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Abstract: Gaofen-3 is the first Chinese spaceborne C-band SAR satellite with multiple polarizations.
The Gaofen-3 satellite’s data has few applications for monitoring landslides at present, and its
potential for use requires further investigation. Consequently, we must evaluate and analyze the
landslide interference quality and displacement monitoring derived from the Gaofen-3 SAR satellite’s
data, particularly in high and steep, mountainous regions. Based on the nine Gaofen-3 SAR datasets
gathered in 2020–2021, this study used DInSAR technology to track landslide displacement in Mao
County, Sichuan Province, utilizing data from Gaofen-3. Our findings were compared to SENTINEL-1
and ALOS-2 data for the same region. This study revealed that due to its large spatial baseline,
Gaofen-3’s SAR data have a smaller interference effect and weaker coherence than the SENTINEL-1
and ALOS-2 SAR data. In addition, the displacement sensitivity of the Gaofen-3 and SENTINEL-1
data (C-band) is higher than that of the ALOS-2 data (L-band). Further, we conducted a study of
observation applicability based on the geometric distortion distribution of the three forms of SAR
data. Gaofen-3’s SAR data are very simple to make layover and have fewer shadow areas in hilly
regions, and it theoretically has more suitable observation areas (71.3%). For its practical application
in mountainous areas, we introduced the passive geometric distortion analysis method. Due to its
short incidence angle (i.e., 25.8◦), which is less than the other two satellites’ SAR data, only 39.6%
of the Gaofen-3 SAR data in the study area is acceptable for suitable observation areas. This study
evaluated and analyzed the ability of using Gaofen-3’s data to monitor landslides in mountainous
regions based on the interference effect and observation applicability analysis, thereby providing a
significant reference for the future use and design of Gaofen-3’s data for landslide monitoring.

Keywords: Gaofen-3; landslides; interference effect; displacement sensitivity; observation applicabil-
ity analysis

1. Introduction

Due to recurrent rainfall, geological movements, human engineering excavations, etc.,
high and steep mountainous regions frequently experience abrupt and powerful landslides.
Interferometric Synthetic Aperture Radar (InSAR), which can accurately monitor surface
displacement over a wide area, is widely utilized for identifying landslide location, size,
volume, and activity status [1–6]. The Gaofen-3 satellite, which was launched on 10 August
2016, is China’s first multi-polarization C-band spaceborne SAR with a 1 m resolution [7].
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Its primary objective is to offer multi-modal, high-resolution data for the ocean, disaster
mitigation, and water resources [8]. However, due to the constraints of satellite platform
orbit management and other technologies, Gaofen-3’s images are seldom employed for
landslide monitoring via InSAR in hilly regions. It is of critical importance to evaluate the
capability of Gaofen-3’s images for monitoring landslides in mountainous regions.

Currently, Gaofen-3-based surface monitoring is mostly used for flood detection [9–11],
land classification [12,13], glacier identification and surface motion monitoring [14,15], ship
identification [16,17], soil moisture inversion [18–20], and more [21], while its polarization
SAR data is utilized for monitoring landslides. Ding et al. (2019) discovered variations
in the scattering properties of vegetation. They demonstrated that after landslides, the
mode of vegetation scattering changes from volume scattering to surface scattering [22].
Jia et al. applied a method of change detection to detect landslides [23]. Li et al., on the
basis of Gaofen-3’s scattering data, developed an automatic identification model using
multidimensional feature information such as polarization features, texture features, and
terrain features, and its overall recognition accuracy is 92.8% [24]. Gaofen-3’s data is
commonly used in polarization information and ground scattering characteristics, but its
interference capability has not been thoroughly analyzed or implemented. The interference
ability and application effect of Gaofen-3 in monitoring landslides in mountainous regions
requires additional study.

This study compared the interference effect (based on DInSAR technology) in Maoxian
County’s high mountain regions using data from Gaofen-3, ALOS-2, and SENTINEL-
1. First, we qualitatively and quantitatively analyzed the difference in the interference
effect between pairs of interference. The geometric distortion simultaneously revealed the
observation applicability of the three distinct satellite images, validating the application of
Gaofen-3’s satellite data in mountainous areas.

