
Citation: Geng, S.; Zhang, H.; Xie, F.;

Li, L.; Yang, L. Vegetation Dynamics

under Rapid Urbanization in the

Guangdong–Hong Kong–Macao

Greater Bay Area Urban

Agglomeration during the Past Two

Decades. Remote Sens. 2022, 14, 3993.

https://doi.org/10.3390/rs14163993

Academic Editors: Siyuan Wang,

Qianqian Zhang, Cong Ou and

Yu Feng

Received: 20 June 2022

Accepted: 10 August 2022

Published: 16 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Vegetation Dynamics under Rapid Urbanization in the
Guangdong–Hong Kong–Macao Greater Bay Area Urban
Agglomeration during the Past Two Decades
Shoubao Geng 1 , Huamin Zhang 2 , Fei Xie 3, Lanhui Li 4 and Long Yang 1,*

1 Guangdong Provincial Key Laboratory of Remote Sensing and Geographical Information System, Guangdong
Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography,
Guangdong Academy of Sciences, Guangzhou 510070, China

2 Center for Natural Resources Policy Survey and Evaluation of Jiangxi Province, Nanchang 330025, China
3 Agro-Environmental Monitoring Center of Baoshan City, Baoshan 678000, China
4 School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024, China
* Correspondence: yanglong@gdas.ac.cn

Abstract: Detection of long-term vegetation dynamics is important for identifying vegetation im-
provement and degradation, especially for rapidly urbanizing regions with intensive land cover
conversions. The Guangdong–Hong Kong–Macao Greater Bay Area (GBA) urban agglomeration
has experienced rapid urbanization during the past decades with profound impacts on vegetation,
so there is an urgent need to evaluate vegetation dynamics across land use/cover change (LUCC).
Based on the normalized difference vegetation index (NDVI) during 2001–2020, we used coefficient
of variation, Theil–Sen median trend analysis, and Hurst exponent to analyze the spatiotemporal
change and future consistency of vegetation growth among the main LUCC in the GBA. Results
demonstrated that low NDVI values with high fluctuations were mainly distributed in the central
urban areas, whereas high NDVI values with low fluctuations were primarily located in the pe-
ripheral hilly mountains. The area-averaged NDVI showed an overall increasing trend at a rate of
0.0030 year−1, and areas with vegetation improvement (82.99%) were more than four times those with
vegetation degradation (17.01%). The persistent forest and grassland and the regions converted from
built-up to vegetation displayed the most obvious greening; NDVI in over 90% of these areas showed
an increasing trend. In contrast, vegetation browning occurred in more than 60% of the regions
converted from vegetation to built-up. Future vegetation change in most areas (91.37%) will continue
the existing trends, and 80.06% of the GBA was predicted to develop in a benign direction, compared
to 19.94% in a malignant direction. Our results contribute to in-depth understanding of vegetation
dynamics during rapid urbanization in the GBA, which is crucial for vegetation conservation and
land-use optimization.

Keywords: vegetation dynamic; coefficient of variation; trend analysis; Hurst exponent; urbanization;
Guangdong–Hong Kong–Macao Greater Bay Area

1. Introduction

Vegetation, an important medium of material circulation and energy flow in terres-
trial ecosystems, links the atmosphere, hydrosphere, and pedosphere. Vegetation change
greatly affects ecosystem functions and ecosystem services via influencing carbon and ni-
trogen cycle, water cycle, and climate regulation [1–6]. Therefore, in-depth understanding
of vegetation dynamics is essential to maintain ecosystem functions and ecosystem ser-
vices, which is of critical significance for improving environmental quality and promoting
human welfare.

Long-term records of remotely sensed spectral vegetation indices derived from sen-
sors such as Advanced Very High Resolution Radiometer (AVHRR), Systeme Probatoire
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d’Observation dela Tarren VEGETATION (SPOT/VGT), and Moderate Resolution Imaging
Spectroradiometer (MODIS) provide consistent and repeatable data for monitoring vegeta-
tion dynamics over large areas [7–11]. Among these vegetation indices, the Normalized
Difference Vegetation Index (NDVI) has become the most widely used indicator to repre-
sent vegetation growth status and monitor vegetation variations due to its strong ability
to reflect vegetation coverage, productivity, and activity [12–15]. With the advantages
of finer spatial resolution, greater spectral consistency, and higher data quality to reveal
more accurate and detailed vegetation change, the MODIS-250 m NDVI has attracted more
attention than AVHRR-8 km NDVI and SPOT/VGT-1 km NDVI in studies on vegetation
dynamics [8,16,17].

