRI, LAI, and PNA at the heading
stage for variety V1 reached 0.92 with an RMSE of 0.26%, and the validation set R2 was
0.91 with an RMSE of 0.37%. The modeling set R2 of the three-dimensional monitoring
index model constructed by CIred edge, LAI, and PNA at the panicle initiation stage for
variety V2 reached 0.97 with an RMSE of 0.17%, and the R2 of the validation set was
0.96 and the RMSE was 0.17%. The R2 of both the modeling set and validation set for
the three-dimensional monitoring index model constructed by MTCI, LAI, and PNA also
reached above 0.96 at the heading stage. Thus, the monitoring models based on the three
indices at the panicle initiation and heading stages were more accurate to monitor rice grain
protein content. In Figure 11c,e,f, more points appear closely distributed on both sides of
the fitted lines, achieving more reliable and stable expression for low and high levels of
GPC with different optimal models for V1 and V2. Changes in grain protein synthesis by
varietal factors also deserve further consideration.
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stage, (e) panicle initiation stage, and (f) heading stage.

3.4.5. GPC Monitoring Map Derived from the Optimal Models

The optimal monitoring models obtained from the three-dimensional monitoring
indices for the two varieties were used for the generation of regional GPC monitoring maps.
The GPC status of varieties V1 and V2 in the study area is shown in Figure 12.
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Figure 12. Grain protein content (GPC) monitoring maps of the study area in 2020 based on
(a) a photochemical reflectance index (PRI)–leaf area index (LAI)–plant nitrogen accumulation
(PNA) three-dimensional index model at the heading stage; and (b) a red edge chlorophyll index
(CIred edge)–LAI–PNA three-dimensional index model at the panicle initiation stage.

3.5. Validation

To evaluate the practical effectiveness of the models and the method, the data of V1
collected in 2019 were used to validate the LAI, PNA, and GPC models constructed by the
same growth stage data of 2020. Since the UAV hyperspectral data of the study area were
only acquired during the 2019 panicle initiation stage, only the models of the 2020 panicle
initiation stage were used for validation.

Figure 13 shows the scatterplots of predicted and measured values for LAI and PNA
in 2019 using the LAI and PNA sensitive spectral parameters and monitoring models for V1
in 2020. Compared to the accuracy in 2020, the monitoring accuracy in 2019 was somewhat
lower in all cases, with R2 = 0.77 and RMSE = 0.26% for the LAI modeling set, R2 = 0.85 and
RMSE = 0.40% for its validation set, R2 = 0.78 and RMSE = 0.71% for the PNA modeling set,
and R2 = 0.68 and RMSE = 0.16% for its validation set. Although the same rice varieties
and cultivation management practices were used in the two years, there were differences
in macroclimatic factors and moisture that may have affected rice growth. The scatterplots
in Figure 13 show that the predicted LAI and PNA in 2019 based on the 2020 models still
have some reliability and can be used for the generation of regional LAI and PNA maps
(Figure 14) for GPC monitoring.
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By calculating the mean values of MTCI, LAI, and PNA for the 15 nitrogen plots in
2019, a GPC model based on MTCI–LAI–PNA data was obtained by applying the three-
dimensional Euclidean distance method (Figure 15). The R2 and RMSE were 0.70 and 0.69%,
respectively, for the modeling set and 0.77 and 0.84% for the validation set, respectively,
indicating that the model has a certain adaptability in time. However, the accuracy was still
lower than that of the modeling set (R2 = 0.86, RMSE = 0.35%) and validation set (R2 = 0.79,
RMSE = 0.44%) of the three-dimensional monitoring index model for the panicle initiation
stage in 2020. In addition, the regional GPC monitoring map for 2019 was obtained in this
study based on the uncorrected model for 2020 (Figure 16).
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4. Discussion
4.1. LAI and PNA Monitoring Based on Sensitive Spectral Indices

