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Abstract: Open-pit mining and reclamation damage the land, resulting in unknown and significant
changes to the regional ecology and ecosystem services. Surface mining restoration procedures
necessitate a significant amount of money, typically at an unclear cost. Due to temporal and regional
variability, few studies have focused on the cumulative impacts of mining activities. To investigate the
ecological cumulative effects (ECE) of past mining and reclamation activities, this study continuously
tracked land cover changes spatially and temporally based on phenological indices and focuses on the
spatial and temporal evolution of past mining and reclamation areas using the LandTrendr algorithm.
The cumulative trends of ecosystem services in the Pingshuo mining area from 1986 to 2021 were
revealed using a uniform standard value equivalent coefficient. Meanwhile, the cumulative ecological
effects due to essential ecosystem service functions were analyzed, including soil formation and
protection, water containment, biodiversity maintenance, climate regulation, and food production.
The synergistic effects and trade-offs among the functions were also explored using Spearman’s
correlation coefficient. The results showed that (1) open-pit mining resulted in 93.51 km2 of natural
land, 39.60 km2 of disturbed land, and 44.58 km2 of reclaimed land in the Pingshuo mine; (2) open-pit
mining in the mine mainly resulted in the loss of 122.18 km2 (80.91%) of native grassland, but,
through reclamation into grassland (31.30 km2), cropland (72.95 km2), and forest land (10.62 km2),
the damaged area caused by mining only slightly increased; (3) the cumulative ecological value of
the mining area declined by 128.78 million RMB; however, the real cumulative value per unit area
was lower in the disturbance area (1483.47 million RMB) and the reclamation area (1297.00 million
RMB) than in the natural area (2120.98 million RMB); (4) the cumulative value of the food production
function in the study area increased, although the values of all individual functions in the study area
decreased. Most of the cumulative values of services had a strong synergistic relationship. However,
in the natural area, food production (FP) showed a trade-off relationship with the cumulative value
of biodiversity maintenance (BM), soil formation and protection (SP), and water conservation (WC)
service functions, respectively. This study constructed a methodology for analyzing mining-impacted
ecosystem services using time-series processes, reproducing historically complete information for
policymakers and environmental regulators.
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1. Introduction

Coal resources have long been an essential fossil fuel for the global market, accounting
for 64% of all extractable fossil resources and being one of the few commercial resource
options available to many businesses (World Coal Association, https://www.worldcoal.
org/coal-facts/) (accessed on 27 April 2021). As the world’s top importer and producer,
China’s annual need for coal resources is as high as 3 billion tons, resulting in the exhaustion
of a huge number of local open-pit coal mines [1]. This situation is expected to continue
because of China’s high dependence on coal for energy consumption (World Energy Out-
look 2020, https://www.iea.org/reports/world-energy-outlook-2020/outlook-for-energy-
demand) (accessed on 24 April 2021). Such resource extraction activities cause severe
damage to the land and ecological balance, such as air pollution, vegetation degradation,
soil erosion, and biodiversity loss [2,3]. The impact of open-pit mining on ecosystems is the
most severe and direct [4]. Therefore, it is necessary to monitor the effects of mining on the
ecosystem and the responses of related ecosystem services to ensure the sustainable use of
the mine and its surrounding ecosystems [5].

Open-pit coal mining, which entails the removal of vegetation, topsoil, and overlaying
rock strata, is widely seen as having an enormous negative environmental impact [6]. Due
to its long duration, large spatial range, and complex disturbance mechanism, this highly
destructive type of disturbance makes it difficult to adequately identify changes in the natu-
ral environment in surface coal mining [7]. As a result, the coal business and ecologists have
struggled to avoid discussing the evaluation of the ecological effects of mining sites [8,9].
Different forms of environmental impact assessment approaches for mining sites have
arisen since the increase in the awareness of the vital link between mining activities and the
natural ecology. These methods widely span both qualitative statistical analysis and quan-
titative spatial modeling. Literature reviews [10], expert consultation [11], fuzzy multilevel
integrated evaluation [12], explanatory structural modeling [13], and the pressure–state–
response model [14] are the main methods used in portraying the extensive and complex
impacts of mining areas, and researchers then construct an index evaluation system and an-
alyze the influence process. However, because qualitative analysis is frequently combined
with human subjective thinking and the absence of precise geographical data, it might
be difficult for different researchers to obtain uniform evaluation conclusions [15]. Land
use change [16], the landscape pattern index [17], the remote sensing ecological index [18],
and ecosystem service evaluation are some of the theoretical methodologies utilized in
geospatial modeling [19]. The development of land ecological data, algorithms, and cloud
computing technology represented by Google Earth Engine (GEE) has gradually resolved
the issues of the mining cycle and disturbance borders that inhibited the environmental
evaluation of mining zones in the past.