Over the past several decades, studies on regional or global vegetation dynamics mainly
focused on fluctuations, trends, and future consistency. Vegetation fluctuations are often
estimated by the coefficient of variation, a ratio of the standard deviation to the mean NDVI
time series to indicate vegetation variability [16,18]. The identification of long-term vegetation
trends is helpful for understanding environmental change, which is usually achieved by linear
regression analysis or the Theil–Sen median trend analysis with a Mann–Kendall significance
test [7,8,19,20]. The Hurst exponent based on R/S analysis is increasingly used to detect the
dependence and persistence of NDVI time series and then predict the consistency of future
vegetation change [7,16,21,22]. In addition, other studies also show interest in periods and
breakpoints of vegetation change [16,17,23]. Urbanization has been generally recognized as
one of the important drivers causing vegetation degradation in many regions [21,24–26].
However, other studies observed vegetation growth enhancement in urban areas [27–29].
Debates on whether vegetation has been improved or degraded in urban environments
still exist. In addition, vegetation dynamics varied diversely among vegetation types or
land cover types. For example, greening occurred in most irrigated croplands other than
natural vegetation in South Asia [10], while croplands and grasslands in the Yangtze River
Delta of eastern China exhibited browning trends [24]. Research on both Qinghai–Tibet
Plateau and six provinces along the southeast coast of China revealed that vegetation
productivity increased for all unchanged vegetation types but with different changing
rates [7,30]. Thus, vegetation dynamics are complex in the context of urbanization. How-
ever, few studies systematically focus on the difference in vegetation dynamics across land
use/cover change (LUCC), and further research is urgently needed especially for regions
with rapid urbanization.

As the largest morphologically contiguous urban agglomeration in the world [31], the
Guangdong–Hong Kong–Macao Greater Bay Area (GBA) has experienced a nearly 6-fold
expansion of impervious surface area and more than 8-fold growth of the gross domestic
product (GDP) since 2000 [20,32], providing a suitable place to study vegetation dynamics
during the urbanization process. LUCC in the GBA has profound impacts on vegetation
dynamics, particularly for conversions between vegetated land and non-vegetated land [33].
On the one hand, many studies revealed that urban sprawl and expansion generally reduced
net primary productivity [34,35]. On the other hand, investment in urban green infrastructures
and localized warming in urban areas were believed to benefit vegetation [28,34]. Ecological
conservation and restoration programs and the awareness of environmental protection
also considerably contributed to vegetation coverage [20]. Thus, uncertainty of vegetation
change remains during the urbanization of the GBA. To our knowledge, there are few
current studies investigating the vegetation dynamics in terms of LUCC in the GBA.
Additionally, the complexity of vegetation change in urban environments of the GBA was
poorly understood in previous studies.

This study analyzed vegetation dynamics in the GBA during a rapid urbanization
period from 2001 to 2020 based on the MODIS-250 m NDVI data. Specifically, the coeffi-
cient of variation, linear regression analysis, the Theil–Sen median trend analysis with a
Mann–Kendall significance test, and Hurst exponent based on R/S analysis were used to
(1) investigate spatiotemporal fluctuations, trends, and sustainability of vegetation and
(2) compare the differences in vegetation dynamics over main LUCC types. The following
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hypotheses were put forward for this study: (1) vegetation dynamics in the GBA vary
across LUCC and (2) urbanization has large and complex impacts on vegetation dynamics.
Results of this study are expected to gain insight into the spatiotemporal changes in vege-
tation in the GBA over the past 20 years, which is beneficial for evaluation of vegetation
improvement and degradation under rapid urbanization, thereby providing guidance for
future vegetation conservation and restoration.

2. Materials and Methods
2.1. Study Area

The GBA (21◦34′–24◦24′N, 111◦21′–115◦25′E) is located at the Pearl River Delta region
in South China with an area of ~56,000 km2. The GBA is one of the largest urban agglomer-
ations in the world and consists of 9 mainland cities and 2 special administrative regions:
Guangzhou (GZ), Shenzhen (SZ), Zhuhai (ZH), Foshan (FS), Huizhou (HZ), Dongguan
(DG), Zhongshan (ZS), Jiangmen (JM), Zhaoqing (ZQ), Hong Kong (HK), and Macao (MC)
(Figure 1). Subtropical monsoon climate dominates the study area with the mean annual
temperature, precipitation, and sunshine duration ranges of 20.74–22.67 ◦C, 1349–2753
mm, and 1484–2294 h, respectively, over the past 60 years. Rapid urbanization has been
happening in the GBA for the last several decades and more than 12% of the national GDP
was created with less than 1% of the national territory and 5% of the national population
in 2018. During the urbanization process, land use and cover has changed dramatically
(Figure 1), and the extensive occupation of ecological land by built-up land tends to impose
a negative effect on vegetation and ecosystem services [36].
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Figure 1. Land use/land cover (LULC) maps of the Guangdong–Hong Kong–Macao Greater Bay
Area (GBA) in 2000 (a) and 2020 (b).