2. Study Area and Dataset
2.1. Overview of the Study Area

The study area covered Mao County, located in the northwestern part of Sichuan
Province and belonging to the Aba Tibetan and Qiang Autonomous Prefecture. The
geographical coordinates are 102◦56′ ~104◦10′ east longitude and 31◦25′~32◦15′ north
latitude (Figure 1). Mao County borders An County and Mianzhu in the east, Heishui and
Lixian in the west, Peng County and Wenchuan in the south, and Songpan in the north,
and G213 runs through the whole study area from south to north.

The study area is in the transition from the Qinghai-Tibet Plateau to the Sichuan
Basin, and the landscape presents a typical deep river valley geomorphology, with the
terrain sloping from the northwest to the southwest and strong geological and tectonic
activities. Mao County frequently experiences human engineering activities and geological
tectonic movements in its territory. The study area has experienced earthquakes 17 times
in the past 20 years, with > 6.0 Mb. [25]. The earthquakes were mostly distributed on the
Longmen Mountain Fault and the Xianshui River Fault (Figure 1a). The slope aspects of
the study area are relatively uniform, and the slope gradients are mainly distributed in
the range of 31◦–40◦ (Figure 1b,c). Geological disasters such as mudslides, landslides, etc.
frequently occur [26] easily and suddenly, causing serious damage to nearby construction
and threatening the safety of people’s lives and properties. The study area and the satellites’
orbit coverage of the data sources are shown in Figure 1.
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2.2. Dataset

Gaofen-3 is China’s first C-band multi-polarization spaceborne SAR with 1 m res-
olution. Its orbit’s revisit cycle is approximately 29 days [27]. According to various
application scenarios and application modes, the Gaofen-3 satellite can efficiently capture
high-resolution SAR images and microwave remote sensing data. This instrument may
operate in 12 distinct observation modes, ranging from high-resolution mode (1 m/10 km)
to extremely wide-swath mode (500 m/650 km), and from single- to quad-polarization
with C-band multi-polarization SAR images [28]. The resolution of the image radiation is
greater than 2 dB, and the accuracy of the radiation is up to 1 dB [29]. The imaging has a
complete polarization mode with a focusing resolution of up to 1 m [30]. All observation
methods allow for bilateral observation to shorten the period between visits [27,31].

The European Space Agency (ESA) launched the SENTINEL-1 satellite that provides
continuous C-band imagery. The satellite employs a sun-synchronous orbit with a revisiting
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time of 12 days to give images for measuring ground-surface displacements [32,33] that may
be acquired at any time of day and in any weather. ALOS-2 was the first earth observation
(EO) satellite in orbit to feature a coherent on-receive, single-polarization transmit, dual-
polarization receiver scanning SAR (ScanSAR) mode after its launch in May 2014. It is
equipped with a phased-array-type L-band synthetic aperture radar (PALSAR-2) sensor
and two optical cameras. The satellite acquires SAR data from its sun-synchronous orbit
(mean altitude of 628 km) with a 14-day revisit time. Its key mission characteristics are high
resolution (1 to 10 m) with a wide swath (25–70 km) and SAR images acquisition of up to
50% of the orbital period [34].

Meanwhile, the Shuttle Radar Topography Mission (SRTM) digital elevation model
(DEM) with 30 m resolution was applied to calculate the topographic and geomorphological
feature parameters. The Precise Orbit Ephemerides (POD) are also introduced to make more
accurate positioning of the data, correct the interferogram residual fringes, and remove the
phase errors caused by orbital errors in the InSAR processing. Fault data was used in the
study area to better analyze disaster spatial distribution characteristics.

The acquisition dates of the Gaofen-3, ALOS-2, and SENTINEL-1 SAR data used
in this investigation are listed in Table 1. Table 2 lists the relevant parameters for each
SAR satellite.

Table 1. SAR acquisition dates.

Gaofen-3 ALOS-2 SENTINEL-1

8 March 2020 26 November 2017 29 December 2020
8 June 2020 24 December 2017 10 January 2021

3 September 2020 4 February 2018 22 January 2021
31 October 2020 15 April 2018 3 February 2021

28 December 2020 13 May 2018 15 February 2021
26 January 2021 10 June 2018 27 February 2021

24 February 2021 8 July 2018 11 March 2021
25 March 2021 5 August 2018 23 March 2021
23 April 2021 2 September 2018 4 April 2021

14 October 2018 16 April 2021
31 March 2019 28 April 2021

Table 2. Main parameters of each type of SAR images.