Due to the close relationship between land cover change and ecology, ecosystem
services, as an essential concept for evaluating changes in human–land connections, are
frequently featured in evaluations of ecological effects in mining regions [7,20]. They depict
the spatial and temporal succession of land use as a result of human activity and the
survival of natural capital that can be used by humans [21]. As a result, some researchers
have utilized an economic value method to measure changes in ecosystem services in
mining sites, exposing the extent to which complex ecosystems are harmed and the true
linkages between multiple ecosystem services [19] The market value approach [22], the
equivalent factor approach [23], and the cumulative ecological effects approach [24] are
all widely used methods that link ecological value gains and losses in mining areas to
socioeconomics, reflecting the significant value and undersupply of ecosystem services to
human beings. These methods link the loss and gain of ecological value in mining sites to
socioeconomics, emphasizing the importance of ecosystem services to humans and their
undersupply. Furthermore, the actual synergies and trade-offs across ecosystem services
better reflect the patterns and mechanisms underpinning benefit maximization [25]. As
a result, various studies using map analysis [26], multi-temporal comparisons [27], and
simulation forecasts have assessed the synergies and trade-offs between ecosystem services
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in mining sites [27]. Quantifying and analyzing ecosystem services’ spatial and temporal
features continues to provide more detailed and specific recommendations for decision-
making and management. However, there is no long-term study on ecosystem services in
mining areas. Those that do exist focus simply on trend changes, neglecting the synergistic
benefits and trade-offs between cumulative ecosystem service losses and cumulative value
increases and losses of individual services.

Over time, several studies have been conducted to add to the grounded theory and
evaluation methodology used in cumulative impact assessments, allowing for a systematic
examination of cumulative environmental changes [28]. The main goal is to reconstruct the
time-series process of ecosystem service changes and to assess cumulative environmental
effect changes in the research region and its adjacent ecosystems, reflecting the diversity
and dispersion of ecosystem service functions. This study will explore the changes in
cumulative ecological effects due to mining disturbance and reclamation in mining areas,
as well as the synergistic effects and trade-offs between the cumulative values of various
services, using long time-series land cover classification maps and identifying mining
disturbance areas and reclamation areas. As a result, the objectives of this study are to
(1) build a long time-series model of ecological services value (ESV) based on the pixel
scale to dynamically assess the ecological cumulative effects (ECE) of the mining area, and
(2) map and assess the cumulative response of long-term coal mining disturbance and
gradual reclamation on the ecosystem of ecological services such as soil formation and pro-
tection (SP), water conservation (WC), biodiversity maintenance (BM), climate regulation
(CR), and food production (FP).

2. Materials and Methodology
2.1. Study Area

The Pingshuo mining area is located in the eastern part of the Loess Plateau and
the northern part of Shanxi Province (Figure 1), spanning three districts and counties of
Shuozhou City, which is under the jurisdiction of Shuozhou City, Shanxi Province, with
geographical coordinates of 112◦16′20′′–112◦30′32′′E and 39◦26′10′′–39◦35′30′′N [29]. The
research region is a loess hilly environment in the eastern section of the Loess Plateau, on the
border between the Loess Plateau and the northern Tusk Mountains, and is an ecologically
fragile area. The research region is 1200–1600 m above sea level, with a temperate semi-arid
continental environment. The average annual temperature is 4.8–7.5 ◦C, with extreme
minimum and maximum temperatures of −32.4 ◦C and 37.9 ◦C, respectively. The average
annual precipitation is 428–449 mm, with total precipitation accounting for 75% of the year
in July, August, and September, and the average annual evaporation is 1787–2598 mm. The
environment in the research region is weak, and the zonal vegetation type is dry grassland
vegetation. The region is rich in land resources and diverse land use types, but with the
development of cities and mining of mineral resources, arable land is decreasing and the
area occupied by land excavation and loss is increasing, and the pressure on land resources
and ecological security in the region is increasing; thus, the maintenance of regional land
and ecological security is of great significance to the sustainable development of the region.

2.2. Data Acquisition and Preprocessing

This study used the Google Earth Engine (GEE) platform to collect and process
Landsat-TM/OLI/TIRS imagery (USGS, https://www.usgs.gov/landsat-missions) (ac-
cessed on 10 April 2021), with three image sets, namely Landsat 5 Thematic Mapper (TM),
Landsat 7 Enhanced Thematic Mapper (ETM+), and Landsat 8 Operational Land Imager
(OLI), and surface reflection (SR) datasets. In terms of time series, this study encompasses
all photographs in the study area from 1986 to 2021. To calibrate the sensor radiance of
Landsat 5 and Landsat 8 images for surface reflectance, the Landsat Ecosystem Distur-
bance Adaptive Processing System (LEDAPS) [30] and Landsat Surface Reflectance Code
(LaSRC) [31] were used. In addition, the C implementation of Function of Mask (CFMASK)
determines important pixel data quality flag information suggestive of clouds, shadows,

https://www.usgs.gov/landsat-missions
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water, and snow [32]. Surface reflectance from Landsat 5 TM, Landsat 7 ETM+, and Landsat
8 OLI satellites was also considered. The NDVI and phenological index were calculated
using sensor pictures (Landsat/LT05/C01/T1 SR, Landsat/LT07/C01/T1 SR, and Land-
sat/LC08/C01/T1 SR). Sections 2.3–2.6 correspond to the technical route of the entire study
(Figure 2), namely steps 2, 3, and 4, and trade-off and synergy analysis (Sections 2.3–2.6).
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2.3. Mining Area Identification Based on LandTrendr

