
Citation: Zhang, C.; Kang, F.;

Wang, Y. An Improved Apple Object

Detection Method Based on

Lightweight YOLOv4 in Complex

Backgrounds. Remote Sens. 2022, 14,

4150. https://doi.org/10.3390/

rs14174150

Academic Editors: Carlos Antonio

Da Silva Junior and Luciano

Shozo Shiratsuchi

Received: 12 July 2022

Accepted: 20 August 2022

Published: 24 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

An Improved Apple Object Detection Method Based on
Lightweight YOLOv4 in Complex Backgrounds
Chenxi Zhang, Feng Kang and Yaxiong Wang *

Key Lab of State Forestry and Grassland Administration on Forestry Equipment and Automation, School of
Technology, Beijing Forestry University, Beijing 100083, China
* Correspondence: yaxiongwang87@bjfu.edu.cn

Abstract: Convolutional neural networks have recently experienced successful development in the
field of computer vision. In precision agriculture, apple picking robots use computer vision methods
to detect apples in orchards. However, existing object detection algorithms often face problems such
as leaf shading, complex illumination environments, and small, dense recognition targets, resulting
in low apple detection rates and inaccurate localization. In view of these problems, we designed
an apple detection model based on lightweight YOLOv4—called Improved YOLOv4—from the
perspective of industrial application. First, to improve the detection accuracy while reducing the
amount of computation, the GhostNet feature extraction network with a Coordinate Attention module
is implemented in YOLOv4, and depth-wise separable convolution is introduced to reconstruct the
neck and YOLO head structures. Then, a Coordinate Attention module is added to the feature
pyramid network (FPN) structure in order to enhance the feature extraction ability for medium
and small targets. In the last 15% of epochs in training, the mosaic data augmentation strategy
is turned off in order to further improve the detection performance. Finally, a long-range target
screening strategy is proposed for standardized dense planting apple orchards with dwarf rootstock,
removing apples in non-target rows and improving detection performance and recognition speed.
On the constructed apple data set, compared with YOLOv4, the mAP of Improved YOLOv4 was
increased by 3.45% (to 95.72%). The weight size of Improved YOLOv4 is only 37.9 MB, 15.53% of
that of YOLOv4, and the detection speed is improved by 5.7 FPS. Two detection methods of similar
size—YOLOX-s and EfficientNetB0-YOLOv3—were compared with Improved YOLOv4. Improved
YOLOv4 outperformed these two algorithms by 1.82% and 2.33% mAP, respectively, on the total
test set and performed optimally under all illumination conditions. The presented results indicate
that Improved YOLOv4 has excellent detection accuracy and good robustness, and the proposed
long-range target screening strategy has an important reference value for solving the problem of
accurate and rapid identification of various fruits in standard orchards.

Keywords: precision agriculture; YOLOv4; attention mechanism

1. Introduction

The fresh fruit industry is labor-intensive, with apple-picking labor costs accounting
for over 50% of total costs [1,2]. As the aging population expands, the working population
of China is shrinking, and labor costs are rising. To address the problems of insufficient
labor, high manual picking cost, and low efficiency [3], it is necessary to further study the
key technology of apple picking robots.

In the past few decades, with the continuous progress of precision agriculture tech-
nology, fruit picking robots have been extensively developed in the field of agriculture.
However, few efficient apple harvesting robots have been used in actual harvesting scenar-
ios so far [4].

Although there are many object-detection models with excellent performance that can
detect a wide range of different kinds of targets, some specific challenges still exist in the
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field of agriculture. In particular, leaf shading and complex illumination environment are
common in orchards, which requires object-detection algorithms with a stronger ability
to identify targets in complex shading environments. In addition, the targets detected in
agriculture are generally small and dense, which is challenging for some object-detection
algorithms. Furthermore, the detection system must be lightweight, such that it can be im-
plemented on the execution terminal for real-time detection. Therefore, it is of great research
value and relevance for achieving automatic harvesting and yield estimation to study a vi-
sion system that is capable of accurately identifying fruit on trees in complex environments.

In this study, a new method for fruit detection is proposed. Our overall contributions
can be summarized as follows:

• Based on YOLOv4, a lightweight GhostNet is used as the feature extraction network.
Depth-wise convolutions are introduced in the neck and YOLO head structures. In
this way, the number of parameters in the model can be significantly reduced.

• Coordinate attention modules are added in the backbone, as well as before the
52 × 52 and 26 × 26 scale inputs of the FPN in the neck structure. The apple tar-
get detection capability of the model is enhanced, especially for targets with small-
and medium-sized pixels.

• A screening strategy for long-range targets is proposed. The distant apples are screened
out as not part of the harvestable target in the non-maximum suppression (NMS) stage.
Thus, the detection efficiency is improved.

The remainder of the paper is structured as follows: Section 2 presents related work in
the field of fruit detection. Section 3 describes the methods used for collecting, expanding,
and partitioning data sets, introduces GhostNet and attention mechanisms, and details the
proposed improvements to YOLOv4. Section 4 presents the experimental configuration
and results. Section 5 discusses the strengths and weaknesses of the algorithm proposed in
this study. Finally, our conclusions are elaborated.

2. Related Work
2.1. Fruit Detection

In the early days, traditional methods were commonly used for image detection
and segmentation. Lin et al. [5] have proposed a support vector machine-based citrus
recognition algorithm, which can attenuate the effect of illumination changes based on
the recognition effect; however, the shortcomings include that it takes 1.25 s to detect one
image, such that the real-time performance is poor. Fan et al. [6] have combined local image
features and color information to propose a pixel block segmentation method based on
gray-scale centered RGB color space, which can effectively distinguish apple pixels from
other pixels.

Since 2012, deep learning strategies have been widely used in the field of computer
vision (CV) object detection due to their robustness. AlexNet [7], published by Alex et al. in
2012, has been used to apply convolutional neural networks (CNN) in the field of CV and
has been used to detect objects, including various fruits, in images. ZF-net [8], published in
2014, explained the role of each layer of the CNN based on AlexNet. In 2015, VGG16 [9]
was proposed as an improved version of AlexNet, in which the number of network layers
was deepened. A kiwi fruit-picking robot using VGG16 achieved a recognition accuracy of
89.6% and a real picking rate of 51.0% in a field experiment [10]; however, it is demanding
in terms of picking environment and, therefore, is not suitable for recognition in complex
and sheltered environments.

