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Abstract: Tanzania is one of the fastest-growing countries in the world, but it still faces many
challenges of unbalanced development. However, Tanzania’s economic assessment studies based
on traditional statistics are mostly conducted at the national level, which leaves the details of
regional economic disparity and electrification unknown. Despite experiencing one of the fastest
urbanizations in the world, there is a lack of research on the match between urbanization and
electrification in Tanzania. This study accesses the socioeconomic dynamics in Tanzania using
nighttime light images from the Visible Infrared Imaging Radiometer Suite (VIIRS), providing
spatiotemporal details for Tanzania’s development. We examined the ability of nighttime light data
to evaluate the socioeconomic dynamics in Tanzania and studied regional economic disparity based
on the total nighttime light (TNL). Furthermore, the land electrification rate (LER) was defined to
study the relationship between urbanization and electrification in Tanzania’s major cities. We found
that the LER was less than 0.9 in 2019 and had decreased from 2015 to 2019 in most cities, indicating
that the power infrastructure gaps were widespread and growing in major cities. Additionally,
we found a negative correlation between the change rate of land electrification and the urban
expansion rate, indicating that the construction of power infrastructure has lagged behind the
urbanization. We concluded that nighttime light data can effectively provide spatiotemporal details
for socioeconomic dynamics in Tanzania. Additionally, our data mining method may be applied to
other data-poor countries.

Keywords: VIIRS; nighttime light; Tanzania; black marble

1. Introduction

With the development of remote sensing, nighttime light remote sensing provides a
new approach for socioeconomic research. The intensity of nighttime light radiance can
reflect human socioeconomic activities and has been widely used in studies such as regional
development [1,2], electricity estimation [3], and urbanization monitoring [4]. However, the
majority of these studies are conducted in strong nighttime light radiation intensity areas [5],
whereas only a small part of them focus on regions with a weak nighttime light radiation
intensity [6–8]. There is a lack of socioeconomic statistics in these low electrification areas.
However, according to a research conducted in Burkina Faso [9], most settlements in areas
with low electrification rates and a low population density are undetectable to nighttime
light sensors. As a result, it is necessary to exercise caution when employing nighttime light
remote sensing as a socioeconomic proxy in these areas. Tanzania, a low electrification and
data-poor country [10,11], is also in urgent need of socioeconomic assessment to support its
sustainable development. However, few studies based on nighttime light remote sensing
address Tanzania specifically [12].

Tanzania is a lower-middle income country in East Africa [13], consisting of Tan-
ganyika and Zanzibar. With a stable political situation and abundant natural resources [10],
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Tanzania is one of the fastest-growing countries in the world. However, there is significant
regional economic disparity in Tanzania. First of all, Dar es Salaam, Tanzania’s economic
and industrial center, is growing much faster than the rest of the country [14]. In addition,
because of the colonial history as well as the long-term agricultural and trade patterns, there
is a significant north–south economic disparity in mainland Tanzania. Finally, the railway
system has long been responsible for the majority of Tanzania’s transportation, and has a
considerable aggregation influence on the economy [15]. However, Tanzania’s economic
assessment studies based on traditional statistics are mostly conducted at the national
level [16,17], which cannot reflect the regional economic disparity within the country.

Furthermore, electrification research in Tanzania faces similar problems. On the one
hand, the government of Tanzania claims that economic growth is hampered by the lack
of power infrastructure [18]. On the other hand, there is a lack of sufficient electrification
statistics to guide policy making and investment in the power sector [12,19]. In Tanzania,
nighttime light data have been used for electrification assessment [12]. However, the
nighttime light data were collected by the Defense Meteorological Satellite Program’s
Operational Linescan System (DMSP/OLS), whose low light imaging capability is relatively
poor [20]. Besides, DMSP/OLS data is only updated to 2013 and cannot reflect the latest
electrification dynamics in Tanzania. In addition, since Tanzania has experienced rapid
urbanization over the past decade, assessing the relationship between urbanization and
electrification is critical for the country’s sustainable development [21]. However, because
of a lack of socioeconomic statistics and inefficient land-use classification, relevant research
in Tanzania is restricted to a single city or region [22].