LAI is an important parameter describing the structure of the crop canopy. It deter-
mines, to some extent, the photosynthesis, transpiration, carbon and nitrogen cycling, and
water vapor interception [31,32]. Accurate monitoring of LAI and PNA in all stages of rice
growth can provide an accurate description of crop growth conditions. In this study, the
sensitive spectral indices of LAI and PNA of different rice varieties at different growth
stages were screened by constructing spectral indices of arbitrary band combinations.
The use of LAI and PNA estimated from spectral information for subsequent rice GPC
monitoring is an attempt to simplify the data acquisition process, minimizing manual
sampling and laboratory assays to obtain LAI and PNA. On the other hand, these sensitive
spectra were not completely consistent across the varieties and growth stages, as there were
changes in the responses to spectra at different growth stages. Finding a new and reliable
spectral index is a key issue in agricultural remote sensing monitoring [48,54]. In addition
to obtaining sensitive bands, like previous studies, this study also found that some spectral
combinations were not common spectral indices used to estimate LAI and PNA, such as
the sensitive spectral parameter DVI (930,934) for LAI of the variety V2 at the heading
stage. The sensitive band appeared after 900 nm, although this NIR band was considered
undesirable in previous studies due to high collinearity [47,55]. In the panicle initiation and
heading stages, the models show better accuracy using both the modeling and validation
sets because they are less affected by background information. In the tillering stage, the
background information is still the main reason for the poor performance of the monitoring
model [56].

4.2. Rice GPC Monitoring Based on Euclidean Distance

The Euclidean distance-based modeling approach combines the factors that influence
rice quality into a numerical metric that allows the effects of multiple factors on rice grain
protein synthesis to be quantified.

To fully consider the influence of multidimensional factors on rice GPC, we con-
structed a comprehensive GPC monitoring index that considers the crop’s phenological
state, phenotypic structural characteristics, and nutrient status. Although the different VIs
express different vegetation states, there is a certain amount of multicollinearity due to
the duplication of information existing between spectral bands. In order to remove the
influence of covariance, multiple stepwise regression method was used to select parameters
carrying as much GPC-related information as possible in this study. It is necessary to
compare the methods proposed in this study with those that are already more mature and
commonly used methods. Tables A1 and A2 list the rice GPC estimation results through
two-factor and three-factor multiple linear regression models and their accuracy. Table A3
shows the relationship between the GPC and optimal spectral indices for different varieties,
while Table A4 lists the GPC estimation results using the regression method with arbitrary
combinations of spectral indices and their accuracy. By comparison, the Euclidean distance
method ensured better monitoring accuracy at all growth stages.

By calculating the Euclidean distance [42], we can know that a negative factor in
rice growth may inhibit the facilitation effect of positive factors, while multiple positive
factors will maintain or enhance this facilitation effect, which is more in line with the
natural state of the rice grain protein synthesis process [11]. The GPC monitoring index
based on Euclidean distance was applied to two rice varieties in three growth stages
(Figures 10a,d and 11b,c,e,f). A multi-factor index combined by Euclidean distance can
provide better GPC prediction accuracy than a single-factor index. GPC monitoring models
based on different rice varieties can avoid monitoring errors caused by variety effects.
This study reveals that the factors affecting GPC differ in each stage for different rice
varieties, which is consistent with the findings of Devi et al. [57]. For better estimation
accuracy, the above factors should also be considered when the model is migrated. The
model can also explain the crop growth difference caused by stage change for the two rice
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varieties and provide a reference for establishing a GPC monitoring model based on crop
variety information.

In this study, we established rice GPC estimation models from crop VIs, LAI, and
PNA based on two years of experiments without considering the variation in climatic and
other uncontrollable conditions. Temperature is widely considered to be an important
driver of crop growth [58,59], so it must be considered when the model is extended to the
regional scale. The proposed method effectively estimated rice GPC using UAV images.
Previous studies also attempted to monitor crop growth and grain quality through satellite
imagery [60,61]. The Euclidean distance method has a simpler data processing process and
has the potential to be applied to satellite data.