Parameters Gaofen-3 ALOS-2 SENTINEL-1

Orbital track Ascending Ascending Ascending
Imaging mode FS1 UBS IW

Range pixel spacing (m) 1.12 1.43 2.33
Azimuth pixel spacing (m) 2.59 2.13 13.92

Polarization HH HH VV
Incidence angle (◦) 25.8 36.2 39.2

3. Methodology

Figure 2 illustrates the particular process steps, which are primarily separated into
two sections: an examination of the Gaofen-3 data interference effect and an investigation
of the observation applicability of Gaofen-3 for landslide monitoring in mountainous
regions. It is assumed that the SAR data spanning the region of interest are gathered and
preprocessed (Figure 2a) in the first phase of the work. Differential Synthetic Aperture
Radar Interferometry (DInSAR) obtained a single look complex (SLC) by imaging the
same area twice at different times. Then, coregistration was conducted prior to phase
interference processing to acquire an interferogram. At the same time, the terrain and flat
ground phase were simulated based on the external Digital Elevation Model (DEM) data.
Differential interference was performed to remove the redundant information. As a result,
only the deformation phase was left in the interferogram, and it was finally converted
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into deformation [35]. The process mainly generated a differential interferometric phase
diagram, including the reference plane phase, topographic phase, deformation phase, and
residual noise phase. However, in practical applications, the constant changes in time and
space of the surface and atmospheric environment will affect the interferometric phase
in the interferogram [36]. Therefore, the coherent interferogram ϕint can be expressed
as [37,38]:

ϕint = ϕ f lat + ϕtopo + ϕdis + ϕatm + ϕnoise (1)

where ϕ f lat is the flat earth phase, ϕtopo is the topographic phase caused by uneven terrain,
ϕdis is the displacement phase of the terrain, ϕatm is related to the atmospheric state change,
and ϕnoise is the noise phase generated during observation.
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The main purpose of DInSAR technology is to accurately obtain the deformation
components caused by the surface deformation ϕdis. On the right side of the equation,
ϕ f lat, ϕtopo can be removed by the external DEM simulation, ϕatm, ϕnoise can be restrained
by filtering, a multi-looking operation or selecting ground control points can obtain the
deformation phase ϕdis [39], and then we can calculate the deformation of the ground target
in the line of sight (LOS) direction ∆r [40]:

∆r = −4π

λ
ϕdis (2)

The coherence of the image, S1 and S2, can be quantitatively expressed as:

γ =
∑|S1(j, k)× S∗2(j, k)|√

∑
∣∣S1(j, k)× S∗1(j, k)

∣∣×∑
∣∣S2(j, k)× S∗2(j, k)

∣∣ (3)
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where * is a conjugate complex number, S1 and S2 are single-view, complex SAR images,
and 0 < γ < 1. 0 indicates decoherence, while 1 indicates complete coherence. Measuring
the coherence between two images is an important guarantee of measurement accuracy.

The geometric distortion was induced by side-looking imaging and local topography,
which diminishes the visual quality, particularly in high and steep mountainous regions.
The shadow will render the effective information absolutely invalid [41]. Depending
on their observation geometry, the types and extents of geometric distortion induced by
different satellites are highly variable. When the terrain is gentle, the slope is smaller than
the local incident angle θ, as well as facing the SAR satellite sensor. The length of the
slope displayed on the SAR image is shorter than that on the original flat terrain. Thus,
it indicates that the range resolution on the slope becomes poor, that is, foreshortening
(Figure 3a). When the terrain is steep and the slope is greater than the local incident angle
θ, the SAR image shows that the top and bottom of the slope are inverted, which is called
layover (Figure 3b). In Figure 3b, AC is a passive layover and CE is an active layover. When
the terrain is greater than 90◦ − θ, the steep slope will completely prevent receiving the
SAR signal and the radar beam cannot reach it. The SAR image is dark, which is called
shadow (Figure 3b). In Figure 3b, EF is an active shadow and FG is a passive layover. The
detailed computing method for determining the geometric distortion can be found in [42].
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4. Result and Discussion
4.1. Analysis of the Interference Effect and Displacement Sensitivity

