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Abstract: Amplifying landslide hazards in the backdrop of warming climate and intensifying human
activities calls for an integrated framework for accurately evaluating landslide susceptibility at
fine spatiotemporal resolutions, which is critical for the mitigation of increasingly high landslide
disaster risks. Yet, dynamic landslide susceptibility mapping is still lacking. Using high-quality
data, from 14,435 landslides and non-landslides, we developed an efficient holistic framework
for evaluating landslide susceptibility, considering landslide-relevant internal and external factors
based on cloud computing platform and algorithmic models, which enables dynamic updating of a
landslide susceptibility map at the regional scale, particularly in regions with highly complicated
topographical features such as the Hengduan Mountains, as considered in this study. We compared
Classification and Regression Trees (CART), Support Vector Machines (SVM), and Random Forest
(RF) classifiers to screen out the best portfolio model for landslide susceptibility mapping on the
Google Earth Engine (GEE) platform. We found that the Random Forest (RF) classifier integrated with
synergy mode had the best modeling performance, with 90.48% and 89.24% accuracy and precision,
respectively. We also found that forests and grasslands had the controlling effect on the occurrence
of landslides, while human activities had a notable inducing effect on the occurrence of landslides
within the Hengduan Mountains. This study highlights the performance of the holistic landslide
susceptibility evaluation framework proposed in this study and provides a viable technique for
landslide susceptibility evaluation in other regions of the globe.

Keywords: landslide susceptibility assessment; synergy mode; random forest; google earth engine;
Hengduan Mountains

1. Introduction

A landslide is a natural disaster that may cause thousands of fatalities and inflict
massive damage on infrastructure [1–3]. With the projected increase in extreme precip-
itation [4], land resources dwindling, and urban development spiraling, landslides are
increasing in frequency, scope, and destructive capacity [5]. The International Disaster
Database (EM-DAT) shows that between 2000 and 2020, landslides accounted for 4.51%
of all natural disasters, while 13.05% of these landslide disasters occurred in China [6].
The actual landslide disasters and their risk may be higher than recorded in EM-DAT
landslide catalogs, since many landslides go unreported [7,8]. Landslide susceptibility is
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the likelihood of a landslide occurring in an area, depending on local topographical and en-
vironmental variables [9]. It predicts “where” landslides are likely to occur [10]. Landslide
susceptibility (LS) mapping is the first step in landslide disaster reduction plans [11,12].

Reliable LS evaluation greatly depends on the quality and availability of data and a
proper modeling framework [13–15]. Studies of a LS evaluation model can be classified
as qualitative or quantitative [16]. Qualitative methods are based on an expert’s prior
knowledge, including geomorphological analysis, heuristic approach, specific user in-
dicators, and variable mapping methods [14,17], whereas quantitative methods include
statistical methods such as binary statistical analysis, Logistic Regression, and Discrim-
inant Analysis [18–21] and machine learning methods such as Fuzzy Logic, Artificial
Neural Network, Support Vector Machines, Naive Bayes, Decision Tree, Random For-
est [22–27]; and Deep Learning methods [28]. However, when compared with traditional
machine learning methods, Deep Learning methods perform similarly well in terms of
prediction accuracy and evaluation of LS [29]. The quality of a LS map produced by a
model relies heavily on the accuracy, scale, and number of landslide-related factors con-
sidered [13,30,31]. The occurrence and distribution of landslides are closely related to
landslide-relevant hazard-causing factors and a hazard-pregnant environment, such as
topography, tectonic activity, rock and/or soil types, hydrometeorological setting, land use,
and land cover, and anthropogenic activities such as construction, improper drainage, and
deforestation [32–35]. Any of these abovementioned factors will cause the instability of
mountain slopes and will trigger landslide disasters [36,37]. In addition, a range of index
systems were developed for the assessment of LS [13,38]. Spatial geographical information
techniques and satellite remote sensing data have greatly improved the assessment of LS at
regional to global scales [39–42]. Previous studies used optical imagery [28,43,44] and syn-
thetic aperture radar (SAR) data [45–48] to map the landslide distribution and/or to extract
landslide-related information such as soil moisture, land use, road construction, and urban
buildings. Satellite-based meteorological data have been widely used for the analysis and
evaluation of relationship between precipitation and landslides [49–51]. Geomorphological
factors (e.g., elevation, slope, aspect, and curvature) obtained through DEM data, which
can be generated from various sources such as radar interferometry (SRTM) and optical
stereo images (ASTER DEM) [52], were used to delve into landslide hazards [53]. Current
satellite data may provide useful and accurate information about the characteristics and
dynamic processes of the earth’s surface involved in the occurrence of landslides. Numer-
ous studies used road net, anastomosis, fault, and seismic vector data, etc., which can be
obtained from Open Street Map (OSP) or other open data platforms to assess landslide
susceptibility [54–56]. However, taking these driving factors into account and considering
an appropriate LS model are challenging and computing-resources-consuming work. With
the emergence of Google Earth Engine (GEE), there are abundant data resources and func-
tions, which enable investigations at the regional and global scales [57,58]. Therefore, it
is desirable to develop a holistic LS evaluation framework based on a cloud computing
platform, machine learning techniques, and multisource data/big data to assess and map
landslide susceptibility at the regional and even global scales.