With the continuous development and advancement of end-to-end object-detection
algorithms, their great superiority in fruit and vegetable object detection has been high-
lighted. There are two main types of such algorithms: the first is two-stage object detection
methods, represented by RCNN [11], Fast RCNN [12], Faster RCNN [13], and so on. The
idea of these algorithms is to first obtain target-area suggestion boxes and then use the
features of the regions to predict their classes and bounding boxes. Sun et al. [14] have pro-
posed an improved Faster RCNN-based tomato detection method, which used ResNet50
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as a feature extraction network and k-means clustering to adjust the bounding boxes,
effectively improving the recognition accuracy; however, the detection speed was slow.
Zhang et al. [15] have detected 86% of apple tree branches with R-CNN. Bargoti et al. [16]
have provided an open-source fruit data set on which they trained their model based on
Faster RCNN, ultimately achieving an F1 score of over 0.9. Grilli et al. [17] have studied an
apple photogrammetry system. In their paper, two apple segmentation methods, k-Means
and Mask RCNN, were compared, where Mask RCNN was found to be more accurate
(with 95.18% precision).

The other type of method is the one-stage object-detection method, represented by
SSD [18], the YOLO series [19–23], and so on. This method divides the image into regions
and immediately determines the range of objects and the probability of classification for
each object. Tian et al. [24] have put forward an improved YOLOv3 algorithm, using
DenseNet as the feature extraction network. The low-resolution feature layer was enhanced
to recognize apples in different growth stages. Lu et al. [25] have added a CBAM attention
mechanism to the YOLOv4 detector in order to improve the detection accuracy by focusing
only on the target canopy. By adding an adaptive layer and a larger scale feature map
to the improved network structure, their experiments showed that the model achieved
better performance when compared with the original model. Li et al. [26] have proposed a
YOLOv4_tiny-based object detection algorithm for green peppers. The authors compared
the results of their algorithm with SSD and Faster-RCNN, where the experimental results
demonstrated that the AP value of the improved YOLOv4_tiny was 5.26% and 11.16%
higher than those of SSD and Faster-RCNN, respectively, and the recognition speed was the
fastest among the three. Different from the YOLO series, FCOS is an Anchor-Free one-stage
target detector. Liu et al. [27] replaced the FPN in FCOS with a residual feature pyramid
network (RFPN), which improves the detection accuracy of green fruits of different sizes.
The detection and segmentation accuracy of green fruit reaches 81.2% and 85.3% on the
apple dataset. Sun et al. [28] proposed an end-to-end RGB-D object-detection network,
termed a noise-tolerant feature fusion network (NTFFN), to utilize the outdoor multi-modal
data properly and improve the detection accuracy.

In general, two-stage methods have higher detection accuracy, while one-stage meth-
ods have faster inference speed [29]. One-stage object detection algorithms are typically
chosen more often for picking robot vision systems in order to balance the accuracy and
recognition speed. Compared with the YOLOv3 model, the YOLOv4 model has better accu-
racy while maintaining the same speed; however, the YOLOv4 model is a massive burden
for low-performance devices due to the large size and the computational complexity.

2.2. Attention Mechanisms

In recent years, attention mechanisms have gradually become more and more im-
portant in the CV field, as they can redistribute the input weights and, thus, improve
model performance. The SE attention mechanism [30] has been widely used, but this
attention mechanism contains two fully connected networks, resulting in a cumbersome
number of parameters. Wang et al. have proposed the Efficient Channel Attention Network
(ECA-Net) [31], including a method to achieve local cross-channel interactions without
dimensionality reduction by one-dimensional convolution, which allows for a significant
performance improvement effect with a small number of parameters. The spatial structure
of the target is important in vision tasks. Coordinate Attention [32], proposed by Hou et al.,
effectively solves the problem that the SE attention mechanism only considers internal
channel information and ignores the importance of location information. The Coordinate
Attention module can improve accuracy without increasing the number of parameters.
Han et al. [33] have constructed a remote sensing image denoising network based on a deep
learning approach, which enhances the ECA-Net by using multiple local jump connections
to improve the denoising ability of the model. Kim et al. [34] have reduced the computa-
tional effort required to detect small targets and improved the detection rate by using the
channel attention pyramid method. To split the overlapping apples from the monochrome
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background, Jia et al. [35] transplanted the Gaussian non-local attention mechanism into
Mask R-CNN. The AP box and AP mask metric values have reached 85.6% and 86.2% in a
reasonable run time, respectively.

In the computer vision field, attention mechanisms are either applied in conjunction
with convolutional networks or used to replace certain components of convolutional
networks while keeping their overall structure in place [36]. A Vision Transformer is a
Transformer structure based on a complete self-attention without using a CNN [37]. The
best Top-1 ACC on ImageNet was 88.55%, comparable with SOTA on ImageNet at that
time. However, it only performs better after training on a large data set, and the number of
parameters in the model is considered too large for edge computing.

2.3. Lightweight Models

The storage and computation of CNN models on mobile and embedded devices re-
main a considerable challenge due to storage space and computational power limitations.
Lightweight networks are a research hotspot in the field of CV, with the aim of reduc-
ing the number of model parameters and computational complexity while maintaining
high accuracy.

Current research on lightweight models can be divided into two main mainstream
directions: Lightweight structure design and model compression. The former direc-
tion includes the MobileNet series [38–40], GhostNet [41], ShuffleNet series [42,43], and
SqueezeNet [44], among others, whose aim is to design different convolutional methods and
structures to make the CNN more lightweight; while the latter compresses the model using
knowledge distillation [45], pruning [46], or similar techniques. Additionally, changing
the form of convolution provides a good way to reduce the number of model parameters,
usually through depth-wise separable convolution [47] and/or dilated convolution [48].

In the field of fruit and vegetable picking, lightweight detection algorithms are essen-
tial to reduce the hardware computing power requirements, enabling picking robots to be
used in a wider range of environments. Wu et al. [49] have replaced the backbone network,
CSPDarknet53, of the YOLOv4 model with EfficientNet. They added convolutional lay-
ers to the three outputs in order to reduce the model weight size and the computational
complexity. The mean values of Recall, Precision, and F1 were 97.43%, 95.52%, and 96.54%,
respectively, and the average detection time of the model was 0.338 s per frame. Zhang
et al. [50] have introduced MobileNet v2 into YOLOv4 with an improved attentional feature
fusion module. The number of model parameters was compressed to 16.76% of the original
model, and the mAP on the PASCAL VOC data set was 81.67%.

Research on lightweight networks has engineering application value; however, there
remain problems regarding the recognition of apples in complex environments, such as
poor detection ability for dense small targets and differences in recognition effects under
different illumination. The detection performance of the relevant models needs to be further
enhanced. Therefore, in this study, in order to detect targets better and faster, we combined
GhostNet with depth-wise separable convolution to construct a lightweight YOLOv4-based
object-detection algorithm.

