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Abstract: The existing precision grazing technology helps to improve the utilization rate of live-
stock to pasture, but it is still at the level of “collectivization” and cannot provide more accurate
grazing management and control. (1) Background: In recent years, with the rapid development of
agent-related technologies such as deep learning, visual navigation and tracking, more and more
lightweight edge computing cell target detection algorithms have been proposed. (2) Methods: In
this study, the improved YOLOv5 detector combined with the extended dataset realized the accurate
identification and location of domestic cattle; with the help of the kernel correlation filter (KCF)
automatic tracking framework, the long-term cyclic convolution network (LRCN) was used to an-
alyze the texture characteristics of animal fur and effectively distinguish the individual cattle. (3)
Results: The intelligent UAV equipped with an AGX Xavier high-performance computing unit ran the
above algorithm through edge computing and effectively realized the individual identification and
positioning of cattle during the actual flight. (4) Conclusion: The UAV platform based on airborne
depth reasoning is expected to help the development of smart ecological animal husbandry and
provide better precision services for herdsmen.

Keywords: precision grazing; intelligent UAV; cattle monitoring; YOLOv5; Inception V3; LSTM

1. Introduction

The application of precision grazing technology may promote the more dynamic
management of grazing ruminants, from the macro level management to the individual
level management of animals on the pasture. Studies in the past ten years on the wide
application of GPS collars, Bluetooth ear tags, electronic fences and other devices have
proven that the sensor and information technology development assisted in enhancing
the monitoring of grazing animals, especially cattle [1–4]. Demands from consumers
as well as from exporters require that cattle shall be identified and traceable [5], and
many countries have developed legal mandatory frameworks [6] which revolve around
the national databases and ear tagging [7–9]. Bovine identification heavily depends on
such a tagging approach, which is not effective in many cases compared with branding,
tattooing [5] or electronic solutions [10]. The major reason is that ear tags can easily be lost
and lead to physical injury [11]. In addition, there are animal welfare concerns in terms of
the ear tagging [12,13].To that end, coat-pattern-based visual bovine identification exhibits
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an automated and non-intrusive nature, which assisted in improving the farm efficiency as
well as promoting animal welfare.

The rapid development of UAV (Unmanned Aerial Vehicle) technology provided a
new and low-cost tool for animal investigation. Compared with the traditional methods
(such as ground counting and man–machine survey), it has more advantages, such as
relative low risk and low cost [14,15], though it is still in the exploration stage. Since it
was reported that it was used in the investigation of American alligators and waterfowl
in 2006 [16], UAVs made some progress in animal identification, tracking [17,18], size
measurement [19] and behavior investigation [18,20]. Due to the low cost of UAV images
and the fact that the resolution can be adjusted according to the altitude (up to 2 mm),
UAV images can be used to identify large animals such as African elephants, giraffes [18],
manatees [17], cattle, and sheep [21], as well as animals as small as penguins, albatross
cubs [22], Canadian geese [23], and even flying insects such as bumblebees [24].

Deep learning is a subfield of machine learning that uses neural networks to automate
feature extraction, permitting raw data to be input into a computer and creating high-level
abstractions to inform decisions in classification, object detection, or other problems [25].
The majority of recent advances in computer vision and object detection have been made
with convolutional neural networks (CNNs) [26,27]. CNNs ingest data in multidimensional
arrays (e.g., 1D: text sequences; 2D: imagery or audio; 3D: video) and scan these arrays with
a series of windows that transform the raw data into higher level features that represent
the original input data through multiple layers of increasing abstraction. CNN applications
within ecology are becoming widespread, including the rapid development of species
identification tools [28]. For example, Norouzzadeha et al. [29] were able to identify 48
different animal species from camera traps in the 3.2 million image Snapshot Serengeti
dataset with 93.8% accuracy, similar to the accuracy of crowdsourced identifications, saving
nearly 8.4 years of human labeling effort. More recently, Gray et al. [30] used a CNN to
detect and enumerate olive ridley turtles in the nearshore waters of Ostional, Costa Rica,
identifying 8% more turtles in imagery than manual methods with a 66-fold reduction in
analyst time.