Investigations have highlighted that the high LS areas, spread mainly over Southwest
China, i.e., the Hengduan Mountains, are characterized by landslide-prone sedimentary
rocks, high seismicity, frequent severe rainfall events, and intensifying human activi-
ties [15,59]. The Hengduan Mountains region is dominated by complicated and unique to-
pographical features, complex hydrometeorological conditions, active tectonic movements,
and intensifying human activities and is characterized by considerably large differences in
elevation, with the largest difference reaching >7300 m above sea level. All these factors
help develop an extremely complicated landslide hazard-pregnant environment. Therefore,
it is a challenge to identify and map the LS across the Hengduan Mountains region. How-
ever, few studies have addressed LS mapping by combining static and dynamic explanatory
factors and, hence, cannot delve into the causes behind the proximity of the regions with
occurrence of landslides from a holistic viewpoint. In addition, this is needed for the
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mitigation of potential landslide hazards at the regional scale, especially in the Hengduan
Mountains [60,61]. It should be noted that LS mapping is a challenging task, particularly
for regions with complicated topographical features, since the driving factors triggering
landslides are complicated, so an efficient assessment framework is needed. To develop a
holistic LS evaluation framework based on GEE is a critical first step for the dynamic update
of LS map and is also of practical significance for regional mitigation of landslide disasters
in a warming climate. Therefore, development of an efficient LS evaluation framework
combining static and dynamic explanatory factors, based on multisource datasets and
cloud computing platform and machine learning algorithms, is urgently needed. This point
constitutes the major motivation of this study.

Here, we present a synergy of static and dynamic explanatory variables based on
GEE to evaluate LS at the regional scale and propose a holistic LS evaluation framework.
The major objectives of this study, therefore, are to (1) evaluate the influence of the types
of landslide-related factors (static, dynamic and both) on LS, (2) elucidate the controlling
factors of LS across the Hengduan Mountains region, and (3) propose and develop an
efficient and near-real-time LS evaluation framework at the regional scale. This study
highlights an efficient LS evaluation framework and helps provide a technique framework
for the mapping of LS in other regions of the globe.

2. Study Region

The Hengduan Mountains region is located in the southeastern part of the Qinghai–
Tibetan Plateau and is a general term for the north–south-oriented parallel mountains
in the western part of Sichuan and Yunnan provinces and the eastern part of the Tibet
Autonomous Region, covering an area of more than 700,000 km2, with elevation ranging
from 124 m to 7473 m (Figure 1). Actually, the Hengduan Mountains region is a complete
geomorphological partition, in which different subregions have similarities in geomor-
phological forms, tectonic features, and geomorphological development processes [62].
The Hengduan Mountains region has been recognized as being highly susceptible to land-
slides because of frequent earthquakes, extreme precipitation, and intensifying human
activities [15,39,59,63].
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Figure 1. The study area is located in the SSW of China, with an area of more than 700,000 square
kilometers.

3. Data and Methods
3.1. Data
3.1.1. Landslide Inventories

A landslide inventory map contains valuable information about the spatial pattern of
landslide events in any given region, enhancing the understanding of landslide behavior
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and the LS evaluation. It is a critical step in LS studies to make a landslide inventory
map [23]. Here, we obtained historical landslide data from Natural Resources Bureaus
of eight administrative divisions, including Tibetan Qiang Autonomous Prefecture of
Ngawa, Diqing Tibetan Autonomous Prefecture, Tibetan Autonomous Prefecture of Garzê,
Nujiang of the Lisu Autonomous Prefecture, Liangshan Yi Autonomous Prefecture, Lijiang
City, Nyingchi, and Ya’an, covering 74 districts and counties accounting for 48.59% of
the Hengduan Mountains region area, with a total of 21,112 geological disaster points
in three categories, i.e., landslide, rockfall, and debris flow. The period of landslides
covers a period of 2000–2020. Here, we use the term “landslide” to describe rotational
or translational mass movement slide type. However, a portion of the raw landslide
data lacks geographic coordinates, time information of the landslides, and description
information. Therefore, we exclude this part of landslide data with missing information, for
reliability of the assessment results. After cleaning and eliminating data absent of attributes,
a total of 7217 landslide locations (centroid) were obtained (Figure 2), and we named this
landslide points dataset as Expedition Data. In addition, we collected landslide data from
the Resource and Environmental Science and Data Center of the Chinese Academy of
Sciences (https://www.resdc.cn/ accessed on 10 July 2020), which covers the whole range
of the study area and is mainly used for visual comparative verification of LS assessment
results. We named this dataset as Investigation Data. The statistical time of expedition
data and the investigation data were up to 2020. Due to different sources of landslide data,
landslide surveys vary in detail and landslide inventories. Here, we use expedition data
as training data for LS evaluation and investigation data as visual comparison data for
evaluating performance.
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Figure 2. Landslide points obtained from Natural Resources Bureaus of eight administrative divisions
after data cleaning. Non-landslide points used the Create Random Point module in ArcGIS.

3.1.2. Explanatory Variables

Selection of appropriate explanatory variables is a critical step in the LS assessment,
but no commonly accepted selection criterion is available [40]. Based on landslide behavior
across the Hengduan Mountains region [34,51,64,65], 50 explanatory variables were ac-
cepted as input variables for LS assessment. For the LS evaluation across the large-scale and

https://www.resdc.cn/
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spatially heterogeneous region, we subdivided these explanatory variables into three cate-
gories, i.e., static, dynamic, and triggering factors [39,41,66]. The underlying surface-related
explanatory variables that were related to sliding behaviors of landslides were taken as
static factors [67,68]. Here, we defined dynamic factors as the explanatory variables derived
from remote sensing images associated with dynamic changes in the underlying surface.
Explanatory variables that trigger mass movements were called triggering factors [69], such
as rainfall and earthquakes considered in this study. The explanatory variables are listed in
Table A1.