3. Materials and Methods
3.1. Introduction to the Data Set
3.1.1. Image Acquisition

The apple images used in this study were partially collected in October 2020 at the
orchard base of Yaozhuang Village, Qixia City, Yantai City, Shandong Province. The apple
variety was “Yanxia 3”. The resolution of the camera (Raspberry Pi Camera V2) was 5 MP. A
total of 1800 images were collected at three angles: forward light, side light, and back light.
The operation of the picking robot was simulated during photography, and the images
captured contained different colors, postures, sizes, light, backgrounds, and overlapping
and obscured fruit. There were too few images containing less than three apples in the
obtained data set. To avoid the effect of the number of apples on the results, eighteen
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images of this type were sourced from the Fruits 360 data set [51]. Figure 1 shows a portion
of the collected images.
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Figure 1. Images of apples in complex scenes: (a) Front light; (b) side light; (c) back light; (d) shaded;
(e) unshaded; and (f) unripe.

3.1.2. Data Set Production

In order to improve the training efficiency of the apple target recognition model,
the original 1800 images were compressed. The apples were divided into two categories
according to different growth periods, one of which was ripe while the other was unripe
(i.e., the fruits are not fully colored within one week after bag removal). Ripe_apple and
unripe_apple were set to be labeled in two separate categories. In this study, 60 front light
images, 60 side light images, and 60 back light images were randomly selected to construct
the test set. The training set contained 1440 images, and the validation set had 180 images.
Therefore, the ratio of the training set, validation set, and test set was 8:1:1. The details of
the test set division are shown in Table 1, while Figure 2 demonstrates the distribution of
apple labeling boxes in the training set at different scales. Small and medium targets in
the images accounted for the majority, with small targets accounting for about 45.1% and
medium targets accounting for about 54.4%.

Table 1. Details of the test set images.

Test Set Front Light Side Light Back Light Total

Number of images 60 60 60 180
Number of ripe apples 511 386 393 1290

Number of unripe apples 179 206 149 534
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3.1.3. Data Augmentation

In order to better extract apple features of different marker categories and avoid overfit-
ting of the model in training, data augmentation was performed on a total of 1620 apple im-
ages in the training and validation sets. We used the getRotationMatrix2D, warpAffine, and
flip functions of the OpenCV library to perform random rotation, panning, and mirroring of
the original images, respectively. The angle range of the image was set to ±5◦ per rotation.
The principle of image panning is that all targets should still be included after panning.
The probabilities of horizontal flip, vertical flip, and diagonal flip were all 0.33. Each image
was judged by a random seed to determine which data augmentation method to invoke,
and two new images were randomly generated while the original images were retained,
resulting in a total of 4860 images as the final training and validation sets for training
the model. There were 3240 augmented images and 1620 original images. The training
set, validation set, and test set did not overlap each other. The schematic diagram after
enhancement is shown in Figure 3.
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3.2. Framework of the Model

The YOLO series are very effective one-stage detection models that offer the advan-
tages of both high real-time performance and fast detection speed [29]. However, the
models are computationally complex and consume significant memory space, making them
unsuitable for embedded devices and mobile deployments [52]. Therefore, we improved
the original model structure of YOLOv4.

The improved network structure can be divided into three parts: Backbone, neck, and
YOLO head. Figure 4 shows the improved network structure. In this study, for the purpose
of making the model lightweight, after comparison with some other lightweight backbone
networks, GhostNet, with better overall performance, was finally selected as the backbone
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network to replace the complex CSPDarknet53 backbone network in YOLOv4. To further
reduce the number of model parameters, depth-wise separable convolution was introduced
to reconstruct the neck and YOLO head structures, while the SE Attention module in the
GhostNet network was replaced with a Coordinate Attention module, obtaining a smaller
number of parameters and better performance.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 24 
 

 

3.2. Framework of the Model 
The YOLO series are very effective one-stage detection models that offer the ad-

vantages of both high real-time performance and fast detection speed [29]. However, the 
models are computationally complex and consume significant memory space, making 
them unsuitable for embedded devices and mobile deployments [52]. Therefore, we im-
proved the original model structure of YOLOv4.  

The improved network structure can be divided into three parts: Backbone, neck, and 
YOLO head. Figure 4 shows the improved network structure. In this study, for the pur-
pose of making the model lightweight, after comparison with some other lightweight 
backbone networks, GhostNet, with better overall performance, was finally selected as 
the backbone network to replace the complex CSPDarknet53 backbone network in 
YOLOv4. To further reduce the number of model parameters, depth-wise separable con-
volution was introduced to reconstruct the neck and YOLO head structures, while the SE 
Attention module in the GhostNet network was replaced with a Coordinate Attention 
module, obtaining a smaller number of parameters and better performance. 

From the improved backbone network CA-GhostNet, a total of 3 scales of feature 
maps—13 × 13 (feature layer P5), 26 × 26 (feature layer P4), and 52 × 52 (feature layer P3)—
are output. P5 is suitable for large target detection, P4 is for medium target detection, and 
P3 is for small-scale target detection. Two Coordinate Attention modules are set before 
the two inputs of the FPN, which are the inputs of the 52 × 52 feature map and the 26 × 26 
map, as well as after the convolution layers. The SPP module was used to enhance the 
receptive fields, and the three initial feature maps are fused in a feature-wise manner us-
ing the FPN structure. 

The network features are fused, and 3D tensors at different scales are output through 
the YOLO head. These 3D tensors are responsible for predicting the target detection boxes 
at different scales. The YOLO head of each scale of the network outputs a 21-dimensional 
tensor, calculated as 3 × (4 + 1 + 2), representing the three different scales of anchor boxes 
at that scale (“3”), the four box position parameters (tx, ty, tw, th; “4”), the confidence of the 
prediction result (“1”), and the number of labels in the data set (“2”). 

 

Figure 4. Improved YOLOv4 network. The Ghost Module in the backbone uses the ReLU activation
function, while the rest of the network structures use the ReLU6 activation function. CA module
means Coordinate Attention. The CA module in GhostBottleNeck is only present in the GBN
structures at layers 4, 5, 10, 11, 12, and 14. The symbol “*x” indicates the GBNx is composed of x
GBN structures.

From the improved backbone network CA-GhostNet, a total of 3 scales of feature
maps—13 × 13 (feature layer P5), 26 × 26 (feature layer P4), and 52 × 52 (feature layer
P3)—are output. P5 is suitable for large target detection, P4 is for medium target detection,
and P3 is for small-scale target detection. Two Coordinate Attention modules are set
before the two inputs of the FPN, which are the inputs of the 52 × 52 feature map and the
26 × 26 map, as well as after the convolution layers. The SPP module was used to enhance
the receptive fields, and the three initial feature maps are fused in a feature-wise manner
using the FPN structure.