Animal biometric recognition technology was adopted with the advantages of the
variability and uniqueness of fur patterns, phonation, movement dynamics and body shape,
and defined the animal categories of interest in a highly objective, comparable and repeat-
able way by calculating and interpreting the information about animal appearance [31]. The
unique patterns and special markers have been used for computer-aided individual recog-
nition, including the spot patterns in manta rays [32], penguins [33] and whale sharks [34]
and the stripe patterns in tigers [35]. The livestock biometrics research includes cattle [36],
sheep [37,38], horses [39] and pigs [40]. To obtain the latest performance, the individual
ID component is based on the latest CNN-grounded biometric work [38]; thereinto, a
Long-Term Recurrent Convolutional Network (LRCN) assists in analyzing the detected
temporal stacks regarding the region of interest (ROI). Finally, the temporal information is
integrated and mapped to the information vector of individual animals through a Long
Short-Term Memory (LSTM) unit.

It is difficult for the current processing board of airborne images to achieve large target
solving tasks due to its limited computing ability. YOLOv5 is a type of target recognition
network with very light weight, is capable of dealing with the low efficiency exhibited by a
full convolution model network and can ensure the effect of classification. Many public
datasets have been verified to confirm its accuracy, which is the same as that of the Efficient
Det and the YOLOv4, but its model size only takes up 1/10 of the latter two approaches [41].
YOLOv5 with edge computing shall be ideally conducted on UAVs and unmanned ships, as
well as other platforms [42]. Such architecture achieved the light-weight onboard operation
on the one hand and ensured higher efficiency networks that exhibit larger computational
room on the other hand.

Therefore, the goal of the present work was to demonstrate the following: we pre-train
and improve the YOLOv5 detection model in combination with the expanded dataset to
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promote the recognition accuracy of cattle. The UAV tracks the cattle according to the
prediction frame through the KCF tracking algorithm. Finally, the predicted cattle are
distinguished by the LRCN recognition frame. All the above algorithms can be realized
by the edge computing unit on the UAV combined with the flight control module and
communication architecture.

2. Materials and Methods
2.1. Introduction to Studied Area and Study Object

The studied area is Qilian County, which belongs to the Haibei Tibetan Autonomous
Prefecture of Qinghai Province, and is located in the hinterland of the middle Qilian
Mountains, with Hexi Corridor in the north and a lake-circumnavigation passage in the
south (see Figure 1a). It is adjacent to the Qilian Mountain grassland, one of the six major
grasslands in China. The average altitude of the territory is 3169 m, the average annual
temperature is 1 ◦C and the annual precipitation is about 420 mm. It belongs to the typical
plateau continental climate. Because it is a unique geographical location and ecological
environment, the area is very rich in animal and plant resources, especially developed
animal husbandry and is a large animal husbandry county. This place was selected for
AI-based precision grazing technology research as it has great significance for the protection
of large herbivores and restoration of ecological vulnerability in the combined erosion area
of the Qinghai Tibet Plateau [43].
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Figure 1. The studied area selected in this paper: (a) location of Qilian County; (b) distribution of
UAV landing points in Qilian County; (c) aerial image of study area.

In August, the author and members of the research group went to Qilian County
to carry out an aerial survey by UAV. A total of 20 sorties were flown in three days (see
Figure 1b), with about half an hour every flight and a flight height of about 100 m. The total
area covered by aerial photography reached 2100 km2 and we collected a large number
of video data and forward remote sensing images in the studied area (see Figure 1c). In
this paper, we selected domestic cattle as research objects. Based on the seven elements
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of remote sensing interpretation, a tag library for feature extraction was constructed [44],
which is summarized in Table 1.

Table 1. Identification database of domestic cattle.