4.3. Potential of Applying UAV-Obtained Hyperspectral Data to Crop Monitoring

In this study, two important rice growth parameters, LAI and PNA, were estimated
through the VIs collected from the UVA images. Then, a complete GPC monitoring model
combining two- or three-dimensional crop growth parameters was developed using hyper-
spectral data obtained by UAV. The results from this study indicate that UAV hyperspectral
image data have good potential on cereal crop quality monitoring [62,63]. However, GPC
sensitive parameters may differ among crop varieties and regions, so more research is
needed in future applications of this method to GPC monitoring [25]. This study demon-
strates a more objective approach for observation and visualization of actual rice GPC
distributions of different varieties and provides a UAV-based remote sensing tool that has
the potential for rapid crop monitoring on a regional scale.

5. Conclusions

In this study, rice GPC monitoring models were developed for different rice varieties
at critical growth stages using the Euclidean distance method. The following conclusions
were obtained:

(1) The spectral indices based on arbitrary band combinations can effectively monitor
LAI and PNA in rice at different growth stages. The estimation accuracy (R2) for two rice
varieties in three growth stages exceeded 0.8. These spectral indices can be used to generate
LAI and PNA distribution maps.

(2) The two-dimensional GPC monitoring index model based on PRI and PNA pro-
vided the optimal monitoring accuracy for variety V1 at the tillering stage, with R2 and
RMSE of 0.81 and 0.40%, respectively, for the modeling set and 0.95 and 0.38%, respectively,
for the validation set. The optimal two-dimensional index model based on PRI and LAI
for variety V2 at the tillering stage had R2 and RMSE of 0.91 and 0.27% for the modeling
set and 0.83 and 0.36% for the validation set. The three-dimensional GPC monitoring
index model based on MTCI, LAI, and PNA provided the optimal monitoring accuracy for
variety V1 at the panicle initiation stage, with the modeling R2 and RMSE being 0.86 and
0.35% and the validation R2 and RMSE being 0.79 and 0.44%. The R2 and RMSE for the
optimal three-dimensional model based on CIred edge, LAI, and PNA for variety V2 at the
initiation stage were 0.97 and 0.17% for the modeling set and 0.96 and 0.17 for the validation
set. The three-dimensional GPC monitoring index model based on PRI, LAI, and PNA
provided the optimal monitoring accuracy for variety V1 at the heading stage, with R2

and RMSE of 0.92 and 0.26% for modeling and 0.91 and 0.37% for validation. The optimal
three-dimensional model based on MTCI, LAI, and PNA for variety V2 at the heading
stage had R2 and RMSE of 0.96 and 0.20% for modeling and 0.99 and 0.15% for validation.
In addition, single-factor indices had linear relationships with GPC, whereas most of the
composite GPC monitoring indices had nonlinear relationships with GPC.

(3) The models and methods from this study have the potential for use in the field of
UAV-based remote sensing for crop monitoring. It is feasible to adapt the models for GPC
monitoring on the same rice varieties in different years. In this study, a limited number of
key influencing factors that affect rice quality and yield were considered. The effects of a
wide range of influencing factors and growth stages on the construction of GPC need to be
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further investigated. The applicability of the model to different rice varieties also needs to
be further validated.
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Table A1. Two-factor multiple linear regression rice grain protein content (GPC) estimation models
and their accuracy (n = 15).

Variety Stage Index Model
Modeling Set Validation Set

R2 RMSE R2 RMSE

V1

Tillering
PRI–LAI y = 50.31PRI + 1.56LAI + 10.58 0.61 0.57 0.72 0.48
PRI–PNA y = 53.16PRI + 0.25PNA + 11.37 0.73 0.48 0.83 0.47
LAI–PNA y = 6.96LAI + 0.14PNA + 3.04 0.41 0.85 0.67 0.74

Panicle Initiation

MTCI–LAI y = 0.35MTCI + 0.61LAI + 5.21 0.71 0.48 0.67 0.53
MTCI–PNA y = 0.39MTCI + 0.58PNA + 4.11 0.78 0.41 0.78 0.42
LAI–PNA y = −0.26LAI + 0.62PNA + 4.10 0.69 0.53 0.73 0.47

Heading
PRI–LAI y = 82.15PRI + 0.29LAI + 12.15 0.80 0.37 0.83 0.35
PRI–PNA y = 81.2PRI + 0.08PNA + 12.39 0.86 0.36 0.89 0.37
LAI–PNA y = 0.34LAI + 0.11PNA + 5.42 0.75 0.46 0.91 0.42