The network features are fused, and 3D tensors at different scales are output through
the YOLO head. These 3D tensors are responsible for predicting the target detection boxes
at different scales. The YOLO head of each scale of the network outputs a 21-dimensional
tensor, calculated as 3 × (4 + 1 + 2), representing the three different scales of anchor boxes
at that scale (“3”), the four box position parameters (tx, ty, tw, th; “4”), the confidence of the
prediction result (“1”), and the number of labels in the data set (“2”).

3.3. GhostNet Backbone Network

Deep convolutional neural networks may produce many similar feature maps, which
are often treated as redundant information. Han [41] has argued that the powerful ex-
traction function of convolutional networks is positively correlated with these redundant
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feature maps and proposed the GhostNet network. Combining a small amount of tradi-
tional convolutional computations with light redundant feature generation reduces the
number of model parameters while maintaining detection accuracy.

3.3.1. Ghost Convolution and Ghost Bottleneck Module

A comparison of conventional convolution and Ghost convolution is shown in Figure 5.
The convolution operation of the Ghost module divides the traditional method into two
parts. The first part of the Ghost convolution process uses traditional convolution to
generate a small number of intrinsic feature maps, where the convolution operation can
be customized with respect to the convolution kernel size. The second part performs
linear operations on the feature maps generated in the first part, using light operations and
constant transformations to add channels and expand the features. Finally, the feature map
of this part and the intrinsic feature map of the first part are stitched together, by constant
transformation, as the output feature map of the Ghost module.
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Assume that the input feature map size is H ×W, the number of input channels is C,
the output feature map size is H′ ×W′, the number of output channels is m × s, and the
convolution kernel size is k × k. Then, traditional convolution is computed as:

(m× s)× H′ ×W ′ × C× k× k. (1)

In order to keep the number of feature maps output by the Ghost module consistent
with traditional convolution, the convolution kernel size, stride, and padding in the Ghost
module need to be the same as in traditional convolution. Assuming that the convolution
of the first part of the Ghost module generates m feature maps, and each feature map
generates s − 1 new feature maps, the second part obtains a total of m × (s − 1) feature
maps. The total calculated amount of the Ghost module, therefore, is:

m× H′ ×W ′ × C× k× k + m× (s− 1)× H′ ×W ′ × k× k. (2)

The theoretical parameter compression ratio of Ghost module to conventional convo-
lution is:

(m× s)× H′ ×W ′ × C× k× k
m× H′ ×W ′ × C× k× k + m× (s− 1)× H′ ×W ′ × k× k

=
C× s

C + s− 1
. (3)

In general, C�s [38], therefore:
C× s

C + s− 1
≈ s. (4)

From Equation (4), it can be seen that using the Ghost module for the convolution
operation can reduce the calculations in the convolution process. The Ghost Bottleneck is
designed to store the Ghost module, as shown in Figure 6.
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The Ghost Bottleneck is similar to the basic residual block in ResNet [53]. The Ghost
Bottleneck consists mainly of two stacked Ghost modules. The Ghost Bottleneck with a
stride of two inserts deeply separable convolutional layers to reduce the effect of feature
geometry variation and decrease the parameter scale. It should be noted that the normal
Ghost Bottleneck does not include an SE Attention module, which serves to enhance or
reduce the feature map weights according to the importance of features.

3.3.2. GhostNet

The GhostNet network architecture was inspired by the MobileNetV3 architecture.
GhostNet Bottleneck was used instead of the bottleneck structure in MobileNetV3, and the
Hard-Swish activation function was changed to ReLU [41]. The network structure is shown
in Figure 7.
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Depending on the size of the input feature map, the GhostNet Bottleneck can be
divided into six stages. The last GhostNet Bottleneck in each of the first five stages has a
step size of two, while the rest of the GhostNet Bottleneck has a step size of one. Three
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effective feature layers at different scales (with pixel sizes of 52 × 52, 26 × 26, and 13 × 13,
respectively) are obtained after preliminary feature extraction.

3.4. Coordinate Attention

Attention mechanisms are often used to focus a model on more important information,
thus improving their efficiency and accuracy [54]. It has been widely used in CNNs to
improve their performance [55]. Considering the weight of the model, the most widely
used attention mechanism is still the SE Attention in SENet. As shown in Figure 8a, it
calculates the channel attention through 2D global pooling. Unfortunately, the SE module
only considers the encoding of inter-channel information and neglects the importance of
location information, which is critical for many vision tasks that require target structures to
be captured. Moreover, the fully connected layer in the SE module has a high number of
parameters [32], which is not in line with the goal of lightweight design.
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Unlike Channel Attention, which transforms the input into a single feature vector
through 2D global pooling, Coordinate Attention decomposes Channel Attention into two
1D feature encoding processes that aggregate features along different directions, as shown
in Figure 8b. This has the advantage of capturing long-range dependencies along one
spatial direction and retaining precise position information along the other. The generated
feature maps are then encoded separately in order to form a pair of orientation-aware and
position-sensitive feature maps, which can be complementarily applied to the input feature
maps to enhance the representation of the target of interest [32].

A Coordinate Attention module can be seen as a computational unit used to enhance
the feature representation capability. It can take any intermediate tensor
X = [x1, x2, . . . , xC] ∈ RC×H×W as input and output a tensor Y = [y1, y2, . . . , yC] of the
same size with enhanced representation capabilities.

As shown in Figure 2, in the actual scenario of apple detection, small and medium tar-
gets account for the majority. In the task of improving small and medium target recognition,
we used the attention mechanism to inform the model where it needs to pay more attention.
For this purpose, we added the Coordinate Attention module before the 52 × 52 and
26 × 26 scale inputs of the FPN in the neck structure, as shown in Figure 4. The red CA
module denotes the new Coordinate Attention module. The 52 × 52 scale is mainly respon-
sible for feature extraction of small targets, while the 26 × 26 scale is mainly responsible for
feature extraction of medium targets.
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3.5. Mosaic Closing Early Strategy

YOLOv4 utilizes the Mosaic data augmentation method. The main idea is to crop
four images randomly and then stitch them onto a single image as training data. This has
the advantage of enriching the background of the images and disguising the batch size by
stitching the four images together, such that model training does not require stronger GPU
performance [22].

Although Mosaic data enhancement enriches the background of the image, it leads
to distortion of the input image, which is not conducive to the model recognizing real
scenarios. Inspired by YOLOX [23], we turned off the Mosaic data augmentation method
in the last 15% of epochs in training in order to restore the image realism.