Feature Illustration

Tonal With black, gray-black and other dark colors
Color The main colors are white, black-white and black

Texture A solid color or a plurality of solid color splicing

Size
The adult domestic cattle have a body length of about 1.6~2.2 m.
For example, if the resolution is resolution, the individual length
is more than 40~50 pixels.

Shape The overall shape is nearly elliptic, rectangular. The ratio of
length and width is mostly between 1.4:1 and 3:1.

Group image
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Real-time identification tracking of individuals was achieved by the improved YOLOv5 
algorithm to generate corresponding ROI annotation frames or candidate boxes, the KCF 
target tracking algorithm for the trajectory recording and the LRCN prediction of the in-
put sequence to generate the final prediction vector (see Figure 2). 
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2.2. Study Workflow

In this study, this paper proposes a method of automatic identification of animal
individuals based on deep learning to achieve the purpose of accurate animal husbandry.
Real-time identification tracking of individuals was achieved by the improved YOLOv5
algorithm to generate corresponding ROI annotation frames or candidate boxes, the KCF
target tracking algorithm for the trajectory recording and the LRCN prediction of the input
sequence to generate the final prediction vector (see Figure 2).

We proposed a research framework for the collaborative design of software and
hardware, which was integrated with the flexibility of software and the efficiency of
hardware to achieve the detection and identification of animals. Through the deep learning
algorithm mounted on the drone, we realized the animal detection (green), trajectory
recording (blue) and individual prediction (red). The specific steps are as follows:

1. Data acquisition. The video streaming image data by controlling the P600 intelli-
gent UAV equipped with a three-axis photoelectric pod to fly to a specified location
are captured.
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2. Animal detection and localization. The acquired video stream data were reshaped into
299 × 299 images, and processed by the improved YOLOv5 animal detection model,
predicting the presence or absence of animals and mapping the detected animals to
finally obtain an initialized ROI prediction frame.

3. Trajectory recording. It is possible to select the KCF kernel correlation filtering al-
gorithm to track the object of interest when it is detected/recognized because of its
advantages of high precision and high processing speed, both in terms of tracking
effect and tracking speed. Through the KCF target tracking algorithm, the detection
frame is determined to see whether the target animal is monitored. If it is detected, it is
learned and tracked, or otherwise, the new frame is re-examined to find the animal of
interest. The fast extraction of detected trajectories is helpful to obtain more accurate
ROI annotation frames to be helpful to further extract more realistic visual features.

4. Generate space–time trajectories. The individual ROI annotation frames obtained
from KCF were converted into a set of space–time trajectories.

5. Individual prediction. Both the weights of CNNs and Long Short-Term Memory
model (LSTM) were shared across time, allowing real-time identification tracking of
targets in the video. Each set of the space–time trajectories was rescaled as well as
passed to an Inception V3 network until reaching layer 3 of the pool, where the visual
features were extracted from the input frames and fed into an LSTM recurrent neural
network, followed by being recombined with image frames as input to subsequent
iteration frames based on a time-lapse data sequence. After processing this set of
spatiotemporal trajectories, the whole input sequence can obtain ID final predictions
via a layer with full connection.
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2.3. Data Acquisition

The video acquisition in the studied area is realized through the P600 intelligent UAV
(Figure 3a) produced by Chengdu Bobei Technology Co., Ltd., Chengdu, China and the
photoelectric pod (Figure 3b upper) carried by P600. Prometheus 600 (P600 for short) is
a medium-sized UAV development platform with the characteristics of large load, long
endurance and scalability. It can be equipped with laser radar, onboard computer, three-axis
photoelectric pod, RTK and other intelligent equipment to realize pod frame selection and
tracking, laser radar obstacle avoidance and UAV position and speed guidance flight. P600
was equipped with a Q10F 10× zoom single light pod with USB interface for P600 and
developed its special Robot Operating System (ROS) driver, which can obtain real-time
images of the pod in an airborne computer.
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Furthermore, P600 can recognize, track and follow specific targets (human/vehicle/other
UAVs, etc.) based on image vision through the built-in KCF frame tracking algorithm in the
airborne system (Figure 3b bottom). It can even calculate the approximate distance between
the robot and the tracking target by changing the size of the visible target frame. In addition
to following the target, P600 can also adjust its position when the target approaches to
always maintain a fixed distance from the target. In the process of intelligent pod tracking
of the target, both the pod and UAV can achieve full autonomous control through ROS.