With a sufficient spatial and temporal resolution, nighttime light remote sensing has
been extensively applied to socioeconomic assessment at the subnational level [1,23]. Addi-
tionally, by fusing with multi-temporal population and land data, nighttime light data have
been used to monitor whether infrastructure is keeping pace with demographic and land
transitions [24]. Thus, this paper aims to assess Tanzania’s socioeconomic dynamics using
nighttime light data collected by the Visible Infrared Imaging Radiometer Suite (VIIRS)
from 2012 to 2020, providing the latest spatiotemporal details for Tanzania’s sustainable
development. First, based on the total nighttime light (TNL), the trend of regional economic
disparity is analyzed. In addition, combining built-up area data and nighttime light data,
the gap between electrification and urbanization is also examined. Our research will be
beneficial to the formulation of Tanzania’s Five-Year Development Plan (FYDP) and the
assessment of its progress in achieving the United Nations Sustainable Development Goals
(SDGs) [21,25].

2. Study Area and Data
2.1. Geography and Economy of Tanzania

Tanzania is located in Eastern Africa, south of the equator. It is bounded on the north
by Kenya and Uganda, on the south by Zambia, Malawi, and Mozambique, on the west by
Rwanda, Burundi, and the Democratic Republic of Congo, and on the east by the Indian
Ocean. Tanzania is abundant in natural resources such as diamonds, gold, phosphates,
and other minerals. Tanzania’s political situation has long been stable, and its economy
has grown substantially in recent years. It has been categorized as a lower-middle income
country in 2020 [13]. According to the 2012 Tanzania National Census, Tanzania is divided
into 30 regions (provinces), 25 of which are on the mainland Tanzania and 5 of which are in
Zanzibar (the total number of regions increased to 31 in 2016 after the Songwe region was
separated from the Mbeya region). Figure 1 shows the administrative division of Tanzania
and its neighbors.
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Figure 1. The administrative division of Tanzania and its neighbors.

2.2. Nighttime Light Data

In this study, we employed nighttime light data collected by the Day/Night Band
(DNB) sensors of the Visible Infrared Imaging Radiometer Suite (VIIRS), on board the
Suomi-National Polar-orbiting Partnership (S-NPP) satellite platform. Compared to the pre-
ceding DMSP/OLS nighttime light sensor, the VIIRS/DNB sensor is significantly superior
in terms of a higher spatial resolution of 15 arc seconds, on-board calibration, increased sen-
sitivity to low-level radiance, a larger radiation spectrum, etc. [26]. The latest VIIRS/DNB
dataset is the Black Marble product suite provided by NASA. This product provides cloud-
free, atmospheric-, terrain-, vegetation-, snow-, lunar-, and stray-light-corrected radiances,
which can more accurately reflect human activities [27]. The all-angle snow-free layer in
the Black Marble’s annual moonlight-adjusted nighttime light product (VNP46A4) from
2012 to 2020 was used in this study.

2.3. Built-Up Area Data

In our study, the World Settlement Footprint (WSF) suite provided by the German
Aerospace Center (DLR) was used as the built-up area data. The product, which is available
as a global built-up area binary mask with a spatial resolution of 10 m, was generated by
an advanced classification system using open-and-free optical and radar satellite imagery.
Extensive validations have demonstrated that the WSF outperforms all other existing
similar layers [28]. Currently, the WSF provided two products in 2015 and 2019.

2.4. Other Data

This study utilized a variety of auxiliary data, including administrative division data
from the Database of Global Administrative Areas (GADM) [29], transportation network
data from the Geofabric database [30], the urban boundary polygons and population
data from Africapolis [31], precipitation data from the Climate Hazards Group InfraRed
Precipitation with Station data (CHIRPS) global rainfall dataset [32], digital elevation model
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data (DEM) from the Shuttle Radar Topography Mission (SRTM) [33], and GDP data from
the National Bureau of Statistics of Tanzania [34], etc.

3. Methods
3.1. Regional Economic Disparity
3.1.1. Examining the Correlation between Nighttime Light and Economy

The total nighttime light (TNL) was defined as the sum of the digital number (DN)
values within an administrative unit [35], namely:

TNL =
N

∑
i=1

DNi (1)

where DNi represents the DN value of the pixel i within an administrative unit. The
DN value on the Black Marble image represents the radiance in units of nW · cm−2 · sr−1.
Numerous studies have demonstrated that the TNL can be used as an effective proxy
for GDP in many regions [5], but its ability to be used as a socioeconomic proxy in less
electrified areas has yet to be further tested [9]. Therefore, we performed a panel regression
analysis of Tanzania’s regional GDP and TNL, using the GDP data of 23 regions in mainland
Tanzania from 2013 to 2019 provided by the National Bureau of Statistics of Tanzania.
Considering the individual economic disparity between regions, we used a fixed effect
variable intercept panel model:

GDPit = αi + βTNLit + µit (2)

where GDPit and TNLit represent the GDP and TNL of the region i in the year t, respectively,
αi is the intercept of the fixed effect of the region i, and µit is the error term. Regression
and correlation analyses were performed on this model, and then the regional economic
disparity was investigated.

