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Abstract: Multiple methods have been developed to identify the transition threshold from the
reconstructed satellite-derived normalized difference vegetation indices (NDVI) time series and to
determine the inflection point corresponding to a certain phenology phase (e.g., the spring green-
up date (GUD)). We address an issue that large uncertainties might occur in the inflection point
identification of spring GUD using the traditional satellite-based methods since different vegetation
types exhibit asynchronous phenological phases over a heterogeneous ecoregion. We tentatively
developed a Maximum-derivative-based (MDB) method and provided inter-comparisons with two
traditional methods to detect the turning points by the reconstructed time-series data of NDVI for
identifying the GUD against long-term observations from the sites covered by a mixture of deciduous
forest and herbages in the Pan European Phenology network. Results showed that higher annual
mean temperature would advance the spring GUD, but the sensitive magnitudes differed depending
on the vegetation type. Therefore, the asynchronization of phenological phases among different
vegetation types would be more pronounced in the context of global warming. We found that the
MDB method outperforms two other traditional methods (the 0.5-threshold-based method and the
maximum-ratio-based method) in predicting the GUD of the subsequent-green-up vegetation type
when compared with ground observation, especially at sites with observed GUD of herbages earlier
than deciduous forest, while the Maximum-ratio-based method showed better performance for
identifying GUDs of the foremost-green-up vegetation type. Although the new method improved in
our study is not universally applicable on a global scale, our results, however, highlight the limitation
of current inflection point identify algorithms in predicting the GUD derived from satellite-based
vegetation indices datasets in an ecoregion with heterogeneous vegetation types and asynchronous
phenological phases, which makes it helpful for us to better predict plant phenology on an ecoregion-
scale under future ongoing climate warming.

Keywords: satellite-derived phenology; spring green-up date; vegetation index; asynchronous
phenology; heterogeneous ecoregion

1. Introduction

As the stages of periodic phenomena in the plant life cycle, vegetation phenology
is one of the critical ecological indicators of climate change and has inevitable feedback
effects on the climate system by altering the water, energy, and carbon exchange between
the terrestrial ecosystem and the atmosphere [1–6]. Numerous studies indicate that climate
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change has resulted in shifts in plant phenology over regional or global scales [6–9], like
the widely reported earlier vegetation green-up onset in spring [9–11], which could alter
the length and strength of the vegetation growing season and further impact the carbon
cycle [7,12,13]. Therefore, increasing efforts have been paid to improve the accuracy of
spring vegetation phenological observation and estimation at a larger scale, and the results
are helpful for us to understand the impacts of climate change on plant phenology and
even the material cycle and energy flow in terrestrial ecosystems, and in turn feedback on
climate change [7,14,15].

The majority of previous phenology studies relied on in situ observations of inter-
annual variation in phenological events at the species level. However, such approaches
must be limited by the quantity of ground observation sites, and thus, it is nearly impos-
sible to obtain effective information about the interannual variations of plant phenology
responses to climate change on a larger scale [16,17]. For the past few years, due to the
high consistency between satellite-based indicators and the in situ observed phenological
features, remote-sensing techniques have been widely applied in large-scale and long-term
plant dynamics observations [6,18–20], providing a convenient method to observe vegeta-
tion phenology [21–23]. Multiple methods have been proposed to identify the key spring
vegetation phenological phases (e.g., green-up date, GUD) by estimating inflection points
derived from the satellite-based vegetation indices time series datasets (e.g., normalized
difference vegetation indices (NDVI)) [24–26]. Two main processes are involved in these
methods for determining the spring vegetation GUD. The first process is to fit various lo-
gistic regression models with the corresponding satellite-derived vegetation indices dataset
and obtain higher-temporal-resolution time series datasets that are suitable for vegetation
phenological study [27,28]. The second process is to determine the critical turning point for
the vegetation GUD from the reconstructed time-series datasets of vegetation indices based
on certain rules [6,29]. Generally, there are also two types of rules that have been developed
to determine the turning point based on the seasonal variation of vegetation indices. The
first one is threshold-based and uses the relative threshold [30] or absolute threshold [31]
of vegetation indices to identify the GUD during the growing season [32,33]. Another is
ratio-based and identifies the onset of GUD in spring as the date when the increase rate of
vegetation indices reaches its maximum value [18,21,29].