2.4. Hardware Communication Architecture

The overall communication framework of P600 is shown in Figure 4. It was adopted
with the design of full body internal wiring + built-in flight control, leaving developers
with a total of three layers of expansion space. Combined with the flight control expansion
interface at the top layer of the UAV fuselage and the onboard computer at the bottom
layer, sensors suitable for Px4 flight control or ROS can be freely added.

The onboard computer NX and Codev flight control communicate through serial port
connection. The former sends any desired commands to the flight control based on Mavros,
including desired position, desired speed and desired attitude. The onboard computer
NX can obtain the image of the photoelectric pod through the USB port, run the KCF
detection algorithm to detect and track the object and calculate the corresponding pod
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control commands and UAV control commands. The pod control command is sent to the
photoelectric pod through the serial port connected with the NX to make the pod lens
rotate with the moving object. UAV control command is sent to Codev flight control via
serial port through Mavros to control the UAV and then track the moving objects. The
ground station computer can remotely access and view the desktop image of the NX end of
the onboard computer through the Homer image data transmission and can also view the
image of the photoelectric pod camera read by the NX of the onboard computer.
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2.5. Experimental Platform

The onboard image processing board used in the experiment is the NVIDIA Jet-
son AGX Xavier embedded unmanned Intelligent Field platform launched by NVIDIA
(Figure 5). This is a modular AI supercomputer which has a GPU for NVIDIA Volta with
512 CUDA cores. The CPU is provided with 8-core ARM V8.2, with strong AI computing
power. It is powerful and compact in shape. Its performance is 20 times higher than
the previous generation of NVIDIA Jetson TX2 platform (GUP is NVIDIA Pascal’s 256-
core CUDA-core architecture with quad-core ARM CPU). Its power consumption ratio is
10 times higher. NVIDIA JetPack and DeepStream SDK, as well as CUDA, CuDNN and
TensorRT software libraries, can all be used to coordinate the creation and deployment of
end-to-end AI robot applications. It is the most suitable for smart edge devices (robots,
drones, smart cameras, etc.). The YOLOv5 model was first trained on a virtual machine,
and then imported into the AGX Xavier processing board by using an SD card. Training
the corresponding path of the model helps to obtain the processing result.
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3. Airborne Depth Reasoning Network
3.1. Annotation and Augmentation of Training Data

A total of 10,000 remote sensing images of cattle taken by UAV were selected from the UAV
survey area as the sample dataset, with a resolution of 1 cm and a size of 2048 × 1080 pixels.
Among them, 7000 images were used as training sets, 2000 as test sets and 1000 as ver-
ification sets to verify the recognition results. In this study, 7000 images of UAV were
labeled with professional labeling software labelImg, including boundary box labeling and
cattle individual/category labeling. Boundary box annotation was performed to annotate
boundary boxes in 7000 images, and the generated data were stored in XML format. The
format of this dataset is VOC data format. Cattle individual/category marking: After the
boundary box marking, the ROI area around the cattle was annotated and the individual
cattle were required to be included in the boundary box during the target identification
process. The XML document was used to record the coordinates of the upper left as well as
lower right corners of the rectangular box.