After the baseline estimation of the Gaofen-3 SAR images, a total of 19 interference
pairs were selected (temporal baseline less than 220 d and spatial baseline less than 1800 m)
from all connection pairs, as shown in Table 3. It can be seen that the spatial baseline
of the Gaofen-3 data is relatively very large (more than 300 m). The spatial baseline has
a great impact on the coherence. Thus, we selected two interference pairs with similar
temporal and spatial baseline pairs to form two groups. They are comparison groups with
the corresponding interference pairs of ALOS-2 and SENTINEL-1 for comparative analysis,
as shown in Table 4. Among them, the first group, 28 December 2020–26 January 2021, has
a similar time baseline, and the second group, 26 January 2021–23 April 2021, has a similar
spatial baseline. Since the overall spatial baseline of the Gaofen-3 satellite is long, it can
only be ensured that the spatial baseline and time baseline are as close as possible.

Interferograms of each group in the study area were obtained using DInSAR technol-
ogy. Based on the comparison of the interferograms from the three SAR datasets in Figure 4,
it can be seen that the interference effect of ALOS-2 in Figure 4(c1) provides the most
information, followed by SENTINEL-1 and Gaofen-3. In order to analyze the difference in
deformation findings obtained by the different satellites, the blue rectangular boxes A, B,
and C in Figure 4 have been chosen to depict three typical regions (as shown in Figure 5).

In region A, three types of SAR data had strong coherence at the deformation site,
and the deformation signals were recognized with clarity; in area B, only Gaofen-3 and
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SENTINEL-1 could detect the deformation signals, although the ALOS-2 deformation
signals were not apparent. A comparison between Gaofen-3 and ALOS-2 demonstrates that
the displacement sensitivity of the Gaofen-3 and SENTINEL-1 (C-band) data was superior
to that of the ALOS-2 data (L-band). The comparison between Gaofen-3 and SENTINEL-1
reveals that Gaofen-3’s observation geometry is more susceptible to displacement. Due to
the long temporal baseline in area C, most of them were decoherent. Only the SENTINEL-1
data could still detect some deformation signals. As the L-band satellite is less sensitive to
the spatial baseline than that of the short wavelength band satellite, the most important
reason for the ALOS-2 results may be the temporal incoherence, along with the vegetation
growth in the study area between April and May.

Figure 6(a1,b1,c1) demonstrates that the overall coherence of the first group with
comparable temporal baselines is greater than that of the second group. Figure 6(c1)
demonstrates that the overall coherence of the ALOS-2 images is better than those of the
other two satellites. ALOS-2 has the most coherence, while Gaofen-3 has the lowest. In the
second group of comparable spatial baselines, there are fewer regions with high coherence.
Only in Figure 6(b2) are there more regions with good coherence for the SENTINEL-1 data
with relatively modest spatial baselines, demonstrating that spatial baselines have a greater
impact on coherence.

Table 3. Baseline information of Gaofen-3’s interferometric pairs.

Interference Pair Time Baseline (d) Spatial Baseline (m)

3 September 2020–31 October 2020 58 1608
3 September 2020–28 December 2020 116 868

3 September 2020–26 January 2021 145 1120
3 September 2020–24 February 2021 174 −131

3 September 2020–25 March 2021 203 306
31 October 2020–26 January 2021 87 −487

31 October 2020–24 February 2021 116 −1627
31 October 2020–25 March 2021 145 −1312
31 October 2020–23 April 2021 174 −215

28 December 2020–26 January 2021 29 265
28 December 2020–24 February 2021 58 −900

28 December 2020–25 March 2021 87 −582
28 December 2020–23 April 2021 116 556

26 January 2021–24 February 2021 29 −1142
26 January 2021–25 March 2021 58 −825
26 January 2021–23 April 2021 87 313

24 February 2021–25 March 2021 29 318
24 February 2021–23 April 2021 58 1450

25 March 2021–23 April 2021 29 1132

Table 4. Comparison of interference pair parameters.