2.2. Data Source and Pre-Processing
2.2.1. NDVI Data

The 16-day MODIS NDVI data (MOD13Q1) at 250 m spatial resolution for 2001–2020
were acquired from the Land Processes Distributed Active Archive Center (LP DAAC)
within the U.S. National Aeronautics and Space Administration (NASA) Earth Observing
System Data and Information System (EOSDIS) (https://lpdaac.usgs.gov, (accessed on
16 August 2021)). In order to reduce contamination caused by clouds and haze, an adaptive
Savitzky–Golay filter method was applied to smooth the annual NDVI cycle and reconstruct
a high-quality NDVI time-series via the TIMESAT software package [37]. The maximum
value composite (MVC) method was then used to yield the annual maximum NDVI dataset
for vegetation dynamic analyses.

https://lpdaac.usgs.gov
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2.2.2. Land Use/Land Cover Data

The land use/land cover maps for 2000 and 2020 were obtained from the Resource and
Environment Science and Data Center, Chinese Academy of Sciences (http://www.resdc.cn,
(accessed on 6 December 2021)). Derived from Landsat images at a pixel resolution of 30 m,
land use types were classified into forest, grassland, cropland, waterbody, built-up, and
unutilized land. The spatial resolution of land use data was resampled to match NDVI data
on ArcGIS 10.6 for subsequent analyses.

2.2.3. Night Light Data

Night light (NL), a useful and comprehensive proxy to monitor energy consumption,
and socioeconomic and demographic activities, is widely used to investigate long-term
urbanization processes. The night light dataset over the period from 2001 to 2020 was
provided by National Tibetan Plateau Data Center (http://data.tpdc.ac.cn, (accessed on
29 March 2022)). A Night-Time Light convolutional Long Short-Term Memory (NTLSTM)
network was applied to produce the annual Prolonged Artificial Nighttime-light DAtaset
(PANDA), and the high confidential level of the data quality was guaranteed with the Root
Mean Squared-Error (RMSE) at 0.73, the coefficient of determination (R2) at 0.95, and the
linear slope at 0.99 between modeled and original images [38]. Compared with previous
night light products, the PANDA correlated better with socioeconomic indicators such as
Gross Domestic Product (GDP), population, and built-up areas. The spatial resolution of
PANDA was approximately 1 km, which was resampled to match NDVI data on ArcGIS
10.6 for subsequent analyses.

2.3. Methods
2.3.1. Coefficient of Variation

The coefficient of variation refers to the ratio of the standard deviation to the mean
NDVI time series, which is usually used to characterize vegetation fluctuations and stability.
The coefficient of variation in this study was calculated as follows:

CV =
σNDVI
µNDVI

=
1

µNDVI

√
∑n

i=1(NDVIi − µNDVI)
2

n
(1)

where CV is the coefficient of variation of NDVI time series; σNDVI and µNDVI are the
standard deviation and the mean value of NDVI during the study period, respectively; n is
the number of years in the study period; NDVIi is the NDVI value of year i.

2.3.2. Trend Analysis

At the regional level, the area-averaged NDVI of each year for the whole study area
was calculated and the linear regression analysis was performed to detect the overall
vegetation change trend with the slope coefficient, which can be calculated as below:

slope =
n×∑n

t=1 t× NDVIt − (∑n
t=1 t)(∑n

t=1 NDVIt)

n×∑n
t=1 t2 − (∑n

t=1 t)2 (2)

where slope is the inter-annual trend of NDVI; n is the number of years in the study period;
and NDVIt is the averaged NDVI value of year t.

At the pixel level, the Theil–Sen median trend analysis with a Mann–Kendall signif-
icance test was employed to reveal the vegetation change trend of each pixel. Based on
non-parametric techniques, this method does not require the samples to follow certain
distributions and it is insensitive to outliers, thereby showing robustness in the linear trend
analysis of long time series data [39–41].

http://www.resdc.cn
http://data.tpdc.ac.cn


Remote Sens. 2022, 14, 3993 5 of 17

First, the Theil–Sen estimator was used to estimate the slope of the Theil–Sen median:

SNDVI = Median
(NDVIj − NDVIi

j− i

)
, 2001 ≤ i < j ≤ 2020 (3)

where SNDVI is the median from the set of slopes of the NDVI time series; NDVIi and NDVIj
are the NDVI values of year i and year j, respectively. SNDVI > 0 denotes an increasing
trend of NDVI, and SNDVI > 0 indicates a decreasing trend of NDVI during the period of
2001–2020.

Second, the Mann–Kendall test was used to check the significance of the trend:

S = ∑n−1
j=1 ∑n

i=j+1 sgn
(

NDVIj − NDVIi
)

(4)

sgn
(

NDVIj − NDVIi
)
=


1, NDVIj − NDVIi > 0
0, NDVIj − NDVIi = 0
−1, NDVIj − NDVIi < 0

(5)

δ(S) =
n(n− 1)(2n + 5)

18
(6)

Z =


S−1√

δ(S)
, S > 0

0, S = 0
S+1√

δ(S)
, S < 0

(7)

where n is the length of years in the study area; sgn is a sign function. Z value, calculated us-
ing S statistics, was used to test the significance of the NDVI trend. For a given significance
level α, |Z| > Z1−α/2 means that the change trend of the time series is significant.