Mining and reclamation events in open-pit coal mines are the most visible land use
cover changes in remote sensing data, and characterizing the temporal processes of min-
ing and reclamation in mining sites is critical for assessing the impacts that result. The
LandTrendr method was utilized in this investigation, as well as in Xiao et al. [7], to identify
historical mining disturbance regions and reclamation areas in the Pingshuo mining area
using Landsat imagery. This approach focuses on image element time-series data and
employs a temporal segmentation method to extract the altered years and border character-
istics [33]. To limit the effects of climatic variability, flooding, or changes in solar geometry,
this study selected abrupt changes in vegetation metrics for all Landsat images (path/row
092/076) over the vegetation growing season between 1986 and 2021 [34]. The Normal-
ized Difference Vegetation Index (NDVI) was derived using the spectral bands of Landsat
images for all accessible imagery. The LandTrendr algorithm was combined at the image
element level to identify information on its temporal sequence of mining disturbances and
abrupt changes due to reclamation, resulting in the temporal and boundary characteristics
of the occurrence of large-scale patch disturbances by aggregating image elements with the
same characteristics. The NDVI of normal reference areas ranges from 0.242 to 0.505, and
the vegetation index is below 0.116 after mining disturbance, whereas the increase in the
recovered vegetation index ranges from roughly 0.145 to 0.494 after mining disturbance,
according to collected experience [35]. As a result, the mining disturbance and reclamation
regions of the Pingshuo mine in Pinshuo may be more easily extracted, as well as the course
and temporal trajectory of mining expansion.

2.4. Quantifying ESV in Mining Area

The land use classification and mining-specific cover types for the Pingshuo coal mine
were determined comprehensively based on ecosystem differences, and the land use types
of the Pingshuo coal mine were classified into four categories: arable land (including in
situ landform arable land and reclaimed arable land), grassland (including in situ landform
grassland and reclaimed grassland), forest land (including in situ landform forest land
and reclaimed forest land), watershed, and other. Land use categories such as mining,
settlements, and bare land are examples of other land uses, and the ecosystem service
values of these land use types were treated as 0 values in the measurement method [36].
The study used the ability of this indicator to distinguish the spectral characteristics of
agricultural land from grassland during the vegetation growing season to classify the full
range of land use types classified, because NDVI has been shown to be one of the indices
with superior effectiveness in distinguishing different types of vegetation, built-up land,
and water bodies (Figure 3) [37]. The image element samples of remote sensing photos
were labeled to distinguish all land cover types for the period 1986–2021 using the CART
classification approach in machine learning [38].
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A quick and straightforward approach to ecosystem service value evaluation was
utilized to quantify the impacts of mining modifications in the Antabuse mining area and
to understand the future prospects of the human exploitation of natural capital in this
area. The ESV changes in the Pingshuo mining area were assessed using ecosystem service
values per unit area for various land use categories (Table 1) [36]. Soil formation and
protection, water containment, biodiversity maintenance, temperature regulation, and food
production were chosen as the study’s five ecosystem services. The Pingshuo open-pit coal
mine’s economic value per unit of the food production area was increased, and the mine’s
land was quickly recovered.

ESV = ∑ Ak ×VCk

where ESV is the total value of ecosystem services in the study area (RMB); Ak is the area
of the kth land use type in the study area (hm2); VCk is the value of ecosystem services per
unit area of the kth land use type in the study area (RMB/hm2); k is the land use type in
the study area.

Table 1. Ecosystem service value of land use types per unit area in Pingshuo mining area (RMB/hm2).

Ecosystem
Service Farmland Forestland Grassland Farmland after

Reclamation
Forestland after

Reclamation
Grassland after

Reclamation Water

Soil formation
and protection 301.3 804.9 402.5 198.5 530.3 265.2 0

Water
conservation 640.8 3417.9 854.5 422.1 2251.9 563.0 21,766.2

Biodiversity
maintenance 703.9 3232.2 1080.7 436.8 2129.5 712.0 2468.8

Climate
regulation 1839.5 5580.7 1860.3 1211.9 3676.8 1225.6 950.7

Food
production 1139.1 119.3 357.9 750.5 78.6 235.8 113.9

Note: Other land use types, such as mine land, settlement land, and bare land, were treated as 0 values in this
study, so they were excluded from the computation of ecosystem service values in the Pinshuo mining area [36].

2.5. Evaluation Procession of ECE in Mining Area

Open-pit coal mining, which includes mining, processing, usage, and waste disposal, is
at various stages of development and continues to expand in time and space [22,24]. Mining
activities have a complex geographical and temporal distribution, resulting in increased
land use intensity and frequent changes in land cover types. Changes in ecosystem structure
in mining sites are thought to worsen the process of changes in ecosystem service functions
and provisioning services [39]. As a result, the loss and gain of ecosystem services as a result
of open-pit mining are complicated, and a simple analysis of single-period remote sensing
photos fails to highlight the subtle links between mining and ecosystems. Cumulative
effects assessment (CEA) is used to assess the cumulative changes in ecosystem services
in mining areas, and the concept of mine eco-efficiency has been developed to show how
surface coal mining triggers the transformation process of ecosystem service function by
changing the land use landscape.