However, lots of studies have found that the spring green-up date of deciduous
forests estimated by satellite-derived vegetation indices have systematic errors and lack
of accuracy [29,34]. Previous research has highlighted the significant differences between
identified vegetation GUDs from satellite observations and ground observations [15,35].
For example, researchers compared satellite-derived results against long-term field-based
observations and found an absolute difference of up to 26 days for the GUDs of a deciduous
broadleaf forest [36]. Wu et al. (2017) [19] compared different satellite-based methods for
estimating the growing season onset, and all of them showed relatively low correlation
with the observed results of eddy flux measured at 60 sites. Many reasons will lead to the
deviation of prediction results [27,37], but the main issue, i.e., the scale-up vs. mixed-pixel
problem, is hard to shift, but perhaps unavoidable [26,38]. Although the spatial resolu-
tion of satellite-derived vegetation index products has been improved in recent years, a
given pixel may include a combination of different vegetation types that might result in
significantly different phenology, which challenges the determination of a reliable onset
date of spring phenological phases within a heterogeneous ecoregion. Several studies have
found significant differences in phenological phase between some deciduous forest and
understory or adjacent herbaceous species [29,39,40], which confounds remote sensing
metrics and affects the identification of deciduous forest GUD. In addition, many herba-
ceous species have been shown to emerge earlier than temperate deciduous forest in the
spring season in order to take advantage of a short-term growth environment with suffi-
cient light [41,42]. The GUD obtained from the Pan European Phenology (PEP) Database
(PEP725; http://www.pep725.eu/ (accessed on 15 July 2021)) revealed a clear distinction
between deciduous forest and herbage (Figure 1a,b). Therefore, such a heterogeneous site is
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difficult to describe with a conventional vegetation index threshold. That is, a large increase
in NDVI might occur when the onset date of herbaceous species green up is earlier than that
of deciduous forest in the same ecoregion [34]. For such complex scenes, the critical turning
point diagnostic rule should be more flexible when using time series of satellite-derived
vegetation indexes to extract spring phenological transition in an ecoregion mixed with
deciduous forest and herbages.
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Figure 1. Multi-years average value of normalized difference vegetation index (NDVI) time-series
data and the observed green-up date (GUD) (Green dash line for deciduous forest and blue dash
line for herbage, respectively) in site PEP_ID_2672 (a) and site PEP_ID_2879 (b) of the Pan European
Phenology (PEP) Database. The red line is the fitted curve based on the six-degree polynomial
function (Equation (1)). The frequency histogram (c) shows the multi-year average difference values
of observed GUD between deciduous forest (GUDobs-forest) and herbage (GUDobs-herbage) in the
selected forest-herbage-mixed (FHM) sites in our study.

In this study, we hypothesized that estimating the GUD based on the satellite-derived
vegetation index time-series data, especially in an ecoregion mainly covered with deciduous
forests and herbages, would suffer from large uncertainties in turning point determination
due to the asynchronous onset date of spring phenological phase in different vegetation
types. Our study developed the threshold-based determination method, which we refer
to as Maximum-derivative-based method (hereafter referred to as the MDB method), to
improve estimates of turning points from satellite-derived NDVI time-series data, which
is mainly affected by the greenness signal of different vegetation with asynchronous
phenological phases. Different from the traditional method that uses the NDVI value mixed
with different vegetation types to represent the deciduous forest greenness in a target pixel,
the new method further considers the issue that asynchronization of phenological onset
date for different vegetation types might affect the turning point identification based on
NDVI time-series datasets. As an effort to improve the accuracy of identifying the onset
date of vegetation green up in spring, we first fit the annual NDVI time-series datasets
with a six-degree polynomial function, which was first used for phenological identification
by Piao et al. (2006) and has been proven applicable to the regression in most cases [9,16].
Then we provide inter-comparisons between the improved method and two traditional
methods (0.5-threshold-based method and Maximum-ratio-based method) to detect the
turning points in the reconstructed time-series data of NDVI for identifying the GUD
against long-term observations from the sites of the PEP network, which covered a mixture
of deciduous forest and herbages.

2. Materials and Methods
2.1. Ground-Based Observation of GUDs

We obtain the ground-based observations of GUDs from the PEP Database, which pro-
vides an open European phenological database comprising 9 million records for 78 species
over approximately 20,000 locations across Europe, mainly in Germany, starting in the year
1868. According to the vegetation species, we have filtered out the deciduous forests and
herbaceous species and associated them based on the PEP ID. In this study, we selected
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sites mainly composed of deciduous forests and herbages, and these sites were referred to
as forest-herbage-mixed (FHM) sites. We assumed that these two jointly influence the time
series of NDVI, a proxy of total vegetation greenness, in a target pixel. We also excluded the
FHM sites if the vegetation GUD was later than 180 days of the year and focused on the sites
with >25 years of records from 1982 to 2013 to eliminate the potential deviations caused
by abnormal values. To focus on the most reliable pair of ground observations and satel-
lite observations, only those grid zones covering vegetation types (deciduous forests and
herbages) that remain unchanged during the observed years were considered. We (1) used
the Global Land Cover with Fine Classification System at 30m products (GLC_FCS30-1985,
GLC_FC-1990, GLC_FC-1995, GLC_FC-2000, GLC_FC-2005, GLC_FC-2010, and GLC_FC-
2015) [43] to mark out the areas where the vegetation type has not changed from 1985 to
2015; (2) set a grid zone with a spatial resolution of 0.083 degrees around each shortlisted
site. Each grid zone is mainly comprised of deciduous forest and herbaceous types with
canopy cover >20%, respectively, and a total >60%; both accounted for >70% of the total
vegetation area; (3) merged the observed results if a 0.083 degree pixel was covered with
at least two FHM sites; and (4) further divided the sites into two groups, including the
GUD of deciduous forest earlier than that of herbages (GUDobs-forst < GUDobs-herbage), and
the GUD of herbages earlier than that of deciduous forest (GUDobs-herbage < GUDobs-forst).
As a result, a total of 30 and 28 FHM sites for GUDobs-forst < GUDobs-herbage (Table S1) and
GUDobs-herbage < GUDobs-forst (Table S2) groups, respectively, all over Germany, were used
in this study (Figure 2). Each site is coded by PEP_ID and ranges over a small town or city.
There are 5 deciduous forest species (each species has more than 60 observed points) and
6 herbaceous species (each species has more than 40 observed points) randomly distributed
among each site. We averaged the annual GUDs of all species of the same vegetation type
(i.e., deciduous forest and herbage types) into one value in a FHM site, and each site has
only one GUD for deciduous forest and herbage types (hereafter referred to as GUDobs-forst
and GUDobs-herbage), respectively.
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2.2. Satellite-Based Datasets