This study selected the significance level α = 0.05, then the trend of vegetation dynamics
could be classified into four grades: (1) significant decrease (SNDVI < 0 and |Z| > 1.96),
(2) slight decrease (SNDVI < 0 and |Z| ≤ 1.96), (3) slight increase (SNDVI > 0 and |Z| ≤ 1.96),
and (4) significant increase (SNDVI > 0 and |Z| > 1.96).

2.3.3. Hurst Exponent

The Hurst exponent based on R/S analysis is generally used to analyze the long-term
dependence and predict the future consistency of time series, which has been widely
applied in hydrology, climatology, economics, and vegetation dynamics [7,42–44]. The
calculation of the Hurst exponent normally includes six steps:

(1) Assume there is a time series {ξ(t)}, t = 1, 2, . . . , n.
(2) Define the mean sequence of the time series.

〈ξ〉τ =
1
τ ∑τ

t=1 ξ(t), τ = 1, 2, · · · , n (8)

(3) Compute the cumulative deviation.

X(t, τ) = ∑t
u=1(ξ(u)− 〈ξ〉τ), 1 ≤ t ≤ τ (9)

(4) Create the range sequence.

R(τ) = max
1≤t≤τ

X(t, τ)− min
1≤t≤τ

X(t, τ), τ = 1, 2, · · · , n (10)

(5) Generate the standard deviation sequence.

S(τ) =
[

1
τ ∑τ

t=1(ξ(t)− 〈ξ〉τ)
2
] 1

2
, τ = 1, 2, · · · , n (11)
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(6) Calculate the Hurst exponent.

R(τ)
S(τ)

= (cτ)H (12)

where c is a proportional parameter and H value is the Hurst exponent.
The Hurst exponent analysis was adopted in this study to investigate the consistency

of NDVI time series. The consistency of the NDVI trend was estimated by the H value
ranging from 0 to 1. If 0 < H < 0.5, anti-consistency was predicted for the NDVI time series,
indicating a contrary vegetation trend in the future with the H value closer to 0 for more
anti-consistency. If H = 0.5, the NDVI time series was stochastic without consistency. If
0.5 < H < 1, consistency was predicted for the NDVI time series, indicating a continuous
vegetation trend in the future with an H value closer to 1 for more consistency.

2.3.4. Vegetation Dynamics of LUCC Types

A land use/land cover transfer matrix was used to detect the land transformation
information between 2000 and 2020 [45]. During the past 20 years, most of the land use/land
cover in the GBA remained unchanged and the area with land use/cover conversions
accounted for 7.45% of the whole area of the GBA (Figure 1). Among the changed land,
85.68% was from vegetated land (cropland, forest, and grassland) to built-up land (Table 1).
In addition, there was also a small amount of land transformed from built-up to vegetation.
Since the conversion between vegetation and non-vegetation had great impacts on NDVI,
this study focused on the vegetation dynamics for the main LUCC types: forest persistence
(FP), grassland persistence (GP), cropland persistence (CP), built-up persistence (BP),
vegetation to built-up (VB), and built-up to vegetation (BV). The fluctuations, trends,
and future consistency of NDVI time series were then analyzed and compared for these
LUCC types.

Table 1. Land use/land cover (LULC) transfer matrix in the GBA from 2000 to 2020.

LULC Type
2020 LULC (km2)

Total
Built-Up Cropland Forest Grassland Waterbody Unutilized Land

2000 LULC
(km2)

Built-up persistent 0.69
(0.02%)

1.97
(0.05%)

0.59
(0.01%)

1.23
(0.03%)

0
(0%)

4.49
(0.11%)

Cropland 2663.23
(64.65%) persistent 2.07

(0.05%)
11.34

(0.28%)
9.66

(0.23%)
0

(0%)
2686.30

(65.21%)

Forest 815.80
(19.81%)

3.80
(0.09%) persistent 16.10

(0.39%)
10.48

(0.25%)
0

(0%)
846.18

(20.54%)

Grassland 50.41
(1.22%)

0.15
(<0.01%)

0
(0%) persistent 0.83

(0.02%)
0

(0%)
51.40

(1.24%)

Waterbody 398.16
(9.67%)

3.61
(0.09%)

2.27
(0.06%)

1.14
(0.03%) persistent 0

(0%)
405.17

(9.85%)

Unutilized Land 95.27
(2.31%)

0
(0%)

1.83
(0.04%)

3.52
(0.09%)

25.07
(0.61%) persistent 125.69

(3.05%)

Total 4022.86
(97.66%)

8.24
(0.20%)

8.15
(0.20%)

32.70
(0.80%)

47.28
(1.14%)

0
(0%)

4119.23
(100%)

2.3.5. Correlation Analysis

In order to disentangle the relationships between vegetation dynamics and socioe-
conomic development, Pearson correlation analysis was performed via software Origin
2018 and the correlation coefficient (R) between the annual NDVI and the annual NL for
different LUCC types was calculated based on the linear regression as follows:

R =
∑n

i=1
[(

NLi − NL
)(

NDVIi − NDVI
)]√

∑n
i=1
(

NLi − NL
)2

∑n
i=1
(

NDVIi − NDVI
)2

(13)
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where R is the correlation coefficient between NDVI and NL, NLi and NDVIi are the area-
averaged NL and NDVI values of year i, NL and NDVI are the average NL and NDVI for
the whole study period, and n is the number of years.