Data Source Gaofen-3 SENTINEL-1 ALOS-2

Group 1
Time 28 December 2020–26

January 2021
29 December 2020–3

February 2021
24 December 2017–4

February 2018
Time Baseline (d) 29 36 42

Spatial Baseline (m) 265 87 −215

Group 2
Time 26 January 2021–23

April 2021
22 January 2021–16

April 2021
4 February 2018–13

May 2018
Time Baseline (d) 87 84 98

Spatial Baseline (m) 313 −93 201
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Figure 4. Comparison of the interferograms: (a1,a2) are the Gaofen-3 satellite’s interference pairs
from 28 December 2020–26 January 2021 and 26 January 2021–23 April 2021, respectively; (b1,b2) are
the SENTINEL-1 satellite’s interference pairs from 29 December 2020–3 February 2021 and 22 January
2021–16 April 2021, respectively; and (c1,c2) are the ALOS-2 satellite’s interference pairs from 24
December 2017–4 February 2018 and 4 February 2018–13 May 2018, respectively.
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Figure 5. Comparison of the deformation points of the interferograms: Gaofen-3’s A/B and C
are interference pairs from 28 December 2020–26 January 2021 and 26 January 2021–23 April 2021,
respectively; SENTINEL-1’s A/B and C are interference pairs from 29 December 2020–3 February 2021
and 22 January 2021–16 April 2021, respectively; and ALOS-2’s A/B and C are interference pairs from
24 December 2017–4 February 2018 and 4 February 2018–13 May 2018, respectively. (A1–A3) are area
A with displacement in Gaofen-3, SENTINEL-1, ALOS-2 interferograms, respectively. (B1–B3) are
area B with displacement in Gaofen-3, SENTINEL-1, ALOS-2 interferograms, respectively. (C1–C3)
are area C with displacement in Gaofen-3, SENTINEL-1, ALOS-2 interferograms, respectively.
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December 2020–26 January 2021 and 26 January 2021–23 April 2021, respectively; (b1,b2) are the
SENTINEL-1 satellite’s interference pairs from 29 December 2020–3 February 2021 and 22 January
2021–16 April 2021, respectively; and (c1,c2) are the ALOS-2 satellite’s interference pairs from 24
December 2017–4 February 2018 and 4 February 2018–13 May 2018, respectively.

To statistically analyze the coherence of the three types of SAR data, coherence value
distribution statistics were calculated. Figure 7a displays that the maximum coherence
range for the Gaofen-3, SENTINEL-1, and ALOS-2 data was dispersed between [0.2 and
0.3], [0.5 and 0.6], and [0.7 and 0.8], accordingly. The percentages of coherence values larger
than 0.5 for the three satellites were 19.96%, 58.72%, and 89.2%, respectively. Figure 7b
demonstrates that the maximum coherence ranges for the Gaofen-3, SENTINEL-1, and
ALOS-2 data were [0.1, 0.2], [0.2, 0.3], and [0.6, 0.7], respectively. The percentages of the
three satellites whose coherence values were more than 0.5 were 10.21%, 21.76%, and
61.59%, respectively. The results reveal that ALOS-2 has a significantly higher effective
coherence than the other two spacecraft. In addition, the results demonstrate that the ALOS-
2 data had higher effective coherence than the SENTINEL-1 and Gaofen-3 datain this study
area, making them more suited for interference processing. Comparing the two groups of
data, the overall coherence of SENTINEL-1’s data is higher than that of Gaofen-3’s data.
In Figure 7a, when the time baselines of Gaofen-3 and SENTINEL-1 are close and short,
the spatial baseline of Gaofen-3’s data is much larger than that of SENTINEL-1, resulting
in Gaofen-3’s coherence being significantly lower than SENTINEL-1’s coherence. Even
though the time baselines of the two images in the second group of Figure 7b are near,
the longer time baseline diminishes the coherence of both. Gaofen-3 has a longer spatial
baseline and a lower coherence than those of SENTINEL-1.
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4.2. Observation Applicability Analysis of the SAR Data

According to the principle of geometric distortion [42], this study distinguished and
classified the geometric distortion of side view imaging of the Gaofen-3, SENTINEL-1
and ALOS-2 ascending data, including foreshortening, layover, shadow, and suitable
observation (i.e., high imaging resolution), as shown in Figure 8.