The assessment of a mine site’s ecological cumulative effects is conducted in two
ways: the first is the actual computation of the real ecosystem cumulative value (RECV)
of ecosystem services resulting from a surface coal mine’s real land use type shift from
pre-mining to current mining condition; the second is the real ecosystem cumulative
loss (RECL) due to complex human activities in the coal mine, which is calculated by
estimating the ideal ecosystem cumulative value (IECV) without coal mining up to the
present. The research was performed for a variety of ecosystem services and mine sites.
The researchers also devised three total values for five services: soil creation and protection
(SP), water conservation (WC), biodiversity maintenance (BM), climate control (CR), and
food production (FP) [40]. Furthermore, the genuine cumulative ecological advantages



Remote Sens. 2022, 14, 4381 7 of 19

of reclamation events were thoroughly investigated by (1) using Landsat images and
the phenological index to identify the land use of the mining area in consecutive years
(1986–2021), and (2) computing the value of ecosystem services as well as the cumulative
ecosystem service value in consecutive years.

2.6. Exploring Trade-Offs and Synergies among Ecosystem Services

The in-depth investigation of cumulative ecological benefits exposes the true state of
affairs in the mining area before and after the complex land use change, as well as the cumu-
lative loss and gain of ecosystem services as a result of the transition. This study conducted
a synergistic effect and trade-off analysis on the cumulative value of open-pit coal mine
ecosystems integrating service functions in order to expose the complex ecological gains
and losses that occur during open-pit mining. To determine the potential consequences
due to surface mining, the cumulative benefits of natural areas (NA), surface mining distur-
bance areas (DA), and reclamation areas (RA) indicated by the LandTrendr algorithm were
systematically tested against the various assessed ecosystem service functions.

The minimum–maximum normalization approach was primarily used to normalize
cumulative values in order to eliminate the impacts of the dimensions between distinct
cumulative values [41]. At the pixel level, Pearson correlation analysis and significance tests
were utilized to find trade-offs and synergies between cumulative value pairings across
functions [42]. The pixel-scale correlations between two pairs of services were estimated
using Spearman’s rank correlation coefficient, expressing the correlation in terms of the
correlation coefficient r (|r|≤ 1) and significance level (p < 0.01; p < 0.05) [43]. The stronger
the relationship, the higher the absolute value of r. The correlation coefficient’s absolute
value is related to the degree of interaction between pairs of service functions. The Pearson
correlation matrices of the cumulative value sets were constructed using the pairs() function
in r. The principal diagonal of these matrices represents the histogram of each cumulative
value, which can indicate the distribution properties of the cumulative value sets. Above
the main diagonal, the correlation coefficients and significance test results between pairs of
service functions are displayed. Below the main diagonal are scatter plots and fitted curves
between pairs of service functions.

3. Results
3.1. Mining Area Identification Based on LandTrendr

In the Pingshuo mining area, the LandTrendr algorithm was used to reconstruct the
geographical and temporal processes of mining disturbance and reclamation, and Figure 4
shows the extent of mining disturbance and reclamation occurring in the mining area at
different stages during the period 1986–2021. In addition, the regional scope of mining and
reclamation occurrence is given at four-year intervals to facilitate the understanding of the
study’s findings (except for the period 1986–1999, which is given at three-year intervals).
The natural area was 93.51 km2 in size, the disturbed area was 39.60 km2 in size, and the
reclaimed land was 44.58 km2 in size as of 2021. The mining operations are ongoing. To
date, mining activities have continued in new locations. The largest mining disturbances
occurred in 1986–1989 and 2010–2013, with 26.56 km2 and 23.92 km2, respectively, while the
smallest mining disturbances happened in 1990–1993 and 2002–2005, both with 1.33 km2.
Over the course of the mining history, 109.54 km2 of open-pit coal mines were affected,
with an average yearly mining disturbance of 3.13 km2. Reclamation events took longer
than mining activities, and the total reclamation area was only 58.07 km2, or 53.01% of
the mining disturbance area. The amount of reclamation changes similarly followed the
mining disturbance in 1988, moving from the southwest corner of the mine area to the
northeast. This shows that the mining rule of “mining during reclamation” was strictly
maintained throughout the mine, and that the mining parties were well aware of the mine’s
severe environmental implications. This attention grew over time, as seen by the strong
rising trend in the mine’s recovered area, which peaked at 15.86 km2 in 2014–2017 and
14.55 km2 in 2018–2021, respectively, accounting for 52.37% of the total historical reclaimed
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area. In contrast, only 11.39 km2 of the mining-affected area was reclaimed in the 19 years
preceding 2005, accounting for 19.61% of the entire historical reclamation area.
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Figure 4. Year distribution map of disturbance and reclamation in Pingshuo coalfield. (a) The
study region is divided into natural area (NA), disturbance area (DA), and reclamation area (RA);
(b) temporal and spatial distribution of mining process; (c) temporal and spatial distribution of
reclamation process; (d,e) the area of land exploited or reclaimed in each year.