3. Results
3.1. Spatial Heterogeneity and Fluctuations in Vegetation Dynamics

The NDVI averaged over the period 2001–2020 displayed a distinct spatial pattern:
low values mainly distributed in the central region and high values in the peripheral region
(Figure 2a). The NDVI was classified into five grades by an equal-interval classification
method, and the area percentage was 0.53%, 10.09%, 15.26%, 39.92%, and 34.20% for each
NDVI grade from low to high values. Regions with low NDVI values (NDVI < 0.4) were
primarily distributed in the highly urbanized Pearl River Estuary including the southern
GZ, FS, ZS, ZH, DG, SZ, and MC, while regions with high NDVI values (NDVI ≥ 0.6)
were widely located in ZQ, HZ, JM, HK, and the northern GZ. Area statistics indicated
that NDVI differentiated greatly across LUCC types (Table 2). High NDVI values (NDVI
≥ 0.6) accounted for 97.47%, 91.23%, and 71.82% of FP, GP, and CP regions, respectively.
Overall, NDVI for most vegetated areas was higher than 0.6, whereas the NDVI decreased
significantly when vegetation changed to built-up with 88.18% of the VB region having
NDVI lower than 0.6. In comparison, nearly 60% of the BP region had low NDVI values
(NDVI < 0.4), but this percentage sharply decreased if built-up converted to vegetation.
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Figure 2. Spatial distribution of NDVI (a) and CV (b) in the GBA during 2001–2020. NDVI—
normalized difference vegetation index; CV—coefficient of variation.

The coefficient of variation (CV) of the NDVI time series had a highly similar spatial
pattern to the averaged NDVI (Figure 2b). The CV was divided into five grades at an
interval of 0.05 to depict vegetation fluctuations. Low fluctuations (71.30%) dominated
most of the peripheral region with 30.95% for the CV ≤ 0.05 grade and 40.35% for the
0.05 < CV ≤ 0.10 grade. By contrast, vegetation in the central region generally had high
fluctuations with CV > 0.15, which accounted for almost 15% of the study area. Vegetation
fluctuations varied remarkably among LUCC types (Table 2). Forest showed the highest
stability with nearly half of the FP region having the lowest fluctuations, followed by
GP and CP regions. Most of the BP region experienced moderate to high fluctuations. In
addition, changed regions between vegetation and built-up had relatively higher vegetation
fluctuations than the unchanged regions, especially for the VB region with areas undergoing
the highest fluctuations accounting for 36.62%.
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Table 2. Area statistics of NDVI and CV for main LUCC types.

Variable 1 Grade
Area (%) of LUCC 2

FP GP CP BP VB BV

NDVI <0.2 0 0.01 0.05 2.27 0.50 0
0.2–0.4 0.17 0.43 4.94 57.12 36.64 3.45
0.4–0.6 2.36 8.33 23.19 29.38 51.04 56.90
0.6–0.8 37.67 63.38 67.59 11.07 11.58 39.65
≥0.8 59.79 27.85 4.23 0.16 0.24 0

CV ≤0.05 49.00 23.00 15.77 1.63 0.41 0
0.05–0.10 43.18 57.91 56.09 17.26 8.20 13.79
0.10–0.15 6.07 13.81 17.42 36.26 27.36 51.72
0.15–0.20 1.29 3.66 6.37 28.52 27.41 15.52

>0.20 0.46 1.62 4.35 16.33 36.62 18.97
1 NDVI—normalized difference vegetation index; CV—coefficient of variation. 2 LUCC types: forest persistence
(FP), grassland persistence (GP), cropland persistence (CP), built-up persistence (BP), vegetation to built-up (VB),
and built-up to vegetation (BV).

3.2. Trends in Vegetation Dynamics

At the regional scale, linear regression analysis showed that the area-averaged NDVI
generally presented a significant increasing trend (p < 0.001, n = 20) at a rate of 0.0030 year−1

during 2001–2020 (Figure 3a). The minimum value of the area-averaged NDVI was 0.6550
and the maximum value was 0.7117, which appeared in 2004 and 2015, respectively. At
the pixel scale, the spatial pattern of NDVI trend over the past 20 years illustrated that
NDVI increased in 82.99% of the study area, against 17.01% for the NDVI decreased area
(Figure 3b). NDVI significantly increased over 60% of the study area, which was mainly
distributed in ZC, HZ, JM, SZ, HK, and northern GZ. In contrast, areas with a significant
decreasing trend were chiefly in FS, DG, SZ, ZH, and southern GZ, only accounting for
6.35% of the study area. Additionally, areas without vegetation change hardly existed
(less than 0.01%).