In order to improve the stability of the training model, we extended this dataset. From
July to August 2019, a total of 12,355 images of cattle were captured in Urumqi, Hami
and Hulunbuir cities in Xinjiang. From June to September 2020, 12,701 cattle images and
37 cattle videos were obtained in Hulunbuir City, Inner Mongolia. In order to balance
the individual balance of the total cattle in the image, we obtained 5501 Zhangjiakou and
5510 wild yaks by image synthesis, image cutting and image flipping on the original dataset.
A total of 11,011 images of individual cattle were used as instance objects [45]. In addition,
data enhancement, i.e., random shearing, rotation, scaling and flipping, was performed on
the cattle boundary region dataset to generate multiple similar images, because, during the
data collection process, the cattle can graze on the grassland at will. As a result, the time
that is spent in the static acquisition system view exhibits individual differences, and also
there is an imbalance in the number of individual cattle in the image among the total herd.
For balancing the image number in training, the dataset was expanded by image synthesis.
We selected the number of target instances as the largest number of original (non-synthetic)
instances for any particular individual. Other images were synthesized by rotating the
original image around the image center (x, y) by some random angles while maintaining
the original image resolution to maintain the consistency of the dataset. In this study, data
enhancement and data expansion were used to effectively reduce over-fitting, enhance the
model stability and the generalization effectiveness and improve the identification effect
of cattle individuals. Finally, UAV images were converted into a dataset in visual object
format for the pre-training of the deep learning model.

3.2. Species Detection and Localization Based on Improved YOLOv5

YOLO (you only look once) acts as a single-stage object detection algorithm that
detects faster than two-stage algorithms. YOLOv5 is the latest network architecture of the
current YOLO series iteration, which was modified on the basis of YOLOv4 to enhance
feature fusion capabilities and multi-target feature extraction capabilities, improve detection
accuracy and to meet the needs of real-time image detection, and has been widely used
in many fields. The improved YOLOv5 model was divided into three parts: backbone
network, neck and output composition.

Backbone: Backbone networks are used for feature extraction. It replaced the first
two layers with two RepVGG modules with the addition of improved CBAM modules
to enhance feature extraction. The BottleneckCSP module maps the features of the base
layer to two parts. The SPP module converts a feature map of any size into a fixed-size
feature vector.

Neck: The neck network is primarily responsible for feature enhancement. The use of
GSConv instead of the original Conv and the replacement of the BottleneckCSP module
with the VoVGSCSP are used to preserve as many hidden connections as possible for
improved model accuracy.
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Output: After the neck network is mapped by fusing features, the output is respon-
sible for predicting the features of the image, generating bounding boxes and predicting
categories.

To improve the accuracy of species detection and localization, the original YOLOv5
model was improved. Figure 6 explains the improved model.
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1. Modification of the anchor box size

The anchor box can be used to obtain a more accurate target bounding box by sampling
many areas in the input image, followed by adjusting the area containing our target of
interest, effectively limiting the range of predicted objects during training and accelerating
the convergence of the model [46]. To obtain more accurate target information, the closer
the aspect ratio of the anchor frame to the aspect ratio of the real bounding box, the better.
However, due to differences in the size of individual animals in the drone image, the anchor
frame size obtained by YOLOv5’s original clustering cannot effectively cover the size of all
animals, so the data need to be reclassified. The K-Means clustering algorithm can divide
the dataset into several classes through intrinsic relationships. The same class exhibits
a high similarity and different classes exhibit a low similarity, the corresponding center
point of each sample data is given and the loss function corresponding to the clustering
result is minimized by iteration. The study integrates the K-Means clustering algorithm
that generates anchor box scales into the YOLOv5 algorithm.

2. Improvements of neck layer

YOLOv5’s neck layer is improved by slim-neck’s model, as shown in Figure 6. In order
to alleviate the current problem of high computational cost, the neck layer of YOLOv5 is
improved by the slim-neck model proposed by Li et al. [47], which is capable of reducing
the complexity of the model, while maintaining the recognition accuracy. The slim-neck
architecture is divided into three models, GSConv, GSbottleneck and VoV-GSCSP. The
GSConv model is adopted with deep-wise separable convolution (DSC) combined with
standard convolution (SC), so that it can reduce the computational complexity through DSC
and alleviate the problem of low recognition accuracy caused by low feature extraction and
fusion capabilities of DSC through the SC model. As shown in Figure 7a, the information
of the SC is generated through DWConv to perform the DSC operation, and the generated
information is fused with the previous one. The VoV-GSCSP model is designed by a
one-time aggregation method to improve the inference speed of the network model and
maintain recognition capabilities, as shown in Figure 7b.
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3. Introduction of attention mechanisms