3.1.2. Regional Economic Disparity Analysis Based on the TNL

As the results of Section 4.1.1 showed that there is a strong positive correlation
(R2 = 0.89) between the regional (provincial) TNL and GDP, this section investigated
regional economic spatiotemporal disparity based on the TNL.

First of all, to study the economic dynamics of Dar es Salaam, the city primacy index
was calculated by dividing the Dar es Salaam’s TNL by the national TNL, namely:

Rdar =
TNLdar
TNLnat

(3)

where Rdar represents the city primacy index of Dar es Salaam, TNLdar is the TNL of Dar
es Salaam, and TNLnat is the national TNL.

In addition, to investigate the north–south economic disparity, we first divided all
regions into southern and northern regions based on the relative north–south position of
the regional capitals on the central railway. Because Dar es Salaam has an excessively high
GDP [34], including it on either side of the north and south will result in an imbalance
in the north–south economic ratio; hence, Dar es Salaam was not included on either side.
Then, the ratio of the total TNL of the southern regions to the TNL of mainland Tanzania
excluding Dar es Salaam, denoted as Rsou, was calculated by the following equation:

Rsou =
TNLsou

TNLmai − TNLdar
(4)

where TNLsou, TNLmai, and TNLdar are the TNL of the southern regions, mainland Tanza-
nia, and Dar es Salaam, respectively.

Finally, to study the economic aggregation effect of the railway system, we established
a railway buffer with a distance of 20 km, which would cover approximately all the cities



Remote Sens. 2022, 14, 4240 5 of 20

connected to the railway. Then, the ratio of the TNL in the railway buffer excluding Dar es
Salaam to the TNL in mainland Tanzania except for Dar es Salaam, denoted as Rrai, was
calculated by the following equation:

Rrai =
TNLrai − TNLdar
TNLmai − TNLdar

(5)

where TNLrai, TNLdar, and TNLmai are the TNL of the railway buffer, Dar es Salaam, and
mainland Tanzania, respectively.

3.2. Power Infrastructure in Major Cities
3.2.1. Land Electrification Rate

To investigate the spatial expansion of the urban power infrastructure, we defined
the land electrification rate (LER) as the proportion of the urban built-up area with power
infrastructure in the total urban built-up area (Figure 2), namely:

LER =
Ap

At
(6)

where At is the area of the total urban built-up area and Ap is the area of the built-up area
with power infrastructure.
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Figure 2. Illustration for the land electrification rate (LER). LER was defined as the proportion of the
urban built-up area with power infrastructure (blue area) in the total urban built-up area (blue and
red areas).

The urban built-up area was extracted using the WSF layer. Since a specific threshold
was set in the annual Black Marble products to remove background noise [27], we assumed
that within the urban built-up area, the area with positive radiance is the area with power
infrastructure. The city boundaries were determined using the Africapolis urban polygons.
Since the polygons may underestimate the actual city boundaries, we created buffers based
on the polygons. The buffer distances were determined based on the city population level.
To avoid subjectivity in setting the buffer distances, we used two groups of buffer distances
as controls (Table 1). The distances were all set to encompass the city boundaries and to not
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intersect other cities. Additionally, the distances of the second group were slightly larger
than that of the first group, so as to compare the electrification between the city edge and
the city center. According to the 2015 urban population data provided by Africapolis, a
total of 20 cities in Tanzania with a population more than 100,000 were selected. Figure 3
shows the distribution of the selected major cities in Tanzania.

Table 1. Buffer distances were set according to the city population level. Two groups of buffer
distances were set, buffer distances 1 and buffer distances 2.