Vegetation trends among main LUCC types demonstrated great differences (Figure 3c).
Forest and grassland exhibited the largest area of significant increasing NDVI, covering
76.64% and 73.11% of FP and GP regions, much higher than other LUCC types. Areas
with increasing NDVI could reach to approximately 70% for CP and BP regions, in which
the significant increasing areas accounted for 45.38% and 38.09%, respectively. Instead,
more than 60% (30.94% for significant decrease and 30.24% for slight decrease) of the VB
region experienced an NDVI decrease, while an NDVI increase was observed over 96%
(68.97% for significant increase and 27.59% for slight increase) of the BV region, even higher
than FP and GP regions.

3.3. Future Changes in Vegetation Dynamics

The Hurst exponent analysis indicated that the future dynamics of NDVI in most of the
study area would continue to keep the same change trend as the past 20 years (Table 3, Figure 4a).
Areas with a consistent NDVI trend (0.5 < H < 1) occupied 91.37% of the region, compared
to areas with the anti-consistent trend (0 < H < 0.5) accounting for merely 8.63%. On the
basis of the trend analysis and the Hurst exponent, the future development of NDVI was
summarized as eight states, which could be concluded as two main directions: benign and
malignant (Table 3). The consistent significant increasing trend was the most important
state of future NDVI change, accounting for 59.28% of the study area, followed by the
consistent slight increasing trend (17.93%). Together with the small area of anti-consistent
decreasing trends, the percentage of areas where NDVI was predicted to develop in the
benign direction as a whole reached 80.06%, over four times that in the malignant direction
(19.94%). NDVI in most of the areas with malignant development presented a continuous
decreasing trend, including the slight decrease (7.91%) and the significant decrease (6.25%).
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Moreover, areas that were predicted to convert from an increasing trend to a decreasing
trend covered 5.78% of the study area.
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Table 3. Future changes in NDVI based on trend analysis and Hurst exponent.

Trend Analysis Hurst Exponent Future Development Area Percentage
(%)SNDVI Z H Trend and Consistency Direction

SNDVI > 0 |Z| > 1.96 0.5 < H < 1 Significant increase and consistent Benign 59.28 80.06
SNDVI > 0 |Z| ≤ 1.96 0.5 < H < 1 Slight increase and consistent 17.93
SNDVI < 0 |Z| ≤ 1.96 0 < H < 0.5 Slight decrease and anti-consistent 2.74

SNDVI < 0 |Z| > 1.96 0 < H < 0.5 Significant decrease and
anti-consistent 0.11

SNDVI > 0 |Z| > 1.96 0 < H < 0.5 Significant increase and
anti-consistent Malignant 0.74 19.94

SNDVI > 0 |Z| ≤ 1.96 0 < H < 0.5 Slight increase and anti-consistent 5.04
SNDVI < 0 |Z| ≤ 1.96 0.5 < H < 1 Slight decrease and consistent 7.91
SNDVI < 0 |Z| > 1.96 0.5 < H < 1 Significant decrease and consistent 6.25
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built-up; BV—built-up to vegetation.

Future changes in NDVI among LUCC varied dramatically (Figure 4b). Except for
the VB region, NDVI in most of the other regions was predicted to sustain a continuously
increasing trend. Areas with a future persistent significant increasing trend accounted for
75.62% and 72.39% of FP and GP regions, respectively, followed closely by the BV region
with an area proportion of 68.97%, much higher than that of other LUCC types. In addition,
NDVI in 44.88% of the CP region and 37.84% of the BP region would continue to increase
dramatically, while this percentage was only 14.66% for the VB region. On the contrary, the
area proportion of NDVI with a consistent significant decreasing trend in the VB region
was highest at 30.58%, and this percentage was 25.39% for the area with a consistent slight
decreasing trend. Collectively, NDVI in approximately 90% of the FP and GP regions and
70% of the CP, BP, and BV regions was predicted to develop in a benign direction, while
NDVI in more than half (58.15%) of the VB region would develop in a malignant direction
in the future.

4. Discussion
4.1. Spatiotemporal Variations in Vegetation Dynamics

Vegetation dynamics over the past 20 years (2001–2020) in the GBA generally dis-
played a distinct spatial pattern: low coverage, high fluctuations, and decreasing trends
in the center, and high coverage, low fluctuations, and increasing trends in the peripheral
regions (Figures 2 and 3b), in agreement with previous studies [20,46]. This pattern coin-
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cided with the topography from alluvial plains in the central estuary area to mountains
around its periphery. Firstly, topography is one of the most important determinants of
vegetation distribution due to its significant effect on hydrological processes [47], local
hydrothermal conditions [7], and soil quality [48]. Thus, forests with high NDVI values
are usually distributed in high-elevation mountainous zones. Secondly, human activities
are closely related to topography [20]. As negative relationships are commonly observed
between elevation/slope and human activities, the land use in the GBA has formed a
spatial pattern of “built-up–cropland–forest” from low to high elevations and small to
large slopes (Figure 1). Urban expansion and infrastructure construction will inevitably
cause vegetation degradation, so high fluctuations and decreasing trends of vegetation
change mainly happen at lower elevations and smaller slopes. Thus, it can be concluded
that urbanization plays a pivotal role in forming the spatiotemporal patterns of vegetation
coverage, fluctuations, and trends in the GBA.