For improving the model detection effect, the attention mechanism is introduced to
enhance the feature representation of the CNN, so as to be focused on the key information
of the task target in a large amount of information and reduce the attention to irrelevant
information. Common attention models are the SE model, ECA model, CBAM model
and so on. CBAM is a lightweight convolutional attention model that improves model
performance at a fraction of the cost while being easily integrated into the existing network
structures [42]. The CBAM model is combined with the two submodels of CAM and SAM,
which can generate an attention feature map information in both the channel and space
dimensions, and then multiply it with the previous feature map information to adaptively
adjust the features and generate a more accurate feature map. In order to solve the situation,
CBAM uses MLP structure to extract channel information and lose target information [48].
ECA-Net is used to replace CBAM’s channel attention model. The improved CBAM model
is shown in Figure 8.
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4. Optimization of the backbone layer

RepVGG can be understood as a re-parameterized VGG. Using structure re-parameterization
to obtain a reconstructed simple form of the inference model, the parameter reconstruction
before and after its calculation results are mathematically consistent, so there is no loss of
precision [49]. By filling and fusing into a 3 × 3 convolutional structure, the computing
power of the hardware was fully utilized, so that the model inference speed was accelerated.
To improve model performance, the backbone of YOLOv5 was optimized, and we changed
the first two layers of the network to the RepConv layer to extract low-level semantic
features, as shown in Figure 6.

3.3. Aerial Real-Time Photography LRCN Identification of Cattle

Different from the single still image of an environment, an event or a scene, video
intrinsically offers another information dimension (i.e., temporal dimension) with regards
individual identification. It is suggested that information from later frames should be in-
corporated into identification estimation, thus complementary information that is revealed
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gradually can play its role [50]. In most cases, it is possible to track individual cattle in the
herd videos well via the standard KCF tracking algorithm [51] when the above localization
component species generate a good initialization ROI. Thus, if a cow appears in frame fi,
there is a large possibility for it to appear in fi+1 (the frame rate is fully frequent in source
footage). Considering these factors, the position and rotation of source footage captured by
UAV can change, because winds, GPS inaccuracy, etc., can result in the change in viewpoint,
object configuration and/or scale, while what is important is that it usually explains there
are some more prominent visual features that can assist in the identification. Continually
assessing the identity of an object with time when the parameters are changing supports
the predictions of class, so that they are refined and improved iteratively.

Basically, LSTM networks are running on time-based data series, thus they run towards
such task goals intrinsically. When evaluating the video and the image sequence of length n,
it is required to consider the individual image frames sequentially. Specific to certain frame
fi, we considered the output from LSTM layer(s) as the input to layer(s) in the following
iteration regarding frame fi+1. As for the task case in the study, after processing the frame
fn, a layer with full connection was adopted to generate the final class-prediction vector
for the whole input sequence. An Inception V3 CNN was employed to input the extracted
representations of a convolutional visual feature of input individual frames into an LSTM
layer [52]. The approach Long-Term Recurrent Convolutional Networks (LRCNs) that
combines CNNs and LSTMs was first developed by J. Donahue et al. [53] and is applied
in the study to deal with the spatiotemporal identification. Figure 9 displays the standard
LRCN pipeline.
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An unrolled identification refinement pipeline regarding an input video is on the basis
of the LRCN architecture [48]. A CNN was employed to assist in extracting the visual
features regarding input video frames {f 1, f 2, . . . , fn} for input into an LSTM layer, which
finally resulted in a ID prediction. The study states that such a core identification pipeline
is capable of easily being integrated into an intact video processing architecture (Figure 2).