3.2. Temporal and Spatial Characteristics of Land Use Types

All the land use findings for the period 1986–2021 were identified using NDVI and
phenological features (Figure 5). The classification results were chosen at 5-year intervals to
highlight the essential elements of change. The grassland, bare land, cropland, forest land,
water bodies, reclaimed grassland, reclaimed forest land, and reclaimed cropland land
use classification focuses on the distribution characteristics of grassland, bare land, crop-
land, forest land, water bodies, reclaimed grassland, reclaimed forest land, and reclaimed
cropland, as well as the spatial changes that occur over time. The findings of the mining
disturbance and reclamation event identification demonstrate that mining disturbance
and reclamation events were responsible for the changes in bare land. Before 2009, bare
land expansion was most noticeable in the mine area’s southwest corner; after 2009, the
focus of bare land changes shifted, with a rapid reduction in the southwest corner and a
considerable expansion in the northeast corner. It can be seen that mining disturbance and
reclamation events drive the shift of bare land in the mine region, and that, with different
reclamation procedures, the land use status after reclamation includes three types, namely
farmland, woodland, and grassland. Farmland growth has altered the environment, where
grassland was the most important type of land use cover prior to 2009, resulting in a
pattern where cropland surrounded bare land, and this continues to occur. Woodland, on
the other hand, is primarily concentrated in the mine area’s southwest corner, and, as we
can see from the mining disturbance data, the woodland here is primarily the product of
the reclamation program of 1988, which was primarily woodland. This area evolved into a
woodland-covered reclamation area over time, which, along with other areas dominated
by cultivated land reclamation, formed an important reclamation strategy for this mine
site. The presence of water bodies is, in fact, quite rare, and it can be seen that they are
primarily owing to the accumulation of water in open-pit mine pits. Increased water bodies
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indirectly improve the mining area’s water retention capacity, which is actually favorable
to the region’s natural environment.
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Figure 5. Land use classification at 5-year intervals during 1986–2021.

Figure 6 shows the changes in land use structure between the selected years. The
disturbance and reclamation activities of mining have resulted in significant changes in
the quantitative structure of diverse land types, according to the findings. Grassland and
reclaimed grassland decreased by 122.18 km2 and increased by 31.30 km2, respectively,
from 1986 to 2021; cropland and reclaimed cropland increased by 56.71 km2 and 16.24 km2,
respectively; woodland and reclaimed woodland increased by 3.99 km2 and 6.63 km2,
respectively; bare land showed large fluctuations due to its long-term association with
mining activities. Although bare land rose by only 7.15 km2, it had been as low as 12.63 km2

in 1991 and as high as 38.55 km2 in 2011. Since their inception in 1991, water bodies have
been slowly shifting and maintained an overall growing tendency, owing to changes in
water collection in pits created by open-pit mining. Furthermore, we verified the correctness
of the land use classification based on the phenological index. The categorization results
of this investigation accurately mirrored the variations in classes within the site scale,
according to the findings. The overall classification accuracy could reach more than 82%,
and the kappa coefficient could reach more than 0.78, according to the validation results
based on the confusion matrix (Table 2).

Table 2. Accuracy of land use classification obtained based on the phenological index.

Year 1986 1991 1996 2001 2006 2011 2016 2021

Overall accuracy/% 82% 84% 83% 85% 82% 87% 91% 95%
Kappa coefficient 0.78 0.80 0.79 0.82 0.78 0.83 0.88 0.93
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3.3. The Overall Spatial–Temporal Variations in ECE

The land change processes that have occurred in the mine site under anthropogenic
impacts over the past 35 years were determined using the above land use classification. To
better understand the ecosystem service gains and losses caused by mining, this study used
the equivalent factor approach to identify particular ecosystem services and overall service
values under real and ideal conditions. Based on the derived cumulative values, changes
in the cumulative ecological benefits of mining sites due to mining and reclamation events
were also determined. The ESV in the study region fluctuated significantly, declining in
1990 and then rising again in 2012 (Figure 7). The distribution and quantitative structure
of the overall cumulative value of the mine area from 1986 to 2021 are shown in Figure 8
and Table 3. Without accounting for natural climatic condition changes, the RECV of the
research region is 3149.03 million RMB, the IECV is 3277.82 million RMB, and the RECL is
128.78 million RMB. Moreover, 19.76, 18.94, and 15.25 million RMB, respectively, are the
IECV per km2. It is clear that reclamation of the mine region is still insufficient to return to
the pre-mining level, and that returning to the undisturbed level is extremely challenging.
Due to the minimal level of mining in 1986 and the comparatively small area of bare land,
the differences in the IECV between the NA, DA, and RA sectors are not substantial. To gain
further insight into the Antabuse mine’s cumulative value trend, spatial mapping was used
to convert image elements’ cumulative values (Figure 8c). The cumulative value of 22.49%
in the mine area was increasing based on the overall distribution pattern. This was, however,
a slight increase, with 71.71% of growing regions increasing by 0–10,000 RMB/km2 and
28.18% increasing by 10,000–20,000 RMB/km2. As a result, only 0.10% of the locations
have experienced a significant gain in cumulative value. The total value of 77.51% of the
regions decreased, but the decrease was not as significant as the increase in the rising
regions. In particular, −10,000–0 RMB/km2 dominated 98.29% of the falling regions, 1.68%
of the declining regions were dominated by −20,000–10,000 RMB/km2, and 0.03% of the
declining regions were controlled by less than 20,000 RMB/km2.
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Figure 8. Changes in ECE during 1986–2021 (million RMB). (a) Ideal ecological cumulative value
(IECV), (b) real ecological cumulative value (RECV), (c) real ecological cumulative loss (RECL).