In this study, we used the global inventory monitoring and modeling studies (GIMMS)
group datasets (http://ecocast.arc.nasa.gov/data/pub/gimms/3g/ (accessed on 1 March
2022)), which provide Advanced Very High-Resolution Radiometer (AVHRR) NDVI data
(referred as GIMMS NDVI3g) (1982–2014) at a spatial resolution of 0.083 degrees and
15-day interval [11,28]. The systematic errors or noise from atmospheric interference,
non-vegetation dynamics, and changes in satellite sensors have been eliminated by mul-
tiple empirical corrections [6,44]. In addition, we excluded the effects of snow cover
on the canopy and limited the GUD during the vegetation growth season (5-day mean
temperature > 0 ◦C) followed by previous studies [45]. Furthermore, to reduce the in-
fluence of areas with sparse vegetation, annual mean NDVIs < 0.1 were excluded from
analyses over the 32-year period [9].

The Climatic Research Unit-National Centers for Environmental Prediction (CRUN-
CEP) version 7 dataset was used to calculate the annual mean temperature and annual
precipitation (http://rda.ucar.edu/datasets/ds314.3/ (accessed on 1 March 2022)), which
was provided by Laboratoire des Sciences du Climat et l’Environnement (LSCE). The CRUN-
CEP version 7 dataset is a combination of CRU TS3.2 (Climatic Research Unit Time-Series
Version 3.2) monthly data and the NCEP (National Centers for Environmental Prediction)
reanalysis 6-h data with a temporal resolution of six-hours and a spatial resolution of
0.5 degrees [46].

2.3. Methodology
2.3.1. Fitting the Annual Pattern of the GIMMS NDVI3g Time Series

According to the vegetation’s general growth pattern, which begins to grow in early
spring and reaches its peak in summer, that is, for a certain pixel, with increasing Julian day,
the NDVI value would increase gradually during the growing season and then decrease
after reaching its maximum value. As a result, a fitting model could restructure this growing
pattern in order to obtain a long-term change trend in vegetation growth. Previous studies
have proved that a 6-degree polynomial function (Equation (1)) was applicable to fit the
relationship between the biweekly NDVI time-series data and the corresponding Julian
day in most vegetation growth cases [16,25].

NDVI(t) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5 + a6t6, (1)

where t is the Julian days, NDVI(t) is the NDVI value at time t, a0, . . . , a6 represent the
fitting coefficients. We used Equation (1) to fit the annual NDVI time series and 32-year
mean NDVI time series of each FHM site, respectively, for later analysis. The day of the
year corresponding to the interpolated annual NDVI value obtained from an inflexion point
is defined as the GUD.

2.3.2. Traditional Turning Point Identification Methods

In this study, we selected two traditional turning point identification methods (0.5-
threshold-based method and Maximum-ratio-based method) to make a comprehensive
assessment with the new MDB method at FHM sites to identify the turning point of GUD
based on the reconstructed GIMMS NDVI3g time-series datasets. The following presents
the method descriptions and operations.

(1) 0.5-threshold-based method

For the threshold-based method, an empirical threshold (NDVIthreshold (t)) calculated
from an NDVI ratio is used to determine the GUD for each pixel:

NDVIthreshold (t) =
NDVI(t)− NDVImin
NDVImax − NDVImin

(2)

http://ecocast.arc.nasa.gov/data/pub/gimms/3g/
http://rda.ucar.edu/datasets/ds314.3/
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where the NDVI(t) is the NDVI value at time t, NDVImax and NDVImin are the maximum and
minimum values of the fitting annual NDVI time-series curve for each given year, respectively.
The annual GUD is determined when the increasing NDVIthreshold (t) firstly exceeds 0.5 threshold
among reconstructed NDVI time series during spring (Figure S1a) [21,47].

(2) Maximum-ratio-based method

This method is different from the above threshold-based method in that the green-up
date is determined via a maximum NDVI changing rate (NDVIratio) from the consecutive
biweekly NDVI time series [16,25]. The NDVIratio was calculated from the multi-year mean
NDVI time series for each pixel by using the following algorithm:

NDVIratio (t) =
NDVI(t + 1)− NDVI(t)

NDVI(t)
(3)

where the NDVI(t) and NDVI(t + 1) are the NDVI value at time t or t + 1 (temporal
resolution of 15 days), the NDVIratio (t) is the calculated relative changing rate of NDVI at
time t. This method first detected the time t with the maximum NDVIratio, and then used
the corresponding NDVI(t) as the multi-year average NDVI threshold for the green-up
date in a pixel. The time when the reconstructed NDVI value in the fitting annual NDVI
time-series curve corresponds to the above multi-year average NDVI threshold is defined
as the GUD (Figure S1b).