Static factors involved 9 explanatory variables from DEM, road net, river net, and geol-
ogy fault vector data. Elevation has been evidenced to be substantially viable in depicting
spatial distribution of landslides [70]. Slope is an important factor for landslide processes,
since it controls the shear forces acting on mountain hill slopes [19,71]. Aspect is associated
with diurnal anisotropic heat, root development, weathering, and other geomorphological
processes [72,73]. Curvature shows topographic relief that is considered to be a causative
factor for landslide, which controls the convergence or divergence of landslide materials
and water in the direction of landslide movement [23]. The terrain ruggedness index is an
indicator of the variation of surface relief and the degree of erosion [25]. The topographic
wetness index (TWI) reflects the effects of topography and soil characteristics on the spa-
tial distribution of soil moisture [29]. The distance from fault indicates the likelihood of
landslides induced by ruptures and fault surfaces easily become sliding surfaces because
the stress on the rock surrounding a fault is unstable [74]. The distance from river and LS
are in close interaction, and this distance indirectly describes the erosion power of streams,
which plays an important role in landslides [24]. The distance from the road net is used as
an indicator to measure landslides derived from or related to road construction [75].

Dynamic factors included 33 explanatory variables, which were obtained or calcu-
lated from Sentinel-1/Sentinel-2 and Landsat satellite data (Table A1). Satellite remote
sensing data (SAR or optical data) have been widely used in landslide identification and
spatiotemporal analysis of landslide activity [40,43,46,47,76]. In general, LS are identi-
fied by analyzing vegetation cover changes and relief-oriented parameters using different
vegetation indices [77]. The texture of soil represents the relative proportion of sand,
silt, and clay content, which is highly correlated with landslide susceptibility. In addi-
tion, landslide initiation shows close dependency to high soil moisture levels and low
vegetation density [78–81]. Here, we use various vegetation indices to characterize the
fingerprint characteristics of land cover changes and spectral-texture information relevant
to landslides. The amplitude component of an SAR image is related to surface roughness,
surface material, soil water, and radar polarization, which has a strong relation with land-
slide occurrence [76,82]. In order to better characterize the dynamic changes of surface
material composition and soil water content, we used the amplitude data of SAR with dif-
ferent polarization methods and calculated the spatial correlation of information after data
smoothing [83,84]. In this study, we integrated optical and SAR satellite data incorporated
with extracted index information and Geary’s C spatial analysis information to delineate
the dynamic change process of the underlying surface (Table A1). Considering the diversity
of dynamic factors and remarkable value ranges of the dynamic factors, we normalized the
dynamic factors before further analysis.

Triggering factors are mainly rainfall and earthquakes in this study area, according
to the hazard property information of landslide inventories. Quantile level analysis of
precipitation data can reflect the precipitation characteristics of the study area [85]. Here,
we used the distance from the epicenter and precipitation percentiles to determine the
spatial clustering of landslides [8,86].

3.2. LS Assessment Framework

The LS assessment framework proposed in this study is based on binary classification
over the study area through pixel-by-pixel calculation, which was separated into four
phases: (a) preparation of training and validation sample data, (b) construction of data
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features, (c) comparison of the selected three LS assessment models, and (d) mapping of
the LS across the study region (Figure 3).
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3.2.1. Sample Data

The LS assessment model requires both landslides, denoted as 1, and non-landslides,
denoted as 0 [87]. The expedition landslide inventory data of 7217 landslide sites were taken
as positive samples. Here, we used the Create Random Point module in ArcGIS to generate
non-landslide samples for further modeling [16]. Two strategies were adopted to avoid a
blind selection of data points introducing uncertainty into the model training procedure
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which may produce an unreliable LS assessment. At first, the spatial range of generated
random points should be in consistency with these eight municipalities where expedition
data were collected. Second, random points within a 1 km buffer zone from landslide
positive samples were screened out. At last, 7218 non-landslide points were generated
as negative samples. The ratio of landslide and non-landslide samples is determined as
1:1 [19]. Thus, a total of 14,435 samples were produced for LS assessment. Sample data
were randomly split into dataset for model training (70% of the total dataset) and model
verification (30% of the total dataset) [88].

3.2.2. Development of Feature Modes

We grouped explanatory variables into three feature modes for LS assessment, i.e., static
mode, dynamic mode, and synergy mode. Static factors and triggering factors were com-
bined to form the static mode; combination of dynamic factors and triggering factors
formed the dynamic mode; and the integration of static factors, dynamic factors and trigger-
ing factors formed the synergy mode. Triggering factors are those factors that cause mass
movements, so we added triggering factors for different data modes. A set of performance
metrics for different feature mode testing was recorded during mode validation using the
RF method. Then, the feature mode with the highest modeling performance was used
to map LS. The preparation of the feature modes includes the calculation of static factors
and dynamic factors. The static factors were calculated through ArcGIS and SAGA GIS
software and then uploaded to GEE LEGACY ASSETS. The calculation of dynamic factors
is implemented in GEE by coding and then stored in GEE LEGACY ASSETS.

3.2.3. LS Assessment Model

Three classifiers were chosen for LS assessment, i.e., Random Forest (RF), Classification
and Regression Tree (CART), and Support Vector Machines (SVM). Our analysis based
on these three classifiers was done via GEE, allowing large-scale predictions at the pixel
scale [57].

RF classifier is an efficient and optimal in computation performance in dealing with
high dimensionality of data [89], which has been widely used in satellite-based applica-
tions [28].