Population
(million)

Number of
Cities

Buffer Distances 1
(km)

Buffer Distances 2
(km)

0.1~0.2 10 1 3
0.2~0.5 4 2 4
0.5~1.0 4 3 5

>1.0 1 6 8
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3.2.2. Spatiotemporal Dynamics of Land Electrification

Since the WSF layer is only available in 2015 and 2019, we calculated the land elec-
trification rate (LER) for each city in these two years. To investigate the progress of urban
power infrastructure construction, the change rate of land electrification, denoted as ∆L,
was defined as:

∆L =
LER2019 − LER2015

LER2015
(7)

where LER2015 and LER2019 represent the LER in 2015 and 2019, respectively.
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To explore the factors influencing power infrastructure construction, we analyzed the
correlations between the change rate of land electrification and the following variables: the
urban expansion rate, the change rate of the TNL, and the steepness of the urban terrain.

The urban expansion rate, used to measure the change rate of the built-up area, was
calculated by the following equation:

∆At =
At,2019 − At,2015

At,2015
(8)

where At,2015 and At,2019 represent the areas of the total urban built-up area in 2015 and
2019, respectively, and ∆At is the urban expansion rate.

The change rate of the TNL, denoted as ∆TNL, was calculated by the following equation:

∆TNL =
TNL2019 − TNL2015

TNL2015
(9)

where TNL2015 and TNL2019 are the TNL of the city in 2015 and 2019, respectively.
The steepness of the urban terrain was defined as the standard deviation of the

elevation in the urban buffer, namely:

S =

√√√√ 1
N

N

∑
j=1

(
hj − h

)2
(10)

where S represents the steepness of the urban terrain and h is the average elevation of
the city.

4. Results
4.1. Results of Regional Economic Disparity
4.1.1. Results of Correlation Analysis between TNL and GDP

Table 2 shows the regression results of Tanzania’s regional TNL and GDP based on a
fixed effects variable intercept panel model. The regression analysis showed that there is a
strong positive correlation between the GDP and the TNL, with an R2 of 0.894 (p < 0.01).
Despite Tanzania’s low rate of electrification and predominance of agriculture [11,34],
nighttime light data are still accurate predictors to estimate socioeconomic parameters for
the country. As a result, the TNL can be used to monitor the spatial and temporal disparity
of the regional economies in Tanzania.

Table 2. Panel regression results of Tanzania regional total nighttime light (TNL) and GDP based on
fixed effects variable intercept panel model.

Variable Coefficient

Constant term 1107.162 ***
(134.107)

β 0.052 ***
(0.001)

Time effects No
Region effects Yes
Observations 184

Regions 23
R2 0.894

Notes: Robust standard errors in brackets, *** p < 0.01.

4.1.2. Results of Regional Economic Disparity Analysis Based on TNL

The administrative boundary of Dar es Salaam is shown in Figure 4. In addition,
Figure 5 shows the city primacy index of Dar es Salaam from 2012 to 2020, namely the pro-
portion of the Dar es Salaam’s TNL in the national TNL during the period. The proportion
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was around 45% in 2012, despite Dar es Salaam accounting for only 10% of the national
population at the time [34], reflecting Dar es Salaam’s high urban priority and Tanzania’s
significant regional population and economic imbalance. Moreover, the proportion was
still rising from 2012 to 2020, indicating that the city’s economy is growing faster than the
rest of the country. In addition, the city primacy index rose with fluctuation and decreased
in 2015 and 2018, respectively. Additionally, the drops coincided with the years of severe
flooding, indicating that the economic growth could be jeopardized by floods [36]. To
promote sustainable urban economic growth, the governments should improve urban
resilience, especially in vulnerable informal settlements.
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The division result of the northern and southern regions of mainland Tanzania is
shown in Figure 6, and the proportion of the total TNL of the southern regions to the TNL
of mainland Tanzania excluding Dar es Salaam from 2012 to 2020 is shown in Figure 7. This
proportion is around 30%, indicating that the economic size of the south is significantly
smaller than that of the north. However, the proportion shows a slight upward trend,
indicating that the economic growth rate of the south was slightly faster than that of the
north, and that the economic gap between the north and the south was gradually narrowing.
This may have benefited from a series of pro-southern policies in recent years, such as
upgrading the port of Mtwara [37], a key southern port. In addition, active offshore LPG
and gas exploration activities in the south and a significant increase in graphite production
in the Lindi region are also likely to contribute to the southern economic boom [38].
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Figure 8 shows a 20 km railway buffer. We then calculated the ratio of the TNL of the
railway buffer excluding Dar es Salaam to the TNL of mainland Tanzania excluding Dar
es Salaam from 2012 to 2020 (Figure 9). The ratio fluctuated slightly over time, showing a
downward trend from 2012 to 2018 and an upward trend from 2018 to 2020. This trend
may have been caused by the following factors: (1) the disrepair of the railway and the
deteriorating operation conditions may have contributed to the downward trend [39];
(2) due to the diverting effect of the government’s vigorous construction of inter-regional
highways, the aggregation effect of the railway on the economy gradually declined from
2012 to 2018 [40]; and (3) the Standard Gauge Railway (SGR) program might have played a
role in the rise trend. The SGR aims to upgrade the country’s original railways and replace
the old and inefficient meter-gauge railway system with the international Standard Gauge
Railway [41].
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4.2. Temporal and Spatial Dynamics of Power Infrastructure in Major Cities
4.2.1. Results of Land Electrification Rate