2.3.3. Maximum-Derivative-Based Method

We developed an improved threshold-based determination method (Maximum-derivative-
based method) based on the fitting curve derivation operation proposed in a previous study [34].
The objectives of this improved method are to better deal with deciduous forest GUD prediction
in a heterogeneous ecoregion mainly mixed with deciduous forests and herbages and especially
for the latter-green-up one. Three separate steps are conducted as follows:

First, we fitted the 32-year mean NDVI time series in each FHM site (j) using a six-
degree polynomial function using Equation (1).

Second, we calculated the threshold of NDVI to identify the GUD of the subsequent
one using the first and second derivatives of the six-degree polynomial function. For ideal
vegetation canopy growth, it would exhibit a general growth pattern in which the leaf
starts to emerge in early spring and reaches its full bloom in late summer. Therefore, in this
method, if the second derivative reaches its maximum value, it means that when the six-
degree polynomial equation starts going concave up, it could therefore be used to define the
GUD. However, the NDVI time-series datasets after fitting with the six-degree polynomial
function are not always smooth and sometimes produce a curve with fluctuation within the
growing season due to the asynchronous phenological phase among different vegetation
species. We then calculated both the first and second derivatives based on the six-degree
polynomial function using Equation (1) obtained in the first step and summed them in
Equation (4).

Sum = NDVI′(t) + NDVI′ ′(t), (4)

where t is the Julian days, NDVI(t) is the NDVI value at time t, which was based on the 32-
year mean NDVI time series of each FHM site, NDVI′(t) is the first derivative, and NDVI′ ′

(t) is the second derivative. We identified the date (t) at which the Sum is maximal within
the growing season, and the corresponding NDVI was used as the NDVI threshold for the
annual GUD estimation. This method provided a relatively reasonable way of identifying
the turning threshold of the latter one when different vegetation (e.g., ecoregions covered
with deciduous forest and herbage in our study sties) green up successively in each FHM
site (Figure S1c).

Third, we determined the green-up date for a certain FHM site for each year, using the
six-degree polynomial Equation (1) and the NDVI(t) obtained in the second step.
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2.4. Statistical Analysis

To compare the performances of different models in predicting the green-up date
of a site mixed with deciduous forest and herbage, we analyzed the correlations be-
tween ground-observed GUD and estimated GUD derived by different methods using the
least-squares linear regression to calculate coefficients of determination (R2) and p-value
(p < 0.05). The root mean square error (RMSE) was also used to evaluate the predictive
performance. A unary linear regression model was used to calculate the change in slope
from 1982 to 2013, namely the propensity score (SLOPE), which was used to analyze the
linear trend of annual mean temperature for each pixel:

SLOPE =
n×∑n

i=1 xi Ai −∑n
i=1 xi ∑n

i=1 Ai

n×∑n
i=1 x2

i − (∑n
i=1 xi)

2 (5)

where n is the total number of years (32); xi is the i year (1982 was the first year); and Ai
represents the corresponding annual mean temperature for the i year.

3. Results
3.1. Trends in Observed GUD

As for the spring vegetation GUDs mentioned above, they indeed showed a signifi-
cant difference between deciduous forest and herbages in each FHM site (Figure 1c). To
investigate the changes in observed GUDs over time, we calculated the temporal trends of
GUDs for deciduous forest and herbages and then examined the overall GUD trends for all
FHM sites from 1982 to 2013. Trend detection for the 58 FHM sites showed that the GUDs
of deciduous forest (94.8%) and herbages (77.6%) in most FHM sites displayed advancing
trends during 1982–2013 (Figure S2a,b). We also calculated the overall GUD trends for
these two vegetation types during the study periods. Results indicated that the GUDs
of the two vegetation types both showed significant advancing trends during 1982–2013
(Figure 3). For different vegetation types, however, the advancing trend magnitude of GUD
in deciduous forest was distinctly higher than that of herbages, with negative GUD trends
of −0.384 and −0.280 day/year (p < 0.001), respectively.
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3.2. Climate Factors Sensitivity of Observed GUD