CART is a rule-based algorithm that splits the dataset subsets using all predictor
variables to create two child nodes repeatedly, and the predicted value of a “terminal”
node is the average of the response values in that node [90]. Predictor variables can be of
any type (numeric, binary, categorical, etc.), and model outputs cannot be influenced by
monotone transformations and different scales of measurement among predictors [91–93].

SVM, a kernel-based algorithm for classification and regression issues, has been widely
used in LS mapping [19,94]. For nonlinear feature datasets, as in LS modeling, SVM is used
to project features into high dimensional space with kernel functions, allowing classification
within a plane [95].

We verified these three classifiers using the same feature mode. A set of performance
metrics for testing were recorded for comparison of these classifiers. Then, a model selected
with the highest modeling performance and the well-chosen feature mode were used to
map the LS over the Hengduan Mountains region.

3.2.4. LS Mapping

The landslide identification model developed here was used to analyze the spatial
pattern of landslides at the pixel scale with a spatial resolution of 30 m. LS is strictly a
classification problem, with the binary outcome of presence or absence of a landslide [96].
The predicted value of 1 means that landslides will occur within the pixel range, and
the predicted value of 0 means no landslides within the pixel range. The high spatial
resolution of 30 m of the predicted result allows us to better identify the fingerprint of
landslides [13]. Besides, whether or not landslide occurs at a given location is closely related
to the triggering factors within and in the proximity of the regions with the occurrence
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of landslides. To construct the landslide susceptibility map, two main steps should be
followed: first generate the landslide susceptibility indexes (LSIs), and then reclassify
the LSIs. Here, we aggregated the predicted landslides and summed the pixel values
of landslides based on the 10 × 10 domain range. So, we obtained a 300 m resolution
spatially aggregated raster image, at which the size of the image element values indicates
the occurrence possibility of landslides within a 300 m × 300 m range (Equation (1)). The
abovementioned processing procedure can well avoid the subjective judgment error of the
model-based assessment results and can better reflect the trend of landslide occurrences
through statistical characteristics of landslides within a specific region. Finally, we used the
Jenks Natural Breakpoint method to classify the LS into five levels, seeking to minimize the
differences within levels and maximize the differences between levels [11,29]. Here, we
classified the LSI into very low LS, low LS, medium LS, high LS, and very high LS:

LSI =
∑n

i=1 ∑m
j=1 Vij

m × n
(1)

where m and n are the row and column number of LS assessment unit, respectively, with
spatially aggregated 10 × 10 domain range. Vij is the predicted pixel value corresponding
to row i and column j.

3.3. Validation of LS Assessment Framework

The expedition landslide data collected through field survey and the investigation
landslide data mapped by Chinese Academy of Science (CAS) were used to validate the LS
assessment framework proposed in this study. Expedition landslide data was divided into
training data and validation data. The training data were used for the development of the
model and the validation data were used for the selection of the model. Here, we used the
receiver operating characteristic curve (ROC) and area under curve (AUC) to evaluate and
compare the effects of different feature modes on the LS map [97,98]. The algorithm used
in this study included binary classification, confusion matrix, and statistical indicators (i.e.,
precision, accuracy), which were adopted to quantitatively compare the accuracy of LS
assessment models [99]. In binary classification, the accuracy is the proportion of correct
predictions (both true positives and true negatives) among the total number of cases, while
precision is the ratio of true positives to the total of the true positives and false positives.
The formula is:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (2)

Precision = TP/(TP + FP) (3)

where TP = true positive; FP = false positive; TN = true negative; and FN = false negative.
Investigation landslide data mapped by CAS delivers valuable information on the

spatial pattern of landslides in the landslide susceptible zone. Then, we used the investi-
gation landslide data to compare the modeling results from a macro perspective and to
qualitatively measure the spatial consistency of the LS maps.

4. Result
4.1. Development Environment of Landslides

The spatial pattern of triggering factors behind landslides can decide the spatial
patterns of landslides. Therefore, we depicted the spatial pattern of triggering factors
behind landslides. Static factors included nine explanatory variables (Figure 4). The
topography of the Hengduan Mountains region is generally high in the north and low in
the south, with remarkable differences in terrain, which cause unstable mountain slopes.
The mountains run generally in a north–south direction between 25◦ and 30◦N, with a
slight tilt toward the west at their northern end and a tilt toward the southeast at their
southern end (Figure 4a). The slope, curvature, and roughness delineate the topographical
changes, which are consistent with the undulations of the mountains (Figure 4b–d). The
aspect has no distinctive spatial characteristics (Figure 4e). TWI is higher at the relatively
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low-lying terrain (Figure 4f). The distance from the road net indicates a higher density of
road networks in the southern parts of the study region and, hence, a higher intensity of
human activities (Figure 4h). Large rivers are all developed parallel to the faults and deep
major fractures and are densely distributed throughout the study area (Figure 4g,i).
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Dynamic factors included 33 explanatory variables (Table A1), and we analyzed the
dynamic factors of the landslide and non-landslide sample points (Figure 5). Before further
analysis, we normalized the dynamic factors considering the diversity of dynamic factors
and remarkable value ranges of the dynamic factors. The quartiles of dynamic factors
of the landslides are larger than those of the non-landslides, implying large differences
in the eigenvalues of the samples throughout the study region. For Geary’s C spatial
analysis, the values of both landslide and non-landslide factors mostly ranged from 0 to
0.1, which are much smaller than 0.5, indicating a strong spatial correlation of landslides
and homogeneous features within the domain of landslides. Therefore, it is an ideal
protocol for remote-sensing-based identification of landslide hazards in the Hengduan
Mountains region.
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4.2. Performance Evaluation of LS Assessment Models

Results of the machine learning method are heavily reliant on the quality of the
selected feature data and the merits of the algorithms. The evaluation of LS assessment
models included two steps, i.e., comparison of various feature modes and comparison of
different algorithm performances.