Table 3. IECV, RECV, and RECL in different regions during 1986–2021 (million RMB).

ECE NA DA RA Study Area

Ideal 1847.69 750.11 680.01 3277.81
Real 1983.32 587.47 578.24 3149.03

Effect 135.63 −162.64 −101.77 −128.78

3.4. ECE Spatial Characteristics of Individual Ecosystem Service Functions

Individual ecosystem service functions contribute variably to various types of overall
cumulative values, and individual functions also convey variances in nature’s ability to
sustain human needs. As a result, the spatial measurements of each ecosystem service
function in terms of ideal, actual, loss due to exploitation, and gain/loss due to reclamation
were examined in this work (Figure 9 and Table 4). The individual service functions showed
different trends in different utilization regions. Only the cumulative value of the food
production function increased by 60.88 million RMB over 30 years of mining exploitation,
with a rise of 23.01%, while the cumulative value of the remaining four service functions
declined. It is noteworthy that, compared to the total amount of the study area, the climate
regulation service had the smallest decrease (4.32%) and the soil protection service had
the highest decrease (8.83%). It can be understood in NA that the cumulative value of all
individual service functions is increasing, which may be due to natural factors such as
climate change. Overall, both soil protection and biodiversity maintenance functions in
NA increased very little, by only 1.44% and 0.29%. The biodiversity maintenance and food
production functions increased by 6.89% and 47.12%, respectively. In DA, the cumulative
values of all the service functions showed a decreasing trend and large variation. Soil
protection, soil and water conservation, and biodiversity maintenance all decreased by
more than 20%, 23.86%, 21.72%, and 24.20%, respectively, and the smallest food production
function was 9.15%. This shows that the trends of disturbed areas and natural areas are
completely in contrast, and the magnitude is much higher than that of natural areas, with
the exception of food production. In RA, it can be seen that the cumulative value of
losses still exists, but the magnitude is much smaller than in disturbed areas. The impact
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of reclamation on soil conservation and food production is minimal, with a loss of only
3.68 and 2.55 million RMB, while soil and water conservation, biodiversity, and climate
regulation have a loss of more than 10 million RMB, which is, of course, related to the large
total base of these three functions.
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Table 4. ECE of different ecological service functions in NA, DA, and RA (million RMB).

ECE NA DA RA Study Area

SP
Ideal 162.93 66.04 59.53 288.50
Real 165.27 50.28 47.45 263.00

Effect 2.34 −15.76 −12.08 −25.50

WC
Ideal 345.95 140.27 126.62 612.84
Real 356.62 109.80 110.87 577.29

Effect 10.67 −30.47 −15.75 −35.55

BM
Ideal 437.20 177.15 159.49 773.84
Real 438.45 134.28 130.41 703.14

Effect 1.25 −42.87 −29.08 −70.70

CR
Ideal 754.33 306.20 277.46 1337.99
Real 806.29 238.20 235.59 1280.08

Effect 51.96 −68.00 −41.87 −57.91

FP
Ideal 147.27 60.43 56.89 264.59
Real 216.66 54.90 53.91 325.47

Effect 69.39 −5.53 −2.98 60.88

3.5. Exploring Trade-Offs and Synergies among Ecosystem Services

There were 30 possible pairing outcomes based on the cumulative values contributed
by each of the five ecosystem service functions in different types of locations, and all
30 pairs were substantially connected at the p < 0.001 level. Only three pairs had highly
significant negative correlations, whereas twenty-seven had highly significant positive
correlations (Figure 10). In general, except for FP, each service function’s cumulative value
exhibited a highly significant positive correlation, while CR, BM, and SP had high Pearson
correlation coefficients regardless of the area (r ranging from 0.921 to 0.985), indicating a
strong synergistic link. With the cumulative value of each function, FP revealed spatially
uneven Pearson correlation values ranging from −0.206 to 0.663. Only in the natural region
did FP show significantly negative relationships with the cumulative value of the three
service functions, BM, SP, and WC. Their Pearson correlation coefficients (r) ranged from
−0.126 to −0.206, with an average of around −0.152, indicating that there is a general
trade-off relationship. In conclusion, all service functions’ cumulative values demonstrate
regular trade-offs and synergistic interactions. The great majority of service cumulative
values will very certainly have a high degree of synergy between them. With the exception
of FP, which, in natural regions, exhibits trade-offs with BM, SP, and WC, the cumulative
value of each service exhibits varying degrees of synergistic interactions. With the exception
of natural areas, FP generally exhibits sporadic synergistic interactions.
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4. Discussion
4.1. Spatial and Temporal Changes in ECE