4. Results
4.1. Detection and Location of Cattle

In this study, we adopt the Pascal VOC matrix [29] by Everingham et al. as an
evaluation protocol for verifying the false positives (FPs), the true positives (TP) and
the false negatives (FNs). With one prediction bounding box corresponding to a single
real bounding box, it is allowed to count the bounding box as TP if it has a maximum
Intersection Over Union (IOU) and a certain solid bounding box and achieves the IOU
threshold (0.8). In other cases, we treat the predicted bounding box as an FP. It is also
allowed to treat the bounding box as FN when the IOU threshold (0.8) is achieved, and
a combination of the actual bounding box and the predicted bounding box cannot be
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achieved. The recall (R) and accuracy (P) are taken into account for evaluating the cattle
prediction, defined as follows:

Precision = TP/(TP + FP) (1)

Recall = TP/(TP + FN) (2)

Recalls can help to more deeply learn cattle predicted coverage; however, the accuracy
can be used to assess the accuracy of the total amount of projections. Since recall and accu-
racy only partially reflect model performance, the results are comprehensively evaluated
by using the average accuracy (AP) and F1 scores, as defined as follows:

AP = ∑n
i =1 Precisioni(Recalli − Recalli−1), withRecalli=0 = 0 (3)

F1 = (2 ∗ R ∗ P)/(R + P) (4)

The algorithm’s score threshold can be set to 0.8 for suppressing low score predictions.
High score predictions are compared to surface facts for producing TP, FP, FN, accuracy,
recall and AP.

A remote sensing image dataset of cattle was trained on GTX 1080 by using deep
learning models (Fast-RCNN, YOLOv5, and improved YOLOv5), respectively. A total of
100 iterations of the data were performed, 100 models were annotated and the YOLOv5
model precision–recall curve was modified (Figure 10).
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Compared with the Faster RCNN and the original YOLOv5, the improved YOLOv5
has both high accuracy and high recall when weighing accuracy and recall, indicating that
the improved YOLv5 has better detection effect and better performance.

Based on the training results, the cattle were detected, as shown in Figure 11.
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4.2. Accuracy Comparison

We migrated our algorithm with the mainstream algorithms Faster RCNN and YOLOv5
to the development board for experimental comparison, use precision, recall rate and aver-
age accuracy to quantitatively analyze the experimental results generated by these models
for further analyzing the proposed algorithm identification performance on the target of
cattle. The specific data results are shown in Table 2. The improved YOLOv5 model has
significant advantages over Faster RCNN in FPS and size and has certain advantages over
YOLOv5 in precision and recall, which indicates the best overall performance. Therefore, it
can effectively meet the task requirements of real-time detection and positioning of cattle.

Table 2. Dataset detection results.

Network FPS Precision Recall Average
Precision

Size of
Model

Faster RCNN 10.24 0.964 0.893 0.971 345 MB
YOLOv5 46.37 0.969 0.902 0.975 14.5 MB

Modified YOLOv5 43.63 0.984 0.921 0.983 15.2 MB

4.3. Video-Based LRCN Identification

The dataset in the task is composed of ROI returned by YOLOv5 in the previous part,
with 52,800 cropped image frames and 32 cattle with a total of 158 video instances. The
video instance was divided into 40-frame-long spatiotemporal streams. When dividing the
original dataset according to ROI, it generated 1320 tag streams, and each stream contains
separate data. Then, these data were segmented according to the ratio of 9:1, used for data
training and testing.

Inception V3 obtained from the ImageNet dataset was selected as the initialization
network for recognition refinement. On this basis, the network was fine-tuned by using
frames of 32 classes and 1188 training streams as input. In this case, after the third pooling
layer through the network, a 2048 d unit vector was obtained as the output feature of the
input image. Then, the representation of the convolutional frames served for training a
single LSTM layer that had 512 units. The variation in training and test set accuracies over
the course of 800 training epochs is shown in Figure 12.
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Figure 12. Individual recognition training: LSTM consisted of 512 units, recognition prediction
accuracy at different stages. The training and test sets consisted of 1188 and 132 image streams.