4.2.1. Feature Modes Comparison

The RF model was chosen to compare and analyze the landslide assessment results
by different feature modes. To assess the importance of each feature mode, given a pre-
scribed set of hyperparameters, three feature modes were used separately with the RF
model to identify the landslides: (1) static mode, (2) dynamic mode, and (3) synergy
mode. We used the hyperparameters numOfTrees = 200, variablesPerSplit = ‘sqrt’, and
min_samples_leaf = 1 when implementing the model in GEE [100].

Figure 6 shows the accuracy and performance metrics of the LS assessment obtained
with three different feature modes, i.e., static mode, dynamic mode, and synergy mode.
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The validation results showed 0.9611 for the synergy model AUC, 0.9569 for the static
model AUC, and 0.9419 for the dynamic model AUC. In addition, the accuracy indices
calculated by the confusion matrix showed 90.48% in accuracy and 89.24% in precision for
the synergy model, 89.74% in accuracy and 87.30% in precision for the static model, and
87.39% in accuracy and 83.80% in precision for the dynamic model. All these statistical
metrics showed that the assessment model using synergy mode had higher evaluation
accuracy and better performance. The results indicated that the paradigm of the leverage
synergy mode combined with the machine learning algorithm based on the GEE platform
for large-scale LS assessment was viable and feasible and had a satisfactory assessment
performance.
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(a) evaluation metrics, top-left: static model confusion matrix, top-right: dynamic model confusion
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of synergy, static, and dynamic feature modes.

4.2.2. Comparison of Landslide Identification Performances of Models

We determined that synergy mode with the machine learning algorithm was the right
choice for further LS assessment practice. To do LS assessment with higher accuracy, we
compared three types of classifiers for modeling performance, and the classifier with the
highest modeling performance would be adopted for LS mapping over the study region.

Figure 7 showed the accuracy and performance metrics of the LS assessment using
three different classifiers, i.e., RF, CART, and SVM. The accuracy indices calculated by the
confusion matrix showed 90.48% in accuracy and 89.24% in precision for the RF classifier,
84.80% in accuracy and 84.75% in precision for the CART classifier, and 72.20% in accuracy
and 66.83% in precision for the SVM classifier. Evaluation metrics showed that the RF
classifier had the best performance and highest accuracy when compared to CART and
SVM. In addition, we perform LS mapping using CART and SVM classifiers to get the
spatial performance. Through visual interpretation, it can be seen from LSM that there
is a common overfitting phenomenon in CART and SVM (Figure A1). In this case, we
developed a LS assessment paradigm at the regional scale, i.e., the RF classifier coupled
with synergy feature mode using the GEE platform for LS assessment.
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Figure 7. Assessment accuracy comparison and performance analysis of different models. (a) RF
model; (b) CART model; (c) SVM model; (d) accuracy indices.

4.3. Spatial Pattern of LS

The LS map obtained by the assessment methodology (Figure 8a) indicated free LS
in the northern part of the Hengduan Mountains region. The areas without LS colors
mean the aggregation result value is zero. In addition, we take a zero LS value as the
background, which indicates that landslides in these areas are unlikely to occur. These
areas include, but are not limited to, flat land and bodies of water such as lakes (Figure A3).
Most high or very high LS levels can be attributed to unstable slope bodies due to weath-
ering and/downcutting of the river channel, while downcutting processes can also be
motivated by road construction. Besides, intensifying human activities also intensify the
weathering processes of rocks and soils. The LS level is usually higher along the road than
the surrounding areas, and potential human activities, mainly the construction of roads,
have modified the stability of slope and induced landslides (Figures 9–14). We found higher
LS in the southern parts of the study region when compared to that in the northwestern
region, while population density and economic activities in the southern region had the
dominant contribution to higher LS. The density of road network (Figure 4) also showed
that the roads in the southern part of the study area were subject to higher density, and
these regions matched well the regions with high LS, implying a considerable fractional
contribution by human activities to LS in the study region.
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and Environment Science and Data Center of the CAS.
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Figure 9. The landslide susceptibility of the central Hengduan Mountains. (a) is the LS map of the
Hengduan Mountains region; (b) shows the landslide assessment result of this area; (c,d) are field
photos showing the geological disasters that happened at differentsites; (c-1) is a close-up view of c,
and (c-2) is a detailed picture of the landslide disaster.
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Figure 10. Verification and evidence for LS map over the Hengduan Mountains region. (a) The land-
slide susceptibility classification; (b) landslide susceptibility in the southern part of the area. Panels
of (c–e) show Esri satellite imagery with different land covers: (c) human settlements, (d) terrace, and
(e) forest area.
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Figure 11. Landslide susceptibility assessment results and comparison with investigation landslide data.
Predict label values 0 and 1 represent landslide non-occurrence and landslide occurrence respectively.
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Figure 12. The LS of the northern transverse mountain area. (a) is the landslide susceptibility map
of the Hengduan Mountains region. (b–d) show the similarities and differences of LS assessment
results in static feature mode, dynamic feature mode, and synergy feature mode. (e–g) display details
using Ersi and Google satellite image. Dynamic feature mode can sense detailed information of the
pregnant environment, but the identification of floodplain fans and moraine landscapes can be easily
confused. However, the synergy feature mode is beneficial to improve recognition accuracy.
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Figure 13. The LS of the central transverse mountain area. (a) is the LS map of the Hengduan
Mountains region. (b) shows different LS assessment results in static feature mode (b-1), dynamic
feature mode (b-2), and synergy feature mode (b-3). (c) displays details of a site prone to landslide
using Ersi and Google satellite image; (c-1) shows early sign of landslide and (c-2) shows an recently
constructed artificial slope protection building. Results show that using the dynamic feature mode
can identify spatial texture structure information, and, when combined with static feature mode, it
can reduce the false alarm rate and ensure the reliability of results.
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Figure 14. LS assessment results and comparison with landslide disaster information obtained from
the Internet media. (a) is the LS map of the Hengduan Mountains region. (b) is the zoom-in view of
LS map. (c) shows the scene when the landslide occurred.