3.6. Long-Range Target Screening

Dense apple planting with dwarf rootstock is a key model for modern orchards in
China. Trees are typically arranged in rows and are narrow in shape, with a crown diameter
of about 1.5–2 m and a row spacing of about 3–3.5 m [56], as shown in Figure 9. When
the picking robot operates, the vision sensor inevitably picks up apples from distant rows,
which adds many unnecessary processing objects, affecting the processing speed of the
recognition model and increasing the probability of inspection errors. Therefore, we added
a screening mechanism to the NMS section, filtering away the distant apples through
consideration of the pixel size.
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The model of the proposed picking robot arm was a Phantom X-arm6, with a maximum
arm span of 0.8 m. The vision sensor was a Microsoft Azure Kinect DK. The operating
range of this depth camera is 0.50–3.86 m, and the rated field of view (FOV) is 90◦ × 75◦.
To simplify the fruit tree model, the crown diameter and row spacing of the fruit tree were
1.6 m and 3.5 m, respectively. The diameter of an apple is about 80 mm. The model shown
in Figure 9 was built.

Assuming that the depth camera is fixed on the base of the robot arm, the operating
range of the depth camera and the operating range of the robot arm determine the shooting
distance of the depth camera from the apple to be 0.5–0.8 m. Equation 5 calculates the area
in terms of the actual area of the image. The actual area of the image acquired was calculated
to be between 1.00 × 0.77 m2 and 1.60 × 1.23 m2 for tree A and between 8.00 × 6.14 m2

and 8.60 × 6.60 m2 for tree B: {
W = 2 · tan θW

2 · d
H = 2 · tan θH

2 · d
, (5)
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where W refers to the width of the actual area of the image, H refers to the height of the
actual area of the image, θW refers to the horizontal field of view of the camera, θH refers to
the vertical field of view of the camera, and d refers to the distance of the camera relative to
the fruit tree.

In order to determine the size boundaries of the pixels of the fruit on the two fruit
trees in the image, the actual areas of 1.60 × 1.23 m2 and 8.00 × 6.14 m2 of fruit tree A and
fruit tree B, respectively, were taken for the study; the former was taken as a larger area,
such that the proportion of the apples in the image was as small as possible, while the latter
was taken as a smaller area, such that the proportion of the apples in the image was as large
as possible. The image input to the prediction model was resized into a 416 × 416 square.
In order to avoid image distortion, our processing method involved filling with a gray bar
when scaling (e.g., an image of 160 × 123 pixels will become 160 × 160 after filling with
gray, then scaled to 416 × 416 pixels afterward). After resizing with the above method, the
bounding box length of an apple with a diameter of 0.08 m is 1/20 of the actual area of
1.60 × 1.23 m2 and 1/100 of the actual area of 8.00 × 6.14 m2. Thus, in the image of size
416 × 416 pixels, the former edge length occupies a minimum of 20.8 pixels width, while
the latter edge length occupies a maximum of 4.16 pixels width. Therefore, 12 pixels (as
the mean value) were taken as the screening threshold. In NMS, candidate targets with a
length or width of fewer than 12 pixels were screened out.

4. Results
4.1. Experimental Environment

To ensure the fairness of the experiment, the same initial training parameters were
set for each group of experiments. The resolution of all input images was adjusted to
416 × 416 pixels. The batch size was set to 16. Due to the computing power limitation, the
batch size for YOLOv4 model training was set to 8. All models were trained for 200 epochs.
The learning rate was set to 1 × 10−3 for the first 50 epochs and 1 × 10−4 for the last
150 epochs. Cosine annealing was used to reduce the learning rate. The mosaic data
augmentation method was enabled. The confidence threshold was set to 0.5, and the IoU
threshold was set to 0.3. The experimental environment is detailed in Table 2.

Table 2. Experimental environment.

Environment Versions or Model Number

CPU AMD Ryzen 5 3600X, 3.80 GHz
GPU NVIDIA RTX 3060Ti, 8 GB memory
OS Windows 10

CUDA CUDA 11.3
PyTorch v1.10
Python v3.8

4.2. Model Evaluation Metrics

In this study, objective evaluation metrics, including Precision, Recall, F1, AP, mAP,
and others, were used to evaluate the performance of the trained apple object detection
models. These were calculated as follows:

P =
TP

TP + FP
× 100%, (6)

R =
TP

TP + FN
× 100%, (7)

F1 =
2PR

P + R
, (8)

AP =
∫ 1

0
P(R)dR× 100%, (9)
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mAP =

2
∑

n=1
AP(n)

2
× 100%, (10)

where P (precision) denotes the proportion of correct detections in all prediction boxes; R
(recall) indicates the proportion of correctly detected label boxes among all label boxes; TP
is the number of prediction boxes that correctly match the label box; FP is the number of
prediction boxes with incorrect prediction; FN is the number of labeled boxes with missed
detection; F1 is the harmonic mean of precision and recall, which measures the actual
average of these two metrics; AP denotes the average precision value for each category
of apples; and mAP denotes the average precision value for the two categories of apples,
which comprehensively reflects the detection performance of the model. F1, P, and R
are all macro-averaged metrics. In addition to the above metrics, the number of network
parameters and the size of the model were also introduced as evaluation criteria. The
average speed required to infer the same image 300 times was used to calculate the FPS of
the model. In this study, the main focus was on the mAP value as a performance metric.
Therefore, the weight file with the highest mAP for each model was taken as the final result.

4.3. Experimental Results
4.3.1. Ablation Experiments

To verify the effect of each of the improvements on the model performance, ablation
experiments were conducted. Figure 10 shows the trend of the loss value and mAP of the
model during training.
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test set.

Table 3 provides the results of the ablation experiments on YOLOv4. In this study,
we use “Model X” to refer to the model after adding one of the improvements, where “X”
corresponds to the serial number in Table 3; therefore, Model 1 refers to the baseline model
YOLOv4. We denote Model 7 as “Improved YOLOv4”, which was the final version of the
network after we added the improvements. A total of six improvements were made on the
basis of Model 1, described as follows.
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Table 3. Results of the ablation experiments on the test set.

No. Model mAP
(%) (*, *)

Weight Size
(MB) (*)

Parameters
(M) (*)

Speed
(FPS) (*, *)

1 YOLOv4 baseline 92.27 244.00 64.40 39.50
2 +GhostNet 93.83 (+1.56, +1.56) 150.00 (61.48%) 39.70 (61.65%) 42.10 (+2.60, +2.60)
3 +Depth-wise separable convolution 94.00 (+1.73, +0.17) 42.50 (17.42%) 11.40 (17.70%) 44.50 (+5.00, +2.40)
4 +Coordinate Attention 94.48 (+2.21, +0.48) 37.80 (15.49%) 10.20 (15.84%) 45.30 (+5.80, +0.80)
5 +Improving S&M target detection 94.77 (+2.50, +0.29) 37.90 (15.53%) 10.20 (15.84%) 45.20 (+5.70, −0.10)
6 +Closing last 15% phase of Mosaic 94.97 (+2.70, +0.20) 37.90 (15.53%) 10.20 (15.84%) 45.10 (+5.60, −0.10)
7 +Long-range target screening 95.72 (+3.45, +0.75) 37.90 (15.53%) 10.20 (15.84%) 45.20 (+5.70, +0.10)

Note: The symbols (*, *) indicate the changes in value compared with Model 1 and the previous model, respectively.
The symbol (*) indicates the percentage value compared with Model 1. S&M means small and medium size.