In Figure 8, based on the imaging effect of the Gaofen-3 satellite, the terrain is divided
into two cases: facing the satellite and far away from the satellite. When facing the satellite,
because the incidence angle of Gaofen-3 is only 25.8◦, it presents the most serious layover
compared with the other two SAR satellites, and the severity of layover is Gaofen-3 > ALOS-
2 > SENTINEL-1. As the slope decreases from 90◦ to equal the 39.2◦ incident angle of the
SENTINEL-1 satellite, the layover of SENTINEL-1 will disappear, and the foreshortening
will occur at first. When the slope slows down to 0◦, i.e., the flat land situation, the
foreshortening gradually weakens. When the three satellites are in the foreshortening
state, the severity of foreshortening is Gaofen-3 > ALOS-2 > SENTINEL-1. When the
slope is far away from the satellite and relatively slow (less than the residual angle of
the satellite incidence angle), the image is normally imaging and in a relatively optimal
observation state. At this time, when the slope angle is less than 64.2◦, the Gaofen-3
satellite imaging is suitable for observation, which is greater than the 53.8◦ and 50.8◦ slopes
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corresponding to ALOS-2 and SENTINEL-1. Accordingly, the shadow area is the smallest
under Gaofen-3’s observation.
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The study region is covered by Gaofen-3, ALOS-2, and SENTINEL-1 data, which have
been processed. Figure 9 depicts the geometric distortion generated by several data sources.
From the perspective of spatial distribution, it is evident that Gaofen-3 has the largest
layover area in the study area (Figure 9b), whereas SENTINEL-1 has the smallest. Table 5
displays the percentage of geometric distortion in the study area.

In this study area, the geometric distortion errors of the Gaofen-3, ALOS-2, and
SENTINEL-1 images account for 60.4%, 53.3%, and 52.5%, respectively. More than 50%
of each image’s area is affected by geometric distortion, making it impossible to acquire
useful monitoring findings from the InSAR measurements. Tables 2 and 5 reveal that as the
incidence angle of the LOS direction increases (Gaofen-3, ALOS-2, and SENTINEL-1), the
proportion of layover areas falls dramatically. In contrast, the fraction of foreshortening and
shadow regions grow as the incidence angle increases. Due to the mountainous region’s
steep topography, Gaofen-3, with its low incidence angle, will provide a more passive
layover. Therefore, even theoretically, the suitable observation area of the Gaofen-3 satellite
is the largest among these three satellites. However, Gaofen-3′s passive layover is serious,
resulting in more than half of the layover area in the study area, and the actual suitable
observation area of Gaofen-3 is less, which only accounts for 39.6% of the study area.
Therefore, choosing a SAR satellite with a larger incidence angle can monitor the surface
conditions of the study area more effectively and comprehensively.



Remote Sens. 2022, 14, 4425 13 of 17Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 17 
 

 

 

Figure 9. (a) Optical image of the study area. (b) Gaofen-3’s geometric distortion of the study area. 

(c) ALOS-2’s geometric distortion of the study area. (d) SENTINEL-1’s geometric distortion of the 

study area. 

Table 5. Comparison of the SAR data’s observation information. 

Observation Information Gaofen-3 ALOS-2 SENTINEL-1 

Layover 51.3% 27.7% 17.9% 

Foreshortening 8.9% 23.7% 28.8% 

Shadow 0.2% 1.9% 5.8% 

Theoretical suitable observation 71.3% 59.8% 56.4% 

Actual suitable observation 39.6% 46.7% 47.5% 

In this study area, the geometric distortion errors of the Gaofen-3, ALOS-2, and SEN-

TINEL-1 images account for 60.4%, 53.3%, and 52.5%, respectively. More than 50% of each 

image’s area is affected by geometric distortion, making it impossible to acquire useful 

monitoring findings from the InSAR measurements. Tables 2 and 5 reveal that as the in-

cidence angle of the LOS direction increases (Gaofen-3, ALOS-2, and SENTINEL-1), the 

proportion of layover areas falls dramatically. In contrast, the fraction of foreshortening 

and shadow regions grow as the incidence angle increases. Due to the mountainous re-

gion’s steep topography, Gaofen-3, with its low incidence angle, will provide a more pas-

sive layover. Therefore, even theoretically, the suitable observation area of the Gaofen-3 

satellite is the largest among these three satellites. However, Gaofen-3′s passive layover is 

serious, resulting in more than half of the layover area in the study area, and the actual 

suitable observation area of Gaofen-3 is less, which only accounts for 39.6% of the study 

area. Therefore, choosing a SAR satellite with a larger incidence angle can monitor the 

surface conditions of the study area more effectively and comprehensively. 