From the results of LS assessment in the study area, regions with high LS were in
agreement with the spatial pattern of the landslide hazard density map produced from
the investigation dataset by the Resource and Environment Science and Data Center of
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the Chinese Academy of Sciences (Figure 8b). It should be noted that the landslide point
density map could not locate every landslide hazard point. Here, we show a couple of
possibilities. (1) The landslide hazard occurred a long time ago, and now we cannot
identify it due because the traces of landslides disappeared due to long-term weathering
and vegetation coverage changes. In this case, the landslide point density map might
omit these obliterated landslide disaster relics. (2) The landslide/landslides occurred but
this/these landslide event/events were not recorded. It could be because these landslide
locations were inaccessible. Thus, the landslide locations recorded by the landslide point
density map can be modeled by the LS assessment framework proposed in this study,
implying that the modeling performance of the framework is acceptable. The proposed
framework can locate other landslide locations that were not recorded in the landslide
point density map. The density map of the training data used in the proposed framework
is shown in Appendix B Figure A2. Hence, the modeling results can provide unique
and irreplaceable information for enhancing mitigation of landslide disasters over the
study region and can provide the reference information for the evaluation of landslide
susceptibility in other regions of the globe.

5. Discussion

In this study, we developed a framework for assessing LS at the regional scale, allowing
the efficient assessment of spatiotemporal variations in LS at a finer spatial resolution with
the timely update of data, which is a kind of breakthrough into timely and systematic
landslide susceptibility evaluation in regions with enormous difference in terrains. Based
on the GEE platform and a synergy feature mode for comprehensively utilizing static and
dynamic explanatory variables, our approach provides discernment of potential landslide
locations, where landslides are subject to higher occurrence probability in a timely way. In
this sense, the LS assessment framework can provide a viable technique for mitigation of
landslide risk.

For machine learning methods for assessments of landslide susceptibility, the reliability
of the model is closely related to the training sample, that is, the landslide inventory [14].
However, a landslide inventory cannot include all landslides occurred over a given region.
Here, we used two inventories of landslide from different agencies to ensure acceptable
representation of spatiotemporal pattern of landslides over the study region, i.e., expedition
data were used for training samples and investigation data were used for comparison of
the LS assessment map.

Availability of high-quality multisource and extensive data is a must to achieve an
acceptable spatial assessment of LS [101]. Therefore, a synergy of static factors representing
topography proxies and dynamic factors related to Earth surface properties and dynamic
changes was used to identify landslide prone area over large-scale regions dominated by
spatially heterogeneous geographical and geological features. Besides basic topographical
and hydrometeorological features (Table A1), we further integrated various vegetation
indices (i.e., NDVI, CRC, etc.) and spatial structure elements (Geary’s C test) to derive
landslide-related vegetation changes and diagnostic features [43,58]. Synergy feature mode
combines the advantages of both types of data features, which reduces the noise error
introduced by static feature mode or dynamic feature mode and can better represent
the hazard-pregnant environment. Moreover, application of the proposed feature mode
revealed that the LS assessment model using synergy mode achieved the highest modeling
accuracies, when compared with the LS assessment model with static or dynamic feature
mode only (Figure 6). Then, we compared machine learning algorithms based on the
synergy feature mode and found that the RF algorithm had a better performance and
generalization ability and the modeling accuracy reached 90.48% and precision reached
89.24% (Figure 7). An improved framework integrating multiple explanatory variables with
the fine spatial resolution ensured a reliable LS assessment with respect to the occurrence
of landslide (Figure 9). Aforementioned procedures can help to produce a LS map using
synergy feature mode, which can be put into practice (Figure 9a).
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The LS assessment paradigm was designed to facilitate landslide research with a
finer spatial resolution at the regional scale. We found that our modeling results were in
agreement with the existing findings [7,15,59]. However, we can better identify the subtle
spatial differences of the LS within the study area in a near-real-time way based on the GEE
platform. Due to a large spatial range of the study region, the study region is dominated
by discernible spatial heterogeneity in geomorphology, hydrometeorology, and triggering
factors and the resulting distinctly variable LS in both space and time. Regions with a
higher LS across the northern parts of the study region are spread along rivers, roads, and
large fractures (Figure 8a), while a relatively high LS can be found over the southern part
of the study area, which is attributed mainly to unstable slopes due to interferences of
human activities such as an interwoven road network, a widespread residential area, and
croplands (Figure 10).

In high-latitude mountains, the stability of colluvial slope bodies is highly sensitive
to external interferences or external forces, such as road construction, land reclamation,
rainstorms, and so on. Different external forces may cause different degrees of insta-
bility of the colluvial slope bodies. In this case, we quantified percentages of landslide
and non-landslide areas over regions with different land-use types. We found that non-
landslide areas were 4.41 times and 10.38 times more than the landslide areas in the forest
and grassland land types, respectively, while the landslide areas were 3.66 times and
4.97 times higher than the non-landslide areas in the cropland and impervious surface land
types, respectively (Figure 11). These findings evidenced close relations between land use
changes and LS in both space and time, illustrating a large spatial heterogeneity in LS
variations that is highly influenced by forest cover types, cropland shifts, and settlement
patterns [102–104].