1→2. The backbone network was replaced. GhostNet, a lightweight feature extraction
network, was used as the backbone network of the model. The results indicated that
the weight size and the number of parameters of the model were 61.48% and 61.65% of
Model 1, respectively. At the same time, instead of degrading the performance of the
modified model, the mAP improved by 1.56% (to 93.83%). The inference speed of the
model was also improved by 2.6 FPS over Model 1. Considering such an effective gain, we
believe that GhostNet is more efficient than the original CSPDarknet53 in YOLOv4 for the
considered task.

2→3. To further reduce the number of network parameters, depth-wise separable
convolutions were introduced in the neck and YOLO head of the model. The weight size
and number of parameters of the model were 17.42% and 17.70% of Model 1, respectively;
therefore, the size and computation requirements of the model were greatly reduced.
The mAP was further improved to 94.00% (1.73% and 0.17% higher than Models 1 and
2, respectively). The detection speed was increased by 2.4 FPS over Model 2 and by
5.0 FPS over Model 1. These results indicate that the introduction of depth-wise separable
convolution can reduce memory consumption, reduce the number of model parameters,
and improve the speed of model recognition without affecting the accuracy.

3→4. We replaced the SE Attention module in the GhostNet backbone network with
a Coordinate Attention module to form CA-GhostNet. In this way, the number of model
parameters was reduced by about 2%. The mAP performance was improved by 0.48%
over Model 3 and by 2.21% over Model 1, and the detection speed improved by 0.8 FPS
over Model 3 and 5.8 FPS over Model 1. For comparison, we tested another lightweight
attention mechanism, ECA-net. Although the number of model parameters decreased by
2.32%, the mAP of the model decreased by 0.32% (to 93.68%). Therefore, we ultimately
chose to use Coordinate Attention.

4→5. We added the Coordinate Attention module before the 52 × 52 pixels and
26 × 26 pixels inputs of the FPN. The number of parameters required for a Coordinate
Attention module is 2× 10−3 M. With the addition of two of these modules, the weight size
and the number of parameters remained essentially unchanged. The mAP was increased
by 0.29% over Model 4 and by 2.50% over Model 1, reaching 94.77%, with a slight decrease
in detection speed (by 0.1 FPS). This was due to the additional inference steps caused by
the addition of the new module, resulting in a decreased inference speed. The specific
performance tests for this improvement are detailed in Section 4.3.3.

5→6. We turned off the Mosaic data enhancement method in the last 15% epochs of
the training stage in order to restore image realism. This improved the mAP performance of
the model by 0.20% and decreased the model inference speed by 0.1 FPS. The improvement
to the data augmentation strategy is an adjustment to the pre-processing stage and, so, does
not affect the inference speed of the model. Therefore, this can be considered a random
error within reasonable limits.

6→7. To screen out non-target rows of apples from the view field of the visual sensor,
we added a screening mechanism to the NMS part of the model. We screened out candidate
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targets with apples in the image that are less than 12 pixels in length or width. The increase
in mAP was significant, increasing by 0.75% to 95.72%. This process increased the model
inference speed by 0.1 FPS as a portion of candidate boxes were first screened out before
NMS, thus reducing the number of frames requiring NMS processing.

4.3.2. Comparison Experiment of the Same Type of Object Detection Algorithm

To verify the effectiveness of Improved YOLOv4, we selected two classical object
detection algorithms, YOLOX-s [23] and E-YOLOv3 [21], with weight sizes similar to that
of Improved YOLOv4.E-YOLOv3 replaces the backbone of YOLOv3 with EfficientNetB0,
thus approaching the size of Improved YOLOv4. YOLOX-s is 3.6 MB smaller than Improved
YOLOv4, while E-YOLOv3 is 2.7 MB larger than Improved YOLOv4. In the following
comparison experiments, both YOLOX-s and E-YOLOv3 use their original unmodified
versions compared with Improved YOLOv4.

Comparison Experiments in the Total Test Set

The other two object detection algorithms were trained with the same data set de-
scribed in this study. Figure 11 shows the P–R plots of the three models. It can be intuitively
seen that the area under the curve of the Improved YOLOv4 model was larger than that of
the other two classical object detection models for both labels, indicating that the Improved
YOLOv4 model has higher average precision and better overall performance. The test
results for the three methods are given in Table 4.
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Table 4. Comparison test results of three models.

Model Weight
Size (MB)

mAP
(%)

AP1
(%)

AP2
(%) F1 Precision

(%)
Recall

(%)
Speed
(FPS)

YOLOX-s 34.3 93.90 94.46 93.34 0.90 93.13 86.65 52.3
E-YOLO v3 40.6 93.39 94.13 92.65 0.89 94.08 84.43 49.2

Improved YOLOv4 37.9 95.72 95.91 95.54 0.91 95.32 86.54 45.2

In terms of detection accuracy, Improved YOLOv4 has the highest mAP, which was
1.82% higher than YOLOX-s and 2.33% higher than E-YOLOv3. The precision was 95.32%,
and the F1 score was 0.91. AP1 reached 95.91%, and AP2 reached 95.54%, higher than those
of the other methods; namely, the AP1 and AP2 scores were 1.45% and 2.2% higher than
those of YOLOX-s, and 1.78% and 2.89% higher than those of E-YOLOv3, respectively. The
recall was 86.54%, which was slightly lower than that of YOLOX-s. The recall is related to
the setting of the IoU value, as well as the precision. However, the F1 metric, which is a
combined measure of precision and recall, had a higher value. This indicates that Improved
YOLOv4 performed better overall. In particular, the AP for unripe apples was significantly
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better than other algorithms. There were large differences between the detection results of
the other two algorithms for ripe and unripe apples; the reason for this relative difficulty in
recognition is that the color of the unripe apples is similar to that of the background leaves,
and the apples are small and grow densely. In contrast, Improved YOLOv4 presented
strong detection performance, enhancing the recognition of small and medium targets.

Comparative Experiments with Different Illumination Conditions

Next, we examined the robustness of the models under different illumination condi-
tions. The test set included three conditions—front light, side light, and back light—with
60 images of apples in each condition. To avoid the influence of the number of apples on
the experimental results, the number of apples in each category of pictures was ensured to
be distributed similarly.