Figure 10 shows two groups of buffers established for some cities, with buffer 1 being
smaller than buffer 2. Each city’s land electrification rate (LER) was calculated in two groups
of buffers in 2015 and 2019. We then analyzed the spatial and temporal characteristics of
the LER, respectively.
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Two buffers of different sizes were created for each city. The binary background is the 2015 World
Settlement Footprint (WSF2015) layer.

Figures 11 and 12 demonstrate the comparison of the LER in different years within
the same group of buffers. The findings from the above figures are as follows: (1) within
the same year, most of the 20 cities in either group of buffers had an LER less than 95% in
2015 and less than 90% in 2019, which indicates that there are widespread gaps between
urbanization and power infrastructure construction in Tanzania’s major cities; (2) in all but
four of the twenty cities, the LER in 2015 was higher than the LER in 2019, indicating that
the gaps widened from 2015 to 2019.

Figures 13 and 14 show the comparison results of the LER in the same years within
different group of buffers. The findings from the above figures are as follows: (1) the LER of
buffer 2 was lower than the LER of buffer 1 in 2015 and 2019, while buffer 2 was larger than
buffer 1, indicating that power infrastructure was poorer in the edge of the city than in the
center of the city; (2) in most cities, the LER difference between the two groups of buffers
in 2019 was greater than that in 2015, indicating that the power exacerbated between the
suburbs and the central cities increased from 2015 to 2019.
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4.2.2. Correlation Analysis between the Change Rate of Land Electrification and Other
Factors

This section took the change rate of the land electrification of each city in buffer 1
as an example to study its correlations with other variables. The urban expansion rate,
change rate of the TNL, and the steepness of the urban terrain of each city in buffer 1 were
calculated, respectively, as shown in Table 3.
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Table 3. The change rate of land electrification, the urban expansion rate, the change rate of TNL,
and the steepness of the urban terrain of each city in buffer 1.

City Change Rate of Land
Electrification Urban Expansion Rate Change Rate of TNL Steepness of the

Urban Terrain (m)

Moshi −0.209 0.50 −0.20 347.15
Bukoba −0.151 0.85 0.09 62.98
Tabora −0.065 0.42 0.17 20.25

Kahama −0.057 0.64 0.34 23.17
Arusha −0.052 0.32 0.15 273.75
Kigoma −0.049 0.21 −0.16 72.39

Shinyanga −0.049 0.28 0.26 17.09
Singida −0.040 0.35 0.11 24.06

Zanzibar −0.028 0.30 0.38 22.53
Songea −0.026 0.31 0.32 56.54
Mbeya −0.023 0.26 0.38 227.05

Sumbawanga −0.014 0.33 0.39 48.53
Mwanza −0.012 0.39 0.37 48.93

Tanga −0.009 0.25 0.01 22.46
Musoma −0.002 0.35 0.25 43.86

Dar es Salaam −0.001 0.28 0.39 56.94
Morogoro 0.000 0.24 0.18 185.10
Dodoma 0.002 0.39 0.60 45.10

Iringa 0.021 0.17 0.44 67.34
Kasulu Mjini 0.038 0.19 0.65 55.11

The linear regression results of the urban expansion rate and the change rate of land
electrification are shown in Figure 15. The regression analysis showed that urban expansion
rate was negatively correlated with the change rate of land electrification, with an R2 of
0.4816 (p < 0.01). Given that the land electrification rate was defined as the proportion of
urban built-up area with power infrastructure to the total urban built-up area, the negative
correlation indicates that the proportion of the city with power infrastructure decreased
with the increase in urban expansion. In addition, the construction of power infrastructure
has lagged behind the urbanization.