To explore the sensitivity of observed vegetation GUD to climate factors gradients,
we acquired the GUDs of deciduous forest and herbages from all the FHM sites in each
observed year and plotted them along with the annual mean temperature (Figure 4) and
annual precipitation (Figure S3), respectively. Temperature and precipitation are always
considered the major driving factors for the spatial and temporal patterns of GUD in temper-
ate regions. However, our results show that the GUDobs of deciduous forests and herbages
were all found earlier with higher temperatures, with correlation coefficients (r) of 0.53 and
0.44 (p < 0.001) for FHM sites with GUDobs-forest < GUDobs-herbage, 0.50 and 0.51 (p < 0.001)
for FHM sites with GUDobs-herbage < GUDobs-forest, respectively. However, these significant
negative correlations could be different between deciduous forests and herbages and even
their sequential order of green-up onset date. On one hand, the GUDs of deciduous forest
would advance by about 4.54 ± 0.38 days/◦C, while the GUDs of herbages would advance
by over 2.35 ± 0.46 days/◦C for FHM sites with GUDobs-forest < GUDobs-herbage. On the
other hand, observed GUDs also showed significant negative relationships with annual
temperature for both vegetation types in FHM sites with GUDobs-herbage < GUDobs-forest,
and about 5.61 ± 0.35 and 6.29 ± 0.54-day advancement along with 1 ◦C increase in spring
green-up onset for deciduous forest and herbages, respectively. In addition, no significant
changes were found in the GUDs of deciduous forests and herbages along the annual pre-
cipitation gradient (Figure S3). This indicates that GUDs of deciduous forest and herbages
may be more sensitive to annual mean temperature than annual precipitation, and the
asynchronization of GUDs between these two vegetation types show an increasing trend as
global warming intensifies.
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Figure 4. Relationships between annual observed green-up dates (GUDobs) of deciduous forest
(green) and herbages (blue) and annual mean temperature for all forest-herbage-mixed (FHM) sites
with GUDobs-forest < GUDobs-herbage (a) and with GUDobs-herbage < GUDobs-forest (b) The embedded
box plots show the correlation coefficients (r) and slope (s) of regression lines, which indicate the
change trend of GUD with the increased annual mean temperature for each FHM site.

3.3. Comparison and Evaluation among GUD Predictive Methods

GUDs extracted from three turning point identification methods based on a six-degree
polynomial function were compared with multi-year ground observation of each FHM
site both spatially and temporally. Estimation using the MDB method showed significant
relationships (R2 = 0.25, p < 0.001) with ground observation in GUDs prediction of decid-
uous forest (Figure S4c), while all the methods produced a non-significant relationship
(p > 0.05) between estimation and ground observation in GUDs prediction of herbages
(Figure S4d,e). Results in the above show a significant difference in the GUD between
deciduous forests and herbages (Figures 3 and 4). Thus, the magnitude of the difference
and even the sequential order of the vegetation green-up onset would lead to considerable
uncertainty by using satellite-based turning point detection methods for identifying GUD at
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a FHM site. Here, we evaluated the performance of three predictive methods by comparing
the spatial and temporal variability of estimated GUD with ground observed GUD through
all FHM sites.

3.3.1. Evaluation on the Spatial Variations of GUD

Results showed that the 0.5-threshold-based method explained poorly the spatial varia-
tions of GUD when compared to observations of deciduous forests and herbages at all FHM
sites (Figure 5a,d,g,j). For the sites with the GUD of deciduous forest earlier than herbage,
GUD derived using the Maximum-ratio-based method showed the highest correlation
with ground observed GUDs of forest (R2 = 0.26, RMSE = 6.34) (Figure 5b). For the mean
absolute difference (MAD) between observed and estimated GUD (|GUDobs−GUDest|),
the Maximum-ratio-based method also produced lower values (5.02 ± 0.50) than the MDB
method (6.64 ± 0.63) (Table 1, Figure S5a). Contrarily, the MDB method explained rela-
tively higher observed GUDs of herbages compared to the Maximum-ratio-based method,
with RMSEs of 6.96 (R2 = 0.29, MAD = 5.92 ± 0.47) and 16.01 (R2 = 0.10, m), respectively
(Table 1, Figure 5e,f). For the sites with GUDs of herbage earlier than deciduous forest,
however, the MDB method can better explain the spatial variations of GUD compared to
the observation of deciduous forest (R2 = 0.79, RMSE = 3.25, MAD = 2.79 ± 0.24), whereas
the Maximum-ratio-based method performed better for identifying GUDs of herbage
(R2 = 0.56, RMSE = 7.37, MAD = 5.84 ± 0.63) (Table 1, Figure 5i,k). We also discovered that
significant variation in GUDest between the three methods always occurred in the region
with annual mean temperature having a higher increasing trend over the 32-year study
periods (Figure 6d,h).
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Figure 5. Comparisons between multi-year average observed green-up dates (GUDobs) of deciduous
forest (green) and herbages (blue) and estimated green-up dates (GUDest) of three methods (0.5-threshold-
based method, Maximum-ratio-based method, and Maximum-derivative-based (MDB) method) for
forest-herbage-mixed (FHM) sites with GUDobs-forest < GUDobs-herbage (a–f) and with GUDobs-herbage

< GUDobs-forest (g–l). The gray dashed line represents the 1:1 line, and the red lines are the regression
lines. The root mean square error (RMSE) was also used to evaluate the predictive performance.
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Table 1. Mean absolute differences between observed GUD of deciduous forest and herbage, and
estimated GUD (|GUDobs − GUDest|) (Mean ± SE) derived from three predicted methods.