Aiming to further verify and evidence LS assessment results, we did field surveys
across the Hengduan Mountains region with a focus on typical landslides. Besides, we
also attempted to obtain evidence from remote sensing images for additional evidence
(Figures 9 and 11–14). Specifically, Figures 9, 12 and 13 describe the impact of use different
feature mode on the LS results. Dynamic feature mode can sense detailed information
of the pregnant environment and identify spatial texture structure information, but the
identification of floodplain fans and moraine landscapes can be easily confused. However,
the synergy feature mode is beneficial to improve recognition accuracy, reduce the false
alarm rate, and ensure the reliability of results (Figures 12 and 13). Furthermore, we
compare LS assessment results with landslide disaster information obtained from the
internet media. The LS level of the area where the landslide occurred had high susceptibility,
indicating that the quality of the LS assessment result is reliable (Figure 14). We carefully
compared evidence from field surveys and remote sensing images and found that the LS
assessment results of the proposed LS evaluation framework predicted and/or simulated
the landslide locations with satisfactory accuracy and high reliability. We also compared
the LS map with the landslide inventory data density map (Figure 8a). Since the landslide
inventory data were collected from different sources, they provided a great opportunity for
cross validation. It was interesting to find that the LS was well consistent with the density
map of landslide point in the spatial pattern. Ongoing LS studies at the regional scale will
benefit from improved confidence in the LS assessment framework.

6. Conclusions

With the consideration of complicated driving factors behind landslide disasters and
particularly the damaging impacts of landslides on the infrastructure, human settlements,
and socioeconomy in the mountainous regions, we proposed a novel holistic landslide
susceptibility evaluation framework to map the LS by a synergy of static, dynamic, and trig-
gering factors using the GEE platform and RF model. Here, we considered the Hengduan
Mountains region as a case study region, since it is dominated by remarkable differences in
terrain (>7000 m in difference of terrain), different land-use patterns, and high sensitivity to
weather extremes. Frequent landslide disasters and relevant disastrous consequences, par-
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ticularly, call for mitigation of landslide disasters in mountainous regions in the backdrop
of warming climate. The proposed LS assessment framework involving landslide-related
external and internal factors has been shown to be an effective technique for LS mapping in
a near-real-time way, by routinely updating satellite data based on GEE’s high-performance
computing and abundant satellite data resources.

We mapped the LS over the landslide-prone Hengduan Mountains region with an
area of ~700,000 km2 in Southwest China and found that this LS assessment framework
worked well in mapping LS at a finer spatial scale and hourly time scale. We also showed
reliability and accuracy of the LS map over the Hengduan Mountains region via comparison
between multisource landslides inventory data, remote sensing images, and the LS map
by the proposed framework, which showed a match with these data. Besides, landslides
by field surveys also corroborated the modeling results. The results indicated that the
spatial patterns of forests and grasslands had a significant controlling effect on the spatial
patterns of the occurrence of landslides, while human interferences due to road construction,
land reclamation, and pasturing further triggered instability of the colluvial slope bodies,
which could easily trigger the occurrence of landslides within the Hengduan Mountains
region. The LS map showed a complete picture of the susceptibility of landslide disasters,
providing valuable information of the location of the landslide-prone regions, and is,
therefore, beneficial for preparedness for and mitigation of landslide risk.

The LS assessment framework is transferrable and can be used in other landslide-prone
regions in the globe. Landslide hazards in mountainous regions can be expected to occur
with higher frequency due to intensifying weather processes, intensifying human interfer-
ences, and accelerating melting processes of the permafrost layers in high-altitude regions,
such as the Hengduan Mountains region. Reliable and timely LS mapping is necessary for
the preparedness for and mitigation of landslide disasters in a warming climate.
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Appendix A

Table A1. Landslide explanatory variables.

Categories Explanatory Variables Description and Processing of Data Data Sources/Data Period

Static
Factors

Elevation DEM, Spatial resolution 30 m NASA STRM V3
Slope Calculated by DEM NASA STRM V3

Aspect Calculated by DEM NASA STRM V3
Curvature Calculated by DEM NASA STRM V3

Terrain ruggedness index Calculated by DEM NASA STRM V3
Topographic wetness index Calculated by DEM NASA STRM V3

Distance from fault Euclidean distance China Geological Survey

Distance from anastomosis Euclidean distance Open Street Map
Distance from road net Euclidean distance Open Street Map
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Table A1. Cont.

Categories Explanatory Variables Description and Processing of Data Data Sources/Data Period

Dynamic
Factors

VV Vertically polarized backscatter

ESA Sentinel-1 SAR GRD
1 January 2020~1 January 2021

VV Geary’s C Geary’s C spatial autocorrelation
VH Horizontally polarized backscatter

VH Geary’s C Geary’s C spatial autocorrelation
VV_Filter VV with focal median

VV_Filter Geary’s C Geary’s C spatial autocorrelation
VH_Filter VH with focal median

VH_Filter Geary’s C Geary’s C spatial autocorrelation
DIFF VV-VH

DIFF Geary’s C Geary’s C spatial autocorrelation
RATIO VH/VV

RATIO Geary’s C Geary’s C spatial autocorrelation

CRC (SWIR1-GREEN)/(SWIR1 + GREEN)