In addition, for each prediction, an ordered vector [0, 1] of size |classes| = 32 was
generated by using class confidence 2. The predicted class label denotes the index regarding
the largest value in this vector. If the prediction matches with the true class label, the
prediction is considered a positive sample. The precise recall curve of the recognition task
is as shown in Figure 13.
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5. Discussion

The YOLOv5 network is composed of four architectures with different sizes (namely
YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x). The size of the architecture varies with
the depth and width of the network. In this study, considering the need to deploy the target
detection model in a UAV and carry out real flight verification, YOLOv5s with the least
parameters, the fastest speed and the lightest volume has become the first choice. However,
it is inevitable to sacrifice accuracy while computing speed is fast. Therefore, we propose
an improved YOLOv5 model: a K-means clustering algorithm serves for regrouping the
anchor box for individual detection. The improved CBAM attention model was introduced
to improve the attention to the target and reduce the influence of irrelevant information. By
improving the partial optimization of the neck layer and backbone, the detection speed
and accuracy can be further improved.

Compared with the Faster RCNN model, the improved YOLOv5 can reduce the
parameters and complexity of the model. What is more, the FPS is improved by three
times and the size is less than 5% of the latter. Compared with the original YOLOv5,
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the precision of the model is promoted by 1.5% and the recall rate is improved by 1.9%.
Although the progress is limited, the slight improvement in the identification rate of species
categories is still helpful to ameliorate the effect of individually distinguished cattle under
the setting that the number of cattle is usually huge. In addition, in the process of UAV data
acquisition, image distortion, weather, exposure, resolution, terrain and other factors often
affect the recognition effect. Therefore, we used data collected from different environments
to expand the training dataset to further improve the generalization ability of the model.

According to the experimental data, the improved YOLOv5 has higher accuracy, recall
rate and AP value. The overall performance is the best, which is very suitable for the
real-time monitoring scene of cattle. The high-speed target detection model cannot only
solve the image quickly, but also locate the cattle in time in the complex background.
Although the Faster RCNN also has high accuracy, due to the characteristics of second-
order network, its speed is far lower than that of first-order network, which cannot meet
the requirements of real-time detection, and its deep network structure is not conducive to
hardware deployment. YOLOv5 can be used to locate and identify targets based on the
idea of regression. Thanks to its lightweight characteristics, it can solve the problem of
hardware deployment as well as the problem of speed.

After preprocessing (such as cutting) the image frame after object detection, the LRCN
network was introduced to recognize cattle individuals. LRCN is a network structure
combined with CNN network and LSTM and has the ability to process single-frame
pictures, image stream input and single-value prediction and time-series prediction output.
Among them, the CNN part was adopted with the Inception V3 network, which uses a
large number of parallel and dimensionality reduction structures to reduce the impact of
structural changes on nearby models. The fusion of multi-scale feature spaces can avoid the
loss of edge features and premature network fitting. Meanwhile, the relatively lightweight
network structure can be more easily applied to mobile terminals.

6. Conclusions

This paper presents the improved YOLOv5 model for identifying cattle in the Qinghai
Tibet Plateau, which has the following advantages: first, the improved YOLOv5 model has
excellent detection speed and detection accuracy and can enhance the real-time detection
and positioning of cattle. Second, the improved YOLOv5 model is very lightweight, reduc-
ing the dependence on hardware configuration and computing costs. After verification
in the real monitoring scene, it is proven that the fully autonomous intelligent UAV can
help to reliably recover the single cattle identification from the air, through the standard
deep learning pipeline and with the help of biometrics. The autonomous recognition
method based on airborne depth reasoning proposed in this paper is very important for the
population evaluation of large herbivores (such as Tibetan wild ass, Tibetan gazelle, rock
sheep, etc.) in the source area of the three rivers. This non-contact real-time monitoring
method is worth being popularized for the effective protection of local endangered species
and the healthy development of the ecological environment.
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