Site Type Vegetation Type

0.5-Threshold-Based
Method

Maximum-Ratio-Based
Method MDB Method

Mean SE Mean SE Mean SE

Spatial
|GUDobs
− GUDest|

F < H
DF 9.00 0.53 5.02 0.50 6.64 0.63
HE 20.13 0.73 14.99 0.72 5.92 0.47

H < F
DF 18.06 0.79 14.95 0.97 2.79 0.24
HE 7.64 0.65 5.84 0.63 13.43 0.41

Temporal
|GUDobs
− GUDest|

F < H
DF 13.40 0.21 9.65 0.18 12.04 0.23
HE 21.67 0.29 16.90 0.27 9.24 0.22

H < F
DF 19.45 0.29 16.92 0.31 5.84 0.15
HE 12.81 0.22 10.52 0.25 14.13 0.23

F < H, FHM sites with GUDobs-forest < GUDobs-herbage; H < F, FHM sites with GUDobs-herbage < GUDobs-forest;
DF, Deciduous Forest; HE, Herbage; MDB method, Maximum-derivative-based method.
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Figure 6. The spatial distribution of the multi-year average estimated green-up dates (GUDest) of three
methods (0.5-threshold-based method, Maximum-ratio-based methods, and Maximum-derivative-based
(MDB) method) for forest-herbage-mixed (FHM) sites with GUDobs-forest < GUDobs-herbage (a–c) and with
GUDobs-herbage < GUDobs-forest (e–g), (d,h) show the standard deviation of three methods. Gradients in
the base map indicated the increasing trend of annual mean temperature from 1982 to 2013.

3.3.2. Evaluation on the Temporal Variances of GUD

We also evaluated the estimation performance of three methods for identifying inter-
annual variation in GUDs at all FHM sites with more than 25 years of ground observational
data. For the sites with the GUDs of deciduous forest earlier than herbage, similarly,
Maximum-ratio-based method showed better performance for identifying GUD of decid-
uous forest among the three predicted methods, with an R2 of 0.24 and RMSE of 12.09
(Figures 7b and 8). However, three predicted methods poorly explained the temporal varia-
tions of GUD of herbage and showed low correlations with R2 ranging from 0.02 to 0.11
(Figure 7d–f). However, for sites with GUDs of herbage earlier than deciduous forest, the
MDB method outperformed the other two methods in identifying GUDs of deciduous forest
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(Figures 7 and S5). It is notable that predicted results derived from the 0.5-threshold-based
method and the Maximum-ratio-based method tended to give earlier GUD compared with
ground observations of deciduous forest, while the slopes of the regression line derived
from the MDB method were closer to 1 (Figure 7g–i), which indicated that the new method
shows better performance than traditional methods for identifying GUD of deciduous
forest when the green-up onset of herbage occurs earlier. On the other hand, Maximum-
ratio-based method also showed better performance for identifying GUDs of herbage, with
an R2 of 0.30 and RMSE of 14.15 (Figures 7 and 8).
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Figure 7. Comparisons between annual observed green-up dates (GUDobs) of deciduous forest
(green) and herbages (blue) and estimated green-up dates (GUDest) of three methods (0.5-threshold-
based method, Maximum-ratio-based method, and Maximum-derivative-based (MDB) method) for
forest-herbage-mixed (FHM) sites with GUDobs-forest < GUDobs-herbage (a–f) and with GUDobs-herbage

< GUDobs-forest (g–l). The gray dashed line represents the 1:1 line, and the red lines are the regression
lines. The root mean square error (RMSE) was also used to evaluate the predictive performance.
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Figure 8. Comparisons of three predicted methods (0.5-threshold-based method, Maximum-ratio-based
method, and Maximum-derivative-based (MDB) method) for reproducing temporal variations of green-
up date (GUD) by using coefficient of determination (R2) and the root mean square error (RMSE) between
estimated GUD and observed GUDs of deciduous forest and herbage across all forest-herbage-mixed
(FHM) sites with GUDobs-forest < GUDobs-herbage and with GUDobs-herbage < GUDobs-forest.

In addition, we also evaluated the performance of estimated GUD temperature sen-
sitivity identified by the three predictive methods at each FHM site. The three methods
showed poor performance in reconstituting the sensitivities to annual mean temperature
compared with ground observed GUD of deciduous forest and herbage at sites with the
GUD of deciduous forest earlier than herbage (Figure 9). However, the MDB method
showed the best performance in reproducing the temperature sensitivity of GUD compared
to the observed range at the sites with the GUDs of herbage earlier than deciduous forest
(Figure 9).
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Figure 9. Sensitivity of estimated green-up date (GUDest) derived from three predictive methods
(0.5-threshold-based method, Maximum-ratio-based method, Maximum-derivative-based (MDB)
method), and ground observed GUD (GUDobs) of deciduous forest and herbage to annual mean
temperature in the forest-herbage-mixed (FHM) sites with GUDobs-forest < GUDobs-herbage and with
GUDobs-herbage < GUDobs-forest.