Remote Sens. 2022, 14, 4240 14 of 19 
 

 

The linear regression results of the urban expansion rate and the change rate of land 

electrification are shown in Figure 15. The regression analysis showed that urban expan-

sion rate was negatively correlated with the change rate of land electrification, with an 𝑅2 

of 0.4816 (p < 0.01). Given that the land electrification rate was defined as the proportion 

of urban built-up area with power infrastructure to the total urban built-up area, the neg-

ative correlation indicates that the proportion of the city with power infrastructure de-

creased with the increase in urban expansion. In addition, the construction of power in-

frastructure has lagged behind the urbanization.  

 

Figure 15. The scatter diagram showing the relationship between urban expansion rate and the 

change rate of land electrification. The outlier Moshi was marked red, which suffered from a signif-

icant decline in the total nighttime light. 

Figure 16 shows the linear regression results of the change rate of the TNL and the 

change rate of land electrification. The regression analysis showed that the change rate of 

the TNL was positively correlated with the change rate of land electrification, with an 𝑅2 

of 0.4881 (p < 0.01). Since there is a strong positive correlation between the GDP and the 

TNL, the power infrastructure popularization is consistent with the city’s economic de-

velopment. 

 

Figure 16. The scatter diagram showing the relationship between the change rate of total nighttime 

light and the change rate of land electrification. 

Figure 15. The scatter diagram showing the relationship between urban expansion rate and the
change rate of land electrification. The outlier Moshi was marked red, which suffered from a
significant decline in the total nighttime light.
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Figure 16 shows the linear regression results of the change rate of the TNL and
the change rate of land electrification. The regression analysis showed that the change
rate of the TNL was positively correlated with the change rate of land electrification,
with an R2 of 0.4881 (p < 0.01). Since there is a strong positive correlation between the
GDP and the TNL, the power infrastructure popularization is consistent with the city’s
economic development.
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Note that in Figure 16, Kigoma has a negative change rate of the TNL and a significant
decrease in the LER. Kigoma is one of the busiest port cities on the northeast side of
Lake Tanganyika. However, due to decreased water depth at the docks and declining
fish populations [42], the economic growth of the city has been jeopardized, resulting in a
decline in the city’s TNL.

There is no significant linear relationship between the steepness of the urban terrain
and the change rate of land electrification. However, with the increase in the steepness of
the urban terrain, the change rate of land electrification has a general tendency to increase
first and then decrease. Furthermore, Bukoba is an outlier in this trend, with a much lower
change rate of land electrification than other cities with a similar steepness of urban terrain.
This could have been caused by the September 2016 earthquake, which was the largest
and deadliest in Tanzania since 2000. Bukoba was the most severely damaged city in the
earthquake, with at least 840 houses destroyed and another 1264 severely damaged, leaving
thousands homeless [43].

5. Discussion
5.1. Advantages of Nighttime Light Remote Sensing

Tanzania is one of the fastest-developing countries in the world [10], but there are still a
number of unbalanced development problems [11,44,45]. Therefore, relevant socioeconomic
research is urgently needed to support the country’s sustainable development. On the
one hand, traditional statistics in Tanzania are severely lacking. On the other hand, the
study area based on remote sensing data is typically limited to certain cities [14,22,46–50].
The existing research is insufficient to capture Tanzania’s entire socioeconomic dynamics.
This study employed nighttime light remote sensing to assess the overall socio-economic
dynamics of Tanzania with a high temporal and spatial resolution, effectively filling the
gaps in relevant research.
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5.2. The Relationship between Nighttime Light Data and Power Infrastructure

Our study investigated urban power infrastructure using nighttime light data. How-
ever, the relationship between power infrastructure and nighttime light data requires
further clarification. As urban nighttime light mainly comes from buildings and street
lamps, there is a direct correlation between nighttime light remote sensing and electric light-
ing infrastructure [7]. According to research conducted in rural Vietnam, the brightness of
villages is an increasing function of both the number of electrified homes and the number of
streetlights [51]. In our study, the land electrification rate can be regarded as the proportion
of the city with access to electric lighting. Furthermore, because the electricity for buildings
and streetlamps is generated by power stations, nighttime light remote sensing is implicitly
correlated with power generation infrastructure. Therefore, the land electrification rate is
also a useful proxy for the overall urban power generation capacity.