This study found that vegetation at the regional scale exhibited a significant linear
greening trend, in line with a previous study [20]. However, the increasing rate of NDVI in
our results (0.0030 year−1) was smaller than that in the previous work (0.0033 year−1). This
is possibly due to the difference in the study period. Our analyses were conducted over
a longer time series (2001–2020) than the previous study (2000–2016), and the browning
trend after 2015 would reduce the overall rate of vegetation greening. In addition, our
findings also indicated that the majority (91.37%) of the study area would retain the same
vegetation trend in the future, no matter the increasing trend or the decreasing trend
(Table 3, Figure 4a). This high proportion of future consistency implied a relatively stable
state of long-term dependence of the NDVI time series.

4.2. Vegetation Trends among LUCC Types

Rapid economic development has been lasting for several decades in the GBA urban
agglomeration, and human activities were widely regarded as one of the main causes
of vegetation change. The correlation coefficient (R) between NDVI and NL was used
to explore the influences of socioeconomic development on vegetation growth during
the past 20 years (Figure 5). For the whole GBA, NDVI was significantly correlated
with NL (p < 0.01), and the positive slope indicated that socioeconomic development
was generally beneficial for vegetation greening (Figure 5a), consistent with previous
studies highlighting a positive correlation between vegetation and economic growth (GDP,
population) [20]. However, the impacts of socioeconomic development on vegetation
varied for different LUCC types. Except for the negative correlation for the VB region and
no obvious correlation for the BP region between NDVI and NL, significantly positive
relationships were observed for other LUCC types (Figure 5).

Urbanization was widely regarded as the principal cause of vegetation browning in
the core areas of the GBA [26,49,50], which was also concluded by our results that the
decreasing trend of NDVI appeared in 61.18% of the areas converted from various types of
vegetation to built-up lands (i.e., the VB region) throughout 2001–2020 (Figure 3). Results
of correlation analysis between NDVI and NL also confirmed that socioeconomic activities
inhibited vegetation growth in the newly developed built-up areas (Figure 5f). However, it
was worth noting that vegetation in most (67.73%) of the unchanged built-up areas (i.e., the
BP region) presented a greening trend, contradicting the general knowledge that economic
development and population growth result in vegetation degradation [51,52]. One possible
explanation is the re-feeding of economy to ecology. Taking the most developed GZ and SZ
as an example, vegetation of old urban districts in both cities generally showed a significant
increasing trend although the NDVI values in these areas were relatively low, and the
greening trend was predicted to continue in the future (Figure 4). These results agree with
other studies that also observed urban greening in most built-up areas in GZ and SZ re-
cently [53,54]. Nevertheless, not all cities experienced greening in the BP regions, and some
cities even presented vegetation degradation in most of the BP region such as ZQ. This
may be related to the developmental status of cities that urban environments in cities with
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higher levels of economy are more likely to have positive effects on indirect enhancement
of vegetation growth [55]. The lack of an obvious correlation between NDVI and NL for the
BP region also confirmed this complicated vegetation change with socioeconomic growth
(Figure 5e). Thus, those highly developed cities (i.e., GZ and SZ) were more likely to im-
plement more investment in urban greening and green development to meet the growing
demand for urban human settlement environments [56,57]. This was also supported by
a prior work that highlighted a “win–win” relationship between economic growth and
vegetation improvement in all municipalities of the Pearl River Delta, especially in recent
years [20]. Another reason is the remarkable urban heat island effect in the Pearl River Delta
region, which was previously deduced to enhance vegetation productivity [28]. In addition,
the fertilization effect of carbon dioxide and nitrogen deposition also contributes to vegeta-
tion greening [58,59], particularly in urban areas with intensive transport emissions. Recent
studies concluded the general negative direct impacts (land cover transformation) and
widespread positive indirect impacts (changes in environments) of urbanization on vegeta-
tion growth [27,55], which can also be supported by our findings that vegetation greening
occurred in most unchanged urban areas (i.e., the BP region) and vegetation browning
happened in most newly developed urban areas (i.e., the VB region). The phenomenon of
vegetation improvement in urban cores and vegetation degradation in newly developed
peripheries was also observed in other regions [60,61]. As such, vegetation responses to
urbanization are highly complex.