4. Discussion

The spring vegetation phenology (e.g., GUD) of forests has strong control over carbon
capture and storage, and even plays an important role in the productivity and nutrient
cycling in terrestrial ecosystems [40,48,49]. Therefore, accurate estimation of regional or
global forest phenology has become an urgently needed task for better understanding car-
bon exchange in the context of global warming, especially because a mismatch in previously
synchronized phenological cycles could lead to inaccurate estimates of plant productivity
or carbon sequestration [19,50,51]. Using satellite-derived time-series vegetation indices
(e.g., NDVI) to predict plant phenology and linking it with environmental and climate
variables over regional and global scales has been the primary method for phenological
research in recent years. However, it is important to note that large uncertainties still
occurred in the predicted GUD using the traditional satellite-derived methods over an
ecoregion mixed with different vegetation types (e.g., a site mixed with deciduous forests
and herbages in our study). Our analysis found that the GUDs derived from traditional
methods, including the 0.5-threshold-based method and the Maximum-ratio-based method,
were much less correlated with ground observations of the subsequent-green-up vegetation
(Figures 5 and 7). One reason for such uncertainties could be that a satellite vegetation index
potentially represents a greenness mixture of different vegetation types, which might have
asynchronous GUD [29,42]. That is, it is unclear which leaf emergence in the heterogeneous
ecoregion corresponds to a change in the satellite-derived NDVI, and the NDVI time-series
dataset frequently shows a rather low temporal resolution with an irregular increase from
minimum to maximum values but no notable turn in the reconstructed curve [39,52,53].
It therefore makes it challenging for us to use an absolute NDVI threshold value or a
simple maximum change ratio of NDVI time series for the annual onset date of green-up
identification [39].

Another possible reason for such poor performance might be the inaccuracy in es-
timating the phenological transition point in spring. Estimating the turning point from
satellite-derived NDVI time series using appropriate methods is an important step in deter-
mining the accuracy of the predicted green-up date [29,54]. Results showed that the GUDs
derived from the 0.5-threshold-based method were mainly related to the maximum and
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minimum NDVI values of the entire year Equation (2). Therefore, the premise for applying
this method is that the daily NDVI values should be interpolated by a reconstructed growth
curve with the daily temporal resolution. However, focusing on temporal resolution may
result in over-fitting of the growth curve, leading to unrealistic turning point identifica-
tion [19]. The other limitation of this method is that the NDVI absolute threshold values
always show a departure from reality. Previous studies have confirmed that changes in
geographical and meteorological factors (e.g., latitude zones; elevation; hydrologic cycle,
rainfall anomaly, etc.) would have a significant effect on different vegetation growth and the
annual NDVI peak values [5,15,55,56]. Our study indicated that the Maximum-ratio-based
method, which mainly focuses on the changing ratio in the NDVI time series, showed a rela-
tively better performance for reproducing the spatial and temporal variabilities of GUDs of
the headmost-green-up vegetation among the three predictive methods (Figures 5 and 7).
However, the maximum rate calculated by this method is mainly based on the original
temporal resolution (e.g., biweekly NDVI values) by multi-year mean values [16]. Even if
the temporal resolution is increased, fluctuations will still occur in the annual NDVI time
series due to the asynchronous phenology between deciduous forests and the adjacent and
understory herbaceous species [39,40], and each fluctuation will generate a disturbance of
changing ratio, which might be potentially misidentified as the turning point of GUD.

We developed and applied a new MDB method to identify the turning point and pre-
dicted the GUDs of subsequent-green-up vegetation types, especially in the FHM sites, with
GUDobs-herbage < GUDobs-forest. Results showed that the predicted green-up dates based on
the new MDB method are generally matched to the ground observations in the FHM sites
with GUDs of herbage earlier than in deciduous forest. This new method takes account
of the interannual variation and temporal resolution (i.e., daily), and more importantly, it
improves the identification of the turning point threshold when deciduous forests start to
green up after herbaceous cover by integrating the first and second derivatives of the curve
function. This makes the new method largely different from the two traditional methods.
Instead of using the NDVI time series at the original biweekly temporal resolution by the
Maximum-ratio-based method, the MDB method uses the sixth-degree polynomial func-
tion to drive the daily interpolated NDVI values for threshold determination by fitting the
32-year mean NDVI time series at each FHM site. In addition, asynchronous phenological
onset date errors derived by advanced GUD of herbage and mixed-greenness effects all
existed in the two traditional methods. These issues were considered in the MDB method
by calculating the first and second derivatives of the fitting curve function, which improved
the accuracy of inflection point detection on a secondary change in greenness within a given
pixel and allowed a relatively good match between NDVI threshold and the corresponding
green-up date of subsequent-green-up vegetation type.

Many previous studies have found an earlier spring phenology in response to global
warming [26,34,57]. Temperature is the main driver of vegetation growth, and in many
cases rising temperatures have been proved to accelerate vegetation growth and result in
an earlier arrival at the next phenological phase [58,59]. Different views also expressed
that a delayed onset of spring grassland phenology also occurred, and geographical or
hydrometeorological factors can certainly be recognized as the dominant factor rather
than temperature increment [4]. However, our study confirmed that the interannual
precipitation did not affect the variability of GUD but it showed a significant negative
trend with the annual mean temperature (p < 0.05) for both deciduous forests and herbages
(Figure 4). Interannual analysis also showed a significant advanced trend of GUDobs both
for deciduous forest and herbages (Figure 3). The above results have implied that higher
annual mean temperature would advance the GUDs of deciduous forest and herbage, but
it should be noticed that different vegetation types have inconsistent sensitive trends to
annual mean temperature in the same FHM site. Significant deviation in predicted results
between the three methods were observed as temperatures rose (Figure 6), indicating that
the asynchronous phenological phases between deciduous forests and herbages would
become more pronounced, making it more difficult to identify the GUD in a given pixel
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and scale up plant phenology from species to ecoregion level in the context of global
warming [17,60].