V2

Tillering
PRI–LAI y = 53.30PRI + 0.38LAI + 11.14 0.86 0.36 0.87 0.35
PRI–PNA y = 55.38PRI + 0.08PNA + 11.38 0.81 0.41 0.79 0.45
LAI–PNA y = 3.97LAI + 0.18PNA + 4.80 0.72 0.56 0.64 0.59

Panicle Initiation

CIred edge–LAI y = 0.76CIred edge + 1.27LAI + 2.46 0.86 0.37 0.87 0.32
CIred edge–PNA y = 0.93CIred edge + 0.78PNA + 1.86 0.86 0.38 0.95 0.21

LAI–PNA y = 0.56LAI + 0.28PNA + 4.82 0.87 0.33 0.86 0.33

Heading
MTCI–LAI y = 1.34MTCI + 0.14LAI 0.88 0.32 0.89 0.35
MTCI–PNA y = 1.40MTCI + 0.10PNA + 2.19 0.91 0.27 0.91 0.26
LAI–PNA y = 0.65LAI + 0.02PNA + 4.93 0.87 0.33 0.79 0.40

Table A2. Three-factor multiple linear regression rice grain protein content (GPC) estimation models
and their accuracy (n = 15).

Variety Stage Index Model

Modeling
Set

Validation
Set

R2 RMSE R2 RMSE

V1
Tillering PRI–LAI–PNA y = 49.72PRI + 1.19LAI + 0.13PNA + 10.58 0.65 0.52 0.79 0.43

Panicle Initiation MTCI–LAI–PNA y = 0.12MTCI − 0.19LAI + 0.57PNA + 5.41 0.77 0.45 0.91 0.31
Heading PRI–LAI–PNA y = 72.39PRI + 0.21LAI + 0.04PNA + 11.41 0.87 0.34 0.87 0.34

V2
Tillering PRI–LAI–PNA y = 53.21PRI + 0.32LAI + 0.03PNA + 11.12 0.85 0.36 0.87 0.32

Panicle Initiation CIred edge–LAI–PNA y = 0.04CIred edge + 0.58LAI + 0.27PNA + 4.82 0.88 0.33 0.86 0.31
Heading MTCI–LAI–PNA y = 0.41MTCI − 0.08LAI + 0.19PNA + 4.64 0.77 0.45 0.87 0.31

Table A3. Relationships between grain protein content (GPC) and optimal spectral indices for two
rice varieties at three different growth stages (n = 15).

Variety VIS

Tillering Stage Panicle Initiation Stage Heading Stage

Band
Combination

(nm)

Correlation
Coefficient

Band
Combination

(nm)

Correlation
Coefficient

Band
Combination

(nm)

Correlation
Coefficient

V1
RVI 528,702 0.732 774,782 −0.828 782,774 0.816
DVI 554,706 −0.836 782,774 0.835 - -
SIPI - - - - 706,722,782 0.923

V2
NDVI - - 726,730 −0.866 - -
PSRI 462,464,770 0.901 606,586,778 0.870 766,758,878 0.881
SIPI - - - - 758,766,930 0.881
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Table A4. Grain protein content (GPC) regression models and their accuracy for two rice varieties at
three different growth stages (n = 15).

Variety Stage Model
Modeling set Validation set

R2 RMSE R2 RMSE

V1
Tillering GPC = −12.035× RVI + 11.525×DVI + 26.092 0.69 0.54 0.79 0.50

Panicle Initiation GPC = 143.534× RVI + 667.438×DVI− 137.007 0.81 0.37 0.83 0.36
Heading GPC = 173.728× RVI + 0.871× SIPI− 63.49 0.84 0.36 0.79 0.48

V2
Tillering GPC = 8.476× RVI + 15.464 0.81 0.37 0.88 0.29

Panicle Initiation GPC = −49.88×NDVI + 145.865× PSRI + 5.819 0.89 0.29 0.92 0.28
Heading GPC = 39.545× RVI + 1612.91× SIPI− 852.072 0.90 0.27 0.90 0.26
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