5.3. The Outlier Moshi

Note that there is an obvious outlier, Moshi, in Figure 15, whose urban expansion rate
is not very high, but the change rate of land electrification is surprisingly low. Located at
the foot of Mount Kilimanjaro, a popular tourist destination, Moshi receives nearly one
million visitors a year and has one of the highest per capita incomes in Tanzania. However,
Moshi’s TNL in 2019 was nearly 20% lower than in 2015, showing an unusual decline.
This may have been caused by the flood in the area [52,53]. Figure 17 shows that the year
when Moshi’s TNL decreased corresponds to the year when rainfall suddenly increased.
Figure 18 shows that areas with steep terrain tend to suffer from nighttime light decline.
Moshi’s urban settlements are densely distributed on the hillside. It is likely that floods
caused by heavy rains have destroyed a large number of settlements, as well as the power
infrastructure, resulting in a significant decrease in the TNL and the LER.
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5.4. Limitations and Future Work

However, some limitations should be noted. With a minimum nighttime light detec-
tion limit and a satellite overpass time of 1:30 midnight [27], the VIIIRS/DNB sensor is
unable to detect the feeble and transient nighttime light emitted by human activity. Thus,
nighttime light remote sensing has limited capabilities to monitor human activities in
sparsely populated rural communities [9]. However, the positive correlation between GDP
and TNL increases as research units are aggregated to higher administrative levels [23],
where the TNL reflects the sum of various economic activities with different population
densities. In our study, there is a strong correlation (R2 = 0.894) between the TNL and
GDP at the regional (provincial) level in Tanzania, allowing us to investigate regional
economic disparity. Nevertheless, it is challenging to evaluate socioeconomic activities at
the lower administrative levels in low-electrification areas simply using nighttime light
data [7]. Therefore, in our study of city-level electrification, we used built-up area data,
which effectively assisted nighttime light remote sensing for socioeconomic dynamic as-
sessment. For example, Bukoba’s economic recession caused by an earthquake was not
obviously reflected in the TNL (but rather a TNL increase between 2015 and 2019). How-
ever, the significant mismatch between the TNL growth and the rapid expansion of the
built-up areas reveals Bukoba’s economic unrest. As a result, the use of auxiliary data will
improve the socioeconomic assessment in low-electrification areas. Future work should
apply more auxiliary data related to nighttime light, such as land surface temperature
data and urban green space datasets [54,55], to better monitor socioeconomic dynamics in
low-electrification areas.

In our study, the all-angle layer in the Black Marble annual composites were used
to assess the socioeconomic dynamics of Tanzania. However, the composites have some
limitations. First of all, the use of an all-angle layer ignores the angular effect on nighttime
radiance [56,57], namely, satellite-observed artificial light radiance varies in relation to the
satellite viewing angles. In addition, the time span (2012–present) of the VIIRS composites
is relatively short. In future work, the use of intercalibrated nighttime light composites
between the DMSP/OLS and VIIRS and the consideration of angular effects will facilitate
the accurate and long-term socioeconomic assessment [58].
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6. Conclusions

This paper carried out a socioeconomic assessment of Tanzania based on time series
Black Marble nighttime light images. We found a strong correlation (R2 = 0.89) between
regional total nighttime light (TNL) and GDP in Tanzania, indicating that the TNL is still a
good proxy for GDP in areas with low electrification rates. Based on the TNL, we found
that the city primacy index of Dar es Salaam was remarkably high and steadily rising. In
our research on the power infrastructure of Tanzania’s major cities, we found that the land
electrification rate (LER) decreased from 2015 to 2019 in most cities, indicating that the
power infrastructure gaps are growing in major cities. In addition, we found a negative
correlation between the change rate of land electrification and the urban expansion rate,
indicating that power infrastructure construction lags behind urbanization. Furthermore,
we found a significant decline in the LER in cities that experienced great natural disasters.
Further research could examine the spatiotemporal patterns of the LER in a broader range
of less-developed regions. Based on this, researchers can identify and monitor cities that
are at risk of unexpected disasters, providing support for humanitarian assistance and
sustainable regional development.
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