Open-pit coal mining has led to disruptive changes in land cover and surface land-
scape patterns, and the exploration of land use shifts and landscape index changes serves
to evaluate the impact of land disturbance from mining sites. Land use change, on the
other hand, is not a complete reflection of human usage and the future survival of natural
capital; it can only be found as a result of human actions [44]. Calculations based on the
classification of land change over time scales tend to miss the potential to detect major
changes, but evaluating the value of ecosystem services and their cumulative effects in
mining regions actually shows the ecological gains and losses due to mining and reclama-
tion [45]. Calculations utilizing single-period imaging do not genuinely address ecological
concerns of human relevance, and results at rough time scales are inherently erroneous.
Cumulative results based on ecosystem service values obtained from time-series data better
reflect the human-driven impacts behind land cover, especially because the land cover data
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on which the calculations are based are uniform in phenology, avoiding the classification
accuracy issues that may arise from seasonal variation.

According to the findings of a study conducted in the Antabuse mine region, mining
disturbance operations have a significant impact on ecosystem stability and recovery. With
a value of less than 55.5% of the average, the area where the genuine cumulative value is
determined to be low matches well with the open-pit mining area and is much lower than
the area around the mine. Furthermore, the area with the lowest cumulative value accounts
for 42.79% of the whole scale area, or roughly half of the research area. Open-pit mining
activities resulted in an average drop of 32.25% in cumulative value when compared to
the ideal cumulative value of the corresponding region; it should also be noted that it is
difficult to compare with the real total ecological improvement of the area. In 1986, the
majority of land types in the Antabuse mine region were grassland, and the enormous
increase in arable land resulted in a significant increase in the non-mining areas’ cumulative
value. The ongoing reclamation of grassland into arable land resulted in a 21.94% increase
in the overall cumulative value of services as compared to the non-mining area of optimum
cumulative value. As a result, the increase in cultivated land masks the entire cumulative
value owing to mining. The cumulative ecological value increases and losses owing to
land use activities from 1986 to 2021 are disclosed using spatial raster computations. The
restoration of grassland to arable land and mining exploitation are determined to be
mostly covered inside the mining region, with these two activities occupying as much as
82.52% of the land area, assuming that the open-pit mining area was not counted in 1986.
When the two operations are combined, open-pit mining causes 76.18% of the area to lose
cumulative ecological value, while farmland reclamation causes only 6.34% of the area to
gain cumulative ecological value. This causes us to question whether our efforts to restore
mined land are truly effective.

Further examination of the land use pattern in 2021 finds that arable land represents
9.51% of the area, grassland 76.14%, and mining disturbs only 13.54% of the total mine
area. However, we cannot see the reduction in ecosystem services behind the lush grasses
when adopting the perspective of the entire mining region. As a result, the examination of
cumulative value changes provides a different perspective to land use analysis. The rapid
expansion in the amount of arable land and the constant movement of the mined area into
smaller regions are the intuitive results of looking at land use cover data. However, using
time-series analysis of cumulative ecological values, we can see that open-pit mining’s
environmental impacts are significantly overestimated.

4.2. Spatiotemporal Trade-Offs and Synergies among Ecosystem Services

Understanding the synergies and trade-offs between the cumulative value of ecosys-
tem service functions is crucial for unraveling the mechanisms driving mining exploitation,
although such impacts do not always occur in a predictable manner [46]. As a result, we
calculated the trend of Spearman correlation coefficients for a single function’s cumula-
tive value over time [47]. The synergistic impact between CR, SP, and WC is found to be
relatively stable in any partition (Figure 11), with r essentially constant around 1. The
synergistic impact of BM and CR, SP, and WC, and SP and WC, respectively, was also
generally constant until 2010, with a long-term stable correlation coefficient r. However,
the synergistic effect has been declining since 2010, and it is expected to continue to decline
in the future. The declining tendency of the total area, disturbed area, and reclaimed area
is higher than that of the natural area, as can be seen from the observations. It is possible
that the loss is attributable in part to the natural decline brought about by climate change
or socioeconomic activities. Mining damage and reclamation that did not improve the
biodiversity environment are most likely to blame for the disparity in decrease rates. The
trend of cumulative values as a function of the four studies BM, CR, SP, and WC, on the
other hand, shows strong oscillations and interferes with regional synergies and trade-offs.
Over the course of the trial, the four groups of results indicated largely synergistic benefits,
but to varying degrees (r ranging from −0.206 to 0.663). Between 1995 and 2000, however,
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all four groups demonstrated a low degree of trade-off, which was linked to the prevailing
agricultural reclamation program at the time. Throughout the study period, the negative
trend was linked to the reclamation of large-scale agriculture, but none of the linkages
between the cumulative values of functions were broken again. This demonstrates that the
latter reclamation effort is relatively steady and long-term.
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4.3. Mapping of ECE in Surface Mining Area