Figure 9. (a) Optical image of the study area. (b) Gaofen-3’s geometric distortion of the study area.
(c) ALOS-2’s geometric distortion of the study area. (d) SENTINEL-1’s geometric distortion of the
study area.

Table 5. Comparison of the SAR data’s observation information.

Observation Information Gaofen-3 ALOS-2 SENTINEL-1

Layover 51.3% 27.7% 17.9%
Foreshortening 8.9% 23.7% 28.8%

Shadow 0.2% 1.9% 5.8%
Theoretical suitable observation 71.3% 59.8% 56.4%

Actual suitable observation 39.6% 46.7% 47.5%

The three kinds of SAR data in this study are ascending orbit data. The imaging
conditions of the three groups of facing-satellite slopes (Figure 10a–c) and the three groups
of far-away-from-satellite slopes (Figure 11a–c) on the Gaofen-3, ALOS-2, and SENTINEL-1
images are compared, as shown in Figures 10 and 11.

It can be seen from Figure 10 that no suitable observation area appears on the slope
facing the satellite for the three kinds of data. In Figure 10a,c, the layover area of Gaofen-3
accounts for 100% and the layover area of ALOS-2 and SENTINEL-1 is less. The slope in
Figure 10b shows that 76% of the Gaofen-3 image is a layover, while only approximately
10% of the ALOS-2 and SENTINEL-1 images are layovers. The comparison shows that
Gaofen-3 has more layover area than ALOS-2 and SENTINEL-1.

It can be seen from Figure 11 that more than 60% of the slopes far away from the
satellite have suitable observation areas. Gaofen-3’s images have about 20–30% passive
layover, while the SENTINEL-1 images have more shadow area than ALOS-2’s images in
Figure 11a–c. Most of the three kinds of satellite data are in suitable observation areas. The
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comparison results show that the shadow area of Gaofen-3 is less than that of the ALOS-2
and SENTINEL-1 data, but Gaofen-3 has a more passive layover area.
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To sum up, the layover area of Gaofen-3 is much higher than that of the ALOS-2 and
SENTINEL-1 data. Most of the three kinds of data are in a suitable observation state for
the eastward slope. However, when passive geometric distortion analysis is introduced,



Remote Sens. 2022, 14, 4425 15 of 17

the Gaofen-3 data reduces the effective and suitable observation area because of the partial
passive layover.

5. Conclusions

This study evaluated and analyzed the capability of the Gaofen-3 data for landslide
monitoring in mountainous areas from the interference effect. It also concludes how the
observation applicability, using data from Gaofen-3, ALOS-2, and SENTINEL-1 ascending
orbits, is in Maoxian County, which is a mountainous area in the Sichuan Province.

The Gaofen-3 data had a smaller interference effect (coherence) than the ALOS-2 and
SENTINEL-1 data, according to a DInSAR interference analysis. Additionally, the interfer-
ogram shows multiple deformations detected, revealing that the Gaofen-3 data (C-band)
is more sensitive to mountain deformations than the ALOS-2 data (L-band). Meanwhile,
this study analyzed the observation applicability of three satellite images based on clas-
sifying the geometric distortion while considering passive distortion. According to the
findings, the Gaofen-3 satellite’s layover is the worst in this region, and SENTINEL-1’s
shadow is larger than that of the other two satellites. Although, theoretically, the Gaofen-3
data has more suitable observation areas (71.3%) in mountain areas than the ALOS-2 and
SENTINEL-1 data, a passive geometric distortion study shows that the suitable observa-
tion area of Gaofen-3 (39.6%) is smaller than that of the ALOS-2 and SENTINEL-1 data.
This study can help with the evaluation of Gaofen-3’s capability to monitor landslides in
mountainous regions and explore the spatio-temporal evolutionary characteristics and their
responses to climate change in future studies [43]. Nevertheless, it is still undetermined
how well the Gaofen-3 data can effectively detect landslides with InSAR in mountainous
areas. Therefore, this study suggests exploring the usefulness of the Gaofen-3 satellite in
future research.
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