The persistent vegetated areas over the past 20 years in the GBA manifested obvious
vegetation greening and high future consistency (Figures 3 and 4). For the FP and GP re-
gions, vegetation improved in over 90% of their ranges, and most of them were statistically
significant. This was believed to be highly related to the ecological restoration projects
such as the Grain to Green Program and the Natural Forest Conservation Program [62,63].
Artificial afforestation and forest facilitation via these projects and other ecological policies
were beneficial for vegetation improvement. The significantly positive relationships be-
tween NDVI and NL for the FP and GP regions also revealed that more attention would be
paid and more investment would be implemented to these ecological projects to facilitate
better vegetation restoration and environment improvement (Figure 5b,c). For example,
free grain and cash payments were provided for farmers who returned their farmlands
on steep topographic slopes or with low yields to forest and grassland via policies such
as the transregional compensation for ecological conservation [64,65]. Furthermore, these
ecological projects, implemented since 1998, have formed extensive young forests, and
forest regrowth and succession might consistently contribute to vegetation greening in the
future [6,66]. For the CP region, most areas also showed a significant or slight increasing
trend, accounting for 45.38% and 27.40%, respectively. Agricultural intensifications such
as multiple cropping, fertilizer usage, effective irrigation, and agricultural mechanization
were regarded as the main reason for cropland greening [6,57,67]. Moreover, cropland recla-
mation also contributed considerably to vegetation enhancement. In conclusion, vegetation
greening was commonly observed in the unchanged vegetated areas (i.e., the FP, GP, and
CP regions) during the urbanization process (Figure 5b–d), and the area percentage of sig-
nificant increase was ranked as FP > GP > CP (Figure 3). This was comparable to a previous
study that found that the contribution rate to vegetation productivity improvement was
highest in the unchanged forest, followed by unchanged grassland and farmland in the six
provinces along the southeast coast of China (including the GBA) during 1982–2015 [30].
Environmental efficiency of urban agglomeration development could be evaluated by the
slope of linear regression [51], and the steeper slope between NDVI and NL for the FP
region indicated a lower cost of forest per unit of socioeconomic growth than the GP and
CP regions. Nevertheless, vegetation browning was still detected in some regions and
more attention should be paid to these regions to prevent further degradation. To sum
up, vegetation dynamics in the GBA vary greatly among different LUCC types during
urbanization due to diverse natural and human-induced causes.
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Figure 5. Correlations of NDVI and NL for the period 2001–2020. (a) Linear regression between
NDVI and NL for the whole GBA; (b–g) linear regression between NDVI and NL across different
LUCC types. NL—night light; FP—forest persistence; GP—grassland persistence; CP—cropland
persistence; BP—built-up persistence; VB—vegetation to built-up; BV—built-up to vegetation.
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4.3. Limitations and Uncertainties

Some limitations and uncertainties remain in this study. First, the sensitivity to the
presence of short-range dependence may affect the reliability of the Hurst exponent due
to the short time of the NDVI observation [16,43]. Second, the vegetation change is more
likely to be complex and nonlinear under the influence of climate change and anthropogenic
disturbance [68,69], which may have great impacts on the accuracy of the predictions for future
consistency of vegetation trends. Moreover, the duration of the consistency of future vegetation
trends cannot be estimated by the Hurst analysis [8]. Therefore, a longer period of vegetation
dynamics should be deeply studied and the abrupt change in vegetation trends should be
necessarily considered in the next work. Additionally, vegetation dynamics are sophisticated
and influenced by multiple factors including climate change and human activities, and usually
perform distinctively for different seasons [10,50,70], so future efforts are needed to reveal
the underlying mechanisms with a finer temporal resolution.

5. Conclusions

This study evaluated the spatiotemporal heterogeneity, fluctuations, trends, and future
consistency of vegetation dynamics by quantifying the coefficient of variation, Theil–Sen
median trend analysis, and Hurst exponent of NDVI time series over the period 2001–2020
in the GBA, a rapidly developing urban agglomeration in South China. Results demon-
strated that vegetation exhibited a significant greening trend at the regional scale during the
past 20 years. Vegetation improvement generally appeared in the peripheral mountainous
regions with relatively high NDVI values and low fluctuations, while vegetation degrada-
tion mainly happened in the central estuary area with relatively low NDVI values and high
fluctuations. Future vegetation change in most areas will continue the existing trends, and
80.06% of the study area was predicted to develop in a benign direction, against 19.94% in
a malignant direction. Vegetation dynamics among LUCC types varied remarkedly. The
persistent forest and grassland contributed the most to vegetation greening with NDVI
in over 90% of areas showing an increasing trend, as well as the regions converted from
built-up to vegetation. Most of the persistent cropland and built-up land also presented
vegetation enhancement but with a lower proportion at approximately 70%. Nevertheless,
more than 60% of the regions converted from vegetation to built-up experienced vegetation
degradation. Correlation analysis revealed that vegetation growth was positively corre-
lated with socioeconomic development except for the persistent built-up areas and newly
developed built-up areas. Multiple anthropogenic and natural factors were regarded as
main reasons for these vegetation changes.
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