After completing the tests under different illumination conditions, the performance
indicators shown in Table 5 were obtained. It can be seen that the performance of Improved
YOLOv4 was optimal, regardless of the illumination conditions. The highest mAP value
(95.99%) was obtained by Improved YOLOv4 under the side light condition, which was
higher than the mAP value on the entire test set. Under the back light condition, Improved
YOLOv4 achieved the lowest mAP value of 95.39%. Approximately the same results
occurred with YOLOX-s and E-YOLOv3. This indicates that the models can obtain higher
recognition accuracy under the side light condition, as apples have clear texture and
uniform surface light intensity under side lighting, while the back light condition causes
some interference with the detection.

Table 5. Comparison of the three models in different illumination data sets.

Illumination
Condition Model mAP

(%) (*) F1 Precision
(%)

Recall
(%)

Front light
YOLOX-s 93.90 (−1.82) 0.90 93.13 86.65

E-YOLO v3 93.39 (−2.33) 0.89 94.07 84.43
Improved YOLOv4 95.72 0.91 95.32 86.54

Side light
YOLOX-s 94.33 (−1.66) 0.89 91.90 86.36

E-YOLO v3 94.02 (−1.97) 0.90 94.43 84.88
Improved YOLOv4 95.99 0.91 94.78 86.74

Back light
YOLOX-s 93.21 (−2.18) 0.88 92.17 84.12

E-YOLO v3 92.27 (−3.12) 0.88 93.26 83.54
Improved YOLOv4 95.39 0.90 94.73 85.47

Note: The symbol (*) indicates the change in value compared with Improved YOLOv4.

It is worth noting that Improved YOLOv4 had a greater advantage over the other two
algorithms under the back light condition. The mAP value of Improved YOLOv4 was 2.18%
and 3.12% higher than that of YOLOX-s and E-YOLOv3, respectively, under this condition.
It is conceivable that an apple picking robot implemented with Improved YOLOv4 may
perform better in back-lit and low illumination environments. Therefore, it can well-adapt
to the actual operating conditions in complex environments.

Figure 12 shows the comparison of the recognition effects of the three models under
different illumination conditions. In the front light condition, E-YOLOv3 failed to recog-
nize the apple in the yellow-marked box in Figure 12a, with little difference between the
remaining two algorithms. Under the side light condition, E-YOLOv3 did not perform well,
with two more obvious apples not recognized, while YOLOX-s and Improved YOLOv4
were able to recognize apples that were out of focus in the camera. As shown in the yellow
marked box in Figure 12f, Improved YOLOv4 was able to recognize more apples, proving
that Improved YOLOv4 is more robust. Under the back light condition, Improved YOLOv4
also recognized more apples. In general, Improved YOLOv4 presented good recognition
results, regardless of the illumination conditions. Moreover, it can be seen that the recog-
nition results of Improved YOLOv4 are closer to the minimum enclosing rectangle of the
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apple. This indicates that Improved YOLOv4 can produce more accurate apple locations
than the other two algorithms.
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4.3.3. Validation for the Improvement of Small and Medium Target Recognition Capability

The experiments detailed in this section were conducted to validate the enhanced
effect of our model on the small target detection ability. Using the Pycocotools tool, the
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target detection ability was evaluated at different scales. The data presented in Table 6
were derived at IoU = 0.50:0.95. The subscripts are defined as follows: S means small target
(area ≤ 322), M means medium target (322 < area ≤ 962), L means large target (area > 962),
and area denotes the number of pixels [57].

Table 6. Validation results for the improvement of small and medium target recognition capability.

Model APS
(%)

APM
(%)

APL
(%)

ARS
(%)

ARM
(%)

ARL
(%)

Model 1 0.170 0.540 0.681 0.335 0.618 0.730
Model 4 0.162 0.552 0.718 0.347 0.631 0.763
Model 5 0.181 0.560 0.713 0.356 0.642 0.758

As shown in Table 6, Model 5 effectively enhanced the performance for both medium
targets and small targets, presenting an 11.7% and 2.6% improvement in AP and AR
for small targets and a 1.5% and 1.7% improvement in AP and AR for medium targets,
respectively, compared with the pre-improvement period. For small targets, AP and AR
were improved by 6.5% and 6.3%, respectively, over Model 1. Meanwhile, for medium
targets, AP and AR are improved by 3.7% and 3.9%, respectively, over Model 1. We
observed a slight decrease in recognition for large targets, which may be a result of the
added attention mechanism focusing more on smaller pixel feature extraction.

4.3.4. Validation Experiments on Target Screening Strategy

The recognition effect of the model with the addition of the long-range target screening
module is shown in Figure 13. The original image contained a tree in a non-target row.
The apples in the target row had not been colored for long enough and were all unripe
apples distributed on the left side of the picture. The apples on the other fruit tree were in
good ripening condition, distributed on the right side of the picture. The recognition effect
of Model 1 is shown in Figure 13a, where the obvious unsuccessful apples are marked.
Compared with Model 6 and Improved YOLOv4, the recognition success rate of Model 1
was not high, and there were missed detections. Figure 13c clearly shows that the apples
in the non-target rows had been screened out. The purple marker in Figure 13b denotes
the misidentified targets, which were also successfully screened out by the screening
mechanism. From the recognition results, it can be seen that Model 7 has an excellent
performance in identifying and distinguishing some overlapping dense targets.
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However, both Figure 13b,c did not distinguish the two unripe apples marked in
green. This was probably due to the shape features disappearing because of the lack of
color features of the unripe apples in the bright light environment, which resulted in failing
to distinguish the two apples.

5. Discussion
5.1. Improved YOLOv4

In this study, a recognition method based on YOLOv4 was proposed to address
the problems of low accuracy, real-time performance, and poor robustness of traditional
methods for fruit recognition in complex environments such as orchards.

The YOLO series are universal object detection models that have presented an excellent
performance on a COCO data set with 80 object classes [57]. In our scenario, only two
kinds of targets in the environment needed to be identified. Therefore, we consider that the
apple detection model does not need to learn too many shape and color features. In this
context, the performance of traditional object detection algorithms is relatively redundant.
The original CSPDarknet53 backbone network of YOLOv4 was replaced by GhostNet,
a lightweight feature extraction network, and the traditional convolution was replaced
by depth-wise separable convolution with fewer parameters. These two improvements
increased the mAP by 1.73% while reducing the weight size and number of parameters of
the model by 82.58% and 82.30%, respectively. The speed of inference increased by 5 FPS
as a result of the lower number of parameters. It can be demonstrated that, for tasks with
a few kinds of targets, it is more efficient to use the lightweight YOLOv4. Models with a
larger number of parameters may be overfitted in simple object-detection tasks.