This is the first time, to our knowledge, that ecological service values in a mining
area have been described at high temporal resolution (1 year) and high spatial resolution
(30 m). This permits the conclusions to be exceptionally close to historical occurrences
and fills in the gaps left by earlier studies’ lack of data collection and application. The
Landsat program, which provides the world’s oldest continuous record of space-based
observations, allows researchers to quickly access enormous amounts of remote sensing
data to follow land usage and changes in order to examine the various causes behind
the occurrence [48]. We mapped the ecological cumulative value of the Antabuse mining
area using the high-quality spatial information provided by the Landsat dataset. Second,
the changes in ecological service values in the coal-mining-damaged area were carefully
validated in this study. Due to the reducing scope of the mining disturbance, the spatial
statistical analysis approach revealed information readily hidden by land use mapping,
demonstrating that the mining disturbance did not minimize the influence on the regional
ecological environment. Moreover, it was discovered that, despite its small scale, the
reclamation of arable land in the mining area greatly reduced further ecological degradation
and ensured that the area could be managed sustainably in the future. Finally, our research
area was in Inner Mongolia, China, which is a major producer of open-pit coal mines
around the world [49]. We effectively mapped the ecological cumulative value distribution
of this typical area using the approach of time-series analysis in this study, proving that the
method is suitable for determining the repercussions of regional disruptions. As a result,
the current technology can be applied to a variety of site scales that have been subjected to
severe disturbances, such as sand and gravel quarries, copper mines, and other sites.

4.4. Limitations and Future Research Priorities

Despite the fact that this study created an assessment method of cumulative service
value to accurately reconstruct the cumulative loss and gain of overall mining disturbance
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and reclamation on the environment in the Pingshuo mining area, it still has certain flaws.
(1) The evaluation of cumulative effects includes not only the cumulative situation in time
and space, but also direct and indirect cumulative outcomes, such as local socioeconomic
changes as a result of environmental changes. These side effects are not directly seen in
the cumulative ecological effects. (2) Value equivalent coefficients derived from earlier
research are used to estimate the cumulative value of particular ecosystem services, and
they are reasonably accurate for the wider study region. While these data are still useful
for evaluating the Antabuse mine, the functional volume-based calculation method is more
accurate. (3) The mining boundary used in this study came from a database, and the
disturbance and reclamation results suggest that the boundary does include all mining
activities. The ecological cumulative effect border of mining impacts, on the other hand,
does not always integrate well with this, and determination of the mining impact boundary
and threshold has been a research blind spot. As a result, it is unclear whether adopting a
precise research boundary is suitable, which is one of the study’s shortcomings.

In comparison to current academic approaches, the cumulative effects of mining
disturbance and reclamation examined in this study are geographically and temporally
continuous and exact. We will improve the method in the future to accommodate more
open-pit mining sites as well as larger-scale exploration, allowing us to draw more dis-
tinctions or commonalities in the study conclusions to direct a series of mining activities
in specific mining areas or regions. Furthermore, a more comprehensive and complicated
identification of mining effect mechanisms is being planned in order to better quantify the
ecological cost of mining by determining impact boundaries or thresholds for each service.

5. Conclusions

Understanding the cumulative ecological effects of mining disturbance and reclama-
tion is critical for fine tuning reclamation targets and sensible resource allocation for mine
rehabilitation. This research used phenological indices to reconstruct continuous geograph-
ical and temporal changes in land cover, with a focus on tracking the development process
of former mining and reclamation regions. We expose the cumulative ecological losses due
to open-pit mining in the Pinshuo Pingshuo mining area from 1986 to 2021 by mapping
changes in the cumulative value of ecosystem services, as well as the contributions of
five ecosystem service functions and their synergistic effects on one another. The study’s
findings can help us to better understand the cumulative effects of open-pit mining on
ecology and ecosystem services, as well as the synergies and trade-offs across ecosystem
service functions in the mining area.

The following are some of the study’s findings: (1) in the Pingshuo mining area, open-
pit mining resulted in the formation of 93.51 km2 of natural land, 39.60 km2 of disturbed
land, and 44.58 km2 of reclaimed land; (2) open-pit mining in the mining area mainly
resulted in the loss of 122.18 km2 (80.91%) of native grassland, but the damaged area
caused by mining only slightly increased through reclamation into grassland (31.30 km2)
and cropland (16.24 km2); (3) the cumulative ecological value of the mining area decreased
by 128.78 million RMB, but the true cumulative value per unit area was lower in DA
(1483.47 million RMB) and RA (1297.00 million RMB) than in NA (2120.98 million RMB);
(4) with the exception of the cumulative value of the food production function, the cumula-
tive value of the study area increased; (5) with the exception of the cumulative value of
the food production function, which grew, the cumulative value of all individual functions
in the study region dropped. The majority of service cumulative values have a strong
synergistic relationship. FP, on the other hand, exhibits a trade-off with the cumulative
value of the BM, SP, and WC service functions in the natural environment.

This study provides an important foundation for ecosystem management and restora-
tion in mining sites by precisely reconstructing the responses of ecosystem service functions
and their values as a result of mining activities. The developed methodology could also
aid future advancements in other related subject areas, thereby promoting the long-term
sustainability of natural, social, and ecological systems.
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