5. Conclusions

Unsatisfactory accuracy of satellite-based methods in identifying GUDs within a het-
erogeneous ecoregion, caused primarily by mixed greenness and asynchronous vegetation
phenological phases, might induce considerable uncertainties when predicting vegetation
phenological responses to future climate change, and thereby also in the simulations of
terrestrial water, energy, and carbon balance [17,40,61]. The critical step in predicting the
GUD is determining the onset date of the inflection point using either a predetermined
threshold or a change ratio [62]. Based on the precondition that the predicted ecoregion
is mainly covered with deciduous forests and herbages. We developed a new inflection
point identifying method (the MDB method) and then provided inter-comparisons between
the MDB method and the traditional methods with ground-observed GUDs of deciduous
forest and herbages. Traditional methods for detecting the onset date of infection point
and thereby the GUD prediction from the GIMMS NDVI3g time series are not sufficiently
flexible or accurate. Our comparisons showed that the MDB method outperformed the
other two traditional methods in estimating the GUD of deciduous forest when it was later
than that of herbage. However, there remain some uncertainties in the new MDB method
that should be considered.

One concern is that the coarse spatial and temporal resolutions could inevitably reduce
the accuracy in identifying the vegetation phenological phases. In this study, we have
selected the ideal sites mainly covered with deciduous forest and herbages beforehand,
and the onset date of green up in herbages is earlier or later than that of deciduous forests,
which is known in advance. However, in many cases, more than two species are present in
the same ecoregion, which means that the GUD estimated by the new improved method
might be ineffective for such complex scenes [63]. Consequently, there would be an urgent
need for reasonable methods to discriminate among different spring phenological phases
for different vegetation types by reconstructing the time-series dataset of vegetation indices
with finer spatial-temporal resolution. Further studies about the preferable satellite-derived
vegetation indices (e.g., enhanced vegetation index (EVI), Medium Resolution Imaging
Spectrometer Terrestrial Chlorophyll index (MTCI), etc.) and reasonable fitting models
for time-series vegetation index smoothing should be conducted in future phenological
research [29,51].

Another concern is that the empirical statistical relationships simply analyze the un-
derlying mechanistic processes governing plant spring green-up date. The onset of spring
vegetation green up has been confirmed to be correlated with annual temperature [64–66].
Our results also found that the green-up dates of both deciduous forests and herbages have
a significant relationship with annual air temperature (Figure 4), yet these relationships vary
largely across different ecoregions and vegetation types. Previous studies have found that
the temperature sensitivity of spring phenology in temperate forests has decreased along
with the climate warming over Europe [63]. This is primarily due to the complex interaction
of environmental factors and temperature, as well as the insufficient chilling caused by the
associated winter warming [67,68]. Consequently, understanding of how climate warming
interacts with other factors, such as photoperiod, precipitation, drought, and so on, and the
underlying mechanisms might enhance our capacity to predict plant phenological phase
changes over an ecoregion-scale under future, ongoing climate warming.

Our study highlights the limitation of current inflection point identification algorithms
in predicting the GUD inferred from satellite-derived vegetation indexes time series in an
ecoregion with heterogeneous vegetation types and asynchronous phenological phases, as
well as suggesting the importance of applying appropriate methods for larger-scale spring
phenology events reproducing with consideration of the asynchronization of onset dates
both in different vegetation types and species.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14174349/s1, Figure S1. The theoretical curves of three meth-
ods for identifying the spring green-up date (GUD) in a single phenological year of an illustra-
tive pixel. Figure S2. The trend of green-up dates (GUD) for deciduous forest (a) and herbages
(b) in each forest-herbage-mixed (FHM) site over more than 25 years from 1982 to 2013. Figure S3.
Relationships between annual observed green-up date (GUDobs) of deciduous forest (green) and
herbages (blue), and annual precipitation for all FHM sites with GUDobs-forest < GUDobs-herbage
(a) and with GUDobs-herbage < GUDobs-forest (b). Figure S4. Comparisons between multi-years
average observed green-up date (GUDobs) of deciduous forest (green) and herbages (blue), and esti-
mated green-up date (GUDest) of three methods (0.5-threshold-based method, Maximum-ratio-based
method and Maximum-derivative-based (MDB) method) for all FHM sites. The gray dashed line
represents the 1:1 line, and the red lines are the regression lines. The root mean square error (RMSE)
was also used to evaluate the predictive performance. Figure S5. Comparisons of three predicted
methods (0.5-threshold-based method, Maximum-ratio-based method and Maximum-derivative-
based (MDB) method) for reproducing the spatial and temporal variations of green-up date (GUD) by
using absolute differences between observed GUD of deciduous forest and herbage, and estimated
GUD (|GUDobs−GUDest|) through all FHM sites with GUDobs-forest < GUDobs-herbage and with
GUDobs-herbage < GUDobs-forest. Table S1. The forest-herbage-mixed (FHM) sites with GUDobs-forest <
GUDobs-herbage from the Pan European Phenology network (PEP725). Table S2. The forest-herbage-
mixed (FHM) sites with GUDobs-herbage < GUDobs-forest from the Pan European Phenology network
(PEP725).
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