The actual environment of an orchard is complex, usually with fruit growing in dense
clusters, and it is common for targets to be shaded by other fruit, leaves, and branches.
Different illumination effects cause the fruit to appear in the images with unnatural color
features. These are challenges for the task of recognition. The DIOU_nms of YOLOv4
can effectively regress out overlapping targets. On this basis, we used a Coordinate
Attention module in the backbone network, as well as before the small and medium target
feature extraction network, in order to reduce the number of parameters and improve
the performance. After the experimental validation detailed in Section 4.3.3, Model 5 was
improved in terms of small and medium target recognition.

In addition, inspired by YOLOX, the Mosaic data augmentation strategy was turned
off early, which improved the mAP on the test set by 0.20%, indicating that the diversity of
target distribution in the training set should not be pursued throughout the training phase
of the model, as proper restoration of natural scenes is beneficial for training.

We look at the relationship between target and model detection performance from a
new perspective. Existing target detection algorithms are generic and can detect a variety
of objects. For us, we only need to be able to detect one kind of target: apples. Therefore,
classic algorithms can appear to be over-performing. They may detect not only the target
apples but also apples that are far away, which cannot be picked by the robotic arm. These
apples with small pixel areas should be positive samples. However, as we generally do
not label the small pixel apples in the distance, they are, in fact, misclassified as “FP” and
are negative samples, thus affecting the precision. We calculated pixel value thresholds for
the apples that can and cannot be picked in the pictures. According to the calculation in
Section 3.6, the distant targets displayed in the pictures have a side length of fewer than
4.16 pixels, as reflected in the actual image with smaller pixels; meanwhile, the side length
of each apple in the image that can be picked is typically greater than 20.8 pixels. Therefore,
the screening threshold was set as 12 pixels. This threshold was applied in the long-range
target screening strategy we proposed, resulting in a significant increase in mAP. We believe
that this strategy can be applied to other fruit and vegetable objectives in the picking task.
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5.2. Algorithm Comparison

In general, two-stage object-detection methods have higher detection accuracy, while
one-stage object detection methods have faster inference speed [29]. With the development
of one-stage object detection algorithms, they have also reached high levels of detection
accuracy. Considering the need to ensure real-time detection and device friendliness, we
did not consider two-stage target detection algorithms for comparison, nor the traditional
SSD algorithm. The comparison algorithms were selected from the current, more advanced
YOLOX family, which performs better than YOLOv5. Additionally, a more classic YOLOv3
model was also chosen. On the whole data set, YOLOv4 improved according to our
method and presented the highest mAP, 1.82% higher than that of YOLOX-s and 2.33%
higher than that of E-YOLOv3. In the comparison experiments under different illumination
conditions, the performance of Improved YOLOv4 was optimal in all lighting conditions.
Compared with YOLOX-s and E-YOLO v3, it is obvious that the bounding boxes generated
by Improved YOLOv4 were closer to the actual minimum enclosing rectangles, as shown
in Figure 12, which is more beneficial for returning accurate coordinate values to the
picking robot.

In terms of detection speed, Improved YOLOv4 was lower than the other two algo-
rithms. The detection speed was lower than YOLOX-s as this model is less computationally
intensive than Improved YOLOv4 and uses the Anchor-free approach, which requires a
shorter inference time. The possible reason for the lower detection speed than E-YOLOv3
is that the enhanced feature extraction network of the algorithm utilizes a unidirectional
top-down fusion FPN feature pyramid structure, while Improved YOLOv4 uses a bidirec-
tional fusion structure, which leads to a slower inference process. However, the detection
accuracy of Improved YOLOv4 was higher compared with the other two algorithms. At
present, an advanced picking robot can pick at a rate of 5.5 s/fruit [10]; therefore, Improved
YOLOv4 can meet the real-time requirements of the actual picking operation.

From the comparison results, it is clear that there is a contradiction between the
complexity of the network structure and the model detection performance. In light of this,
we had to compromise between model detection performance and detection speed. The
effectiveness of the model in detecting difficult targets was improved, within a certain
range, while losing the original inference speed. Therefore, in future research, we will focus
on improving the algorithm, and using more efficient strategies to reduce the FPS loss.

6. Conclusions

This study was dedicated to improving the detection performance of traditional target-
detection models in complex, real orchard environments while streamlining the number
of model parameters. In this regard, we carried out the following two main areas of
work. In terms of lightweight modification of YOLOv4, a lightweight feature-extraction
network, GhostNet, was used. The neck and YOLO head structures were reconstructed by
introducing deep separable convolution. In terms of detection performance improvement,
a Coordinate Attention module was introduced into the GhostNet network, as well as
added before the 52 × 52 and 26 × 26 scale inputs of the FPN structure (responsible for
small and medium target feature extraction, respectively), which enhanced the extraction
capability for medium and small target features. The Mosaic data enhancement strategy
was turned off in the last 15% of epochs in training in order to restore the realism of the
input images. A long-range target screening strategy was proposed for standardized dense
planting apple orchards with dwarf rootstock in order to remove apples from non-target
rows, thus improving the detection performance and recognition speed.

Overall, the lightweight Improved YOLOv4 proposed in this study presented a 3.45%
improvement in mAP compared with the YOLOv4 network, while the weight size was
only 15.53% of that of the baseline model, and the number of parameters was only 15.84%
of the baseline model. The model size and computation were about 1/6 that of YOLOv4.
Furthermore, the detection speed of Improved YOLOv4 was 45.2 FPS, 14.43% higher than
that of YOLOv4. Thus, Improved YOLOv4 is much more efficient than YOLOv4.
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To further verify the effectiveness and feasibility of the proposed Improved YOLOv4
model, two sets of comparison experiments were designed, on the total test set and different
illumination test sets, by selecting two similarly sized algorithms: YOLOX-s and E-YOLOv3.
In the total test set, Improved YOLOv4 has the highest mAP, 1.82% higher than that
of YOLOX-s and 2.33% higher than that of E-YOLOv3. The performance of Improved
YOLOv4 was optimal under all three illumination conditions. In the front light condition,
the mAP of Improved YOLOv4 was 1.82% and 2.33% higher than the other two algorithms,
respectively. In the side light condition, the mAP of Improved YOLOv4 was 1.66% and
1.97% higher than these algorithms, respectively. Finally, in the back light condition,
the mAP of Improved YOLOv4 was 2.18% and 3.12% higher than that of the other two
algorithms, respectively. Therefore, Improved YOLOv4 was more improved over the other
two algorithms under the back light condition, and all three algorithms had their respective
best detection performance under the side light condition.

The proposed deep learning-based object detection technique was generally robust to
illumination, and changes in illumination had less of an effect on the detection efficiency.
This indicates that Improved YOLOv4 not only has a substantially reduced number of
parameters but also is suitable for working in standardized dense planting apple orchards
with dwarf rootstock. It provides a fresh approach for achieving highly effective fruit
picking by robots. In the future, we intend to focus on constructing apple picking prototypes
and conducting picking experiments to determine the directions for optimizing such robots.
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