ESA Sentinel-2 MSI Level-2A
1 January 2015~1 January 2021

CRC Geary’s C Geary’s C spatial autocorrelation
NBR1 (NIR-SWIR1)/(NIR + SWIR1)

NBR1 Geary’s C Geary’s C spatial autocorrelation
NBR2 (NIR-SWIR2)/(NIR + SWIR2)

NBR2 Geary’s C Geary’s C spatial autocorrelation
NDT1 (SWIR1-SWIR2)/(SWIR1 + SWIR2)

NDT1 Geary’s C Geary’s C spatial autocorrelation
RDNDVI1 (NIR-RDED1)/(NIR + RDED1)

RDNDVI1 Geary’s C Geary’s C spatial autocorrelation
RDNDVI2 (NIR-RDED2)/(NIR + RDED2)

RDNDVI2 Geary’s C Geary’s C spatial autocorrelation
NDVI (NIR-RED)/(NIR + RED)

NDVI Geary’s C Geary’s C spatial autocorrelation

Landsat percentile 0, 5, 25, 50, 75, 95, 100 percentile indices NASA/USGS Landsat 5/7/8
1 January 1987~1 January 2021

Triggering
Factors

Precipitation 0, 5, 25, 50, 75, 95, 100 percentile indices NASA Monthly GPM v6
1 Jun 2000~1 September 2021

Distance from seismic Euclidean distance China Earthquake Networks Center

Appendix B

Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 26 
 

 

Appendix B 

  

Figure A1. Landslide susceptibility mapping using CART and SVM model, respectively. (Left): LS 

result using CART model. (Right): LS result using CART model. 

 

Figure A2. Point density map of training landslide data. 

Figure A1. Landslide susceptibility mapping using CART and SVM model, respectively. (Left): LS
result using CART model. (Right): LS result using CART model.



Remote Sens. 2022, 14, 4662 20 of 24

Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 26 
 

 

Appendix B 

  

Figure A1. Landslide susceptibility mapping using CART and SVM model, respectively. (Left): LS 

result using CART model. (Right): LS result using CART model. 

 

Figure A2. Point density map of training landslide data. Figure A2. Point density map of training landslide data.

Remote Sens. 2022, 14, x FOR PEER REVIEW 22 of 26 
 

 

 

Figure A3. LS values of lake and intermountain plain areas are zero. (a) is the LS map of the Heng-

duan Mountains region. (c) is a 3D rendering of the plain area from (b) and (d) is an aerial view of 

the lake area from (b). 

References 

1. Haque, U.; Blum, P.; da Silva, P.F.; Andersen, P.; Pilz, J.; Chalov, S.R.; Malet, J.-P.; Auflič, M.J.; Andres, N.; Poyiadji, E.; et al. 

Fatal landslides in Europe. Landslides 2016, 13, 1545–1554. https://doi.org/10.1007/s10346-016-0689-3. 

2. Mizutori, M.; Guha-Sapir, D. Human Cost of Disasters: An Overview of the Last 20 Years (2000–2019); UNDRR/CRED: Leuven, 

Belgium, 2020; p. 30. Available online: https://www.undrr.org/publication/human-cost-disasters-overview-last-20-years-2000-

2019 (accessed on 1 September 2021). 

3. Shugar, D.H.; Jacquemart, M.; Shean, D.; Bhushan, S.; Upadhyay, K.; Sattar, A.; Schwanghart, W.; McBride, S.; de Vries, M.V.W.; 

Mergili, M.; et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science (Am. Assoc. 

Adv. Sci.) 2021, 373, 300–306. https://doi.org/10.1126/science.abh4455. 

4. Wang, G.; Zhang, Q.; Yu, H.; Shen, Z.; Sun, P. Double increase in precipitation extremes across China in a 1.5 °C/2.0 °C warmer 

climate. Sci. Total Environ. 2020, 746, 140807. https://doi.org/10.1016/j.scitotenv.2020.140807. 

5. Emberson, R.; Kirschbaum, D.; Stanley, T. Global connections between El Nino and landslide impacts. Nat. Commun. 2021, 12, 

2262. https://doi.org/10.1038/s41467-021-22398-4. 

6. Guha-Sapir, D. EM-DAT. Availabe online: www.emdat.be (accessed on 1 June 2021). 

7. Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. 

https://doi.org/10.5194/nhess-18-2161-2018. 

8. Kirschbaum, D.; Stanley, T.; Zhou, Y. Spatial and temporal analysis of a global landslide catalog. Geomorphology 2015, 249, 4–15. 

https://doi.org/10.1016/j.geomorph.2015.03.016. 

9. Brabb, E.E. Innovative approaches to landslide hazard and risk mapping. In Proceedings of the IVth International Conference 

and Field Workshop in Landslides, Tokyo, Japan, 23–31 August 1985. 

10. Guzzetti, F.; Reichenbach, P.; Cardinali, M.; Galli, M.; Ardizzone, F. Probabilistic landslide hazard assessment at the basin scale. 

Geomorphology 2005, 72, 272–299. https://doi.org/10.1016/j.geomorph.2005.06.002. 

11. Borrelli, L.; Ciurleo, M.; Gullà, G. Shallow landslide susceptibility assessment in granitic rocks using GIS-based statistical 

methods: The contribution of the weathering grade map. Landslides 2018, 15, 1127–1142. https://doi.org/10.1007/s10346-018-0947-

7. 

12. Ciampalini, A.; Raspini, F.; Lagomarsino, D.; Catani, F.; Casagli, N. Landslide susceptibility map refinement using PSInSAR 

data. Remote Sens. Environ. 2016, 184, 302–315. https://doi.org/10.1016/j.rse.2016.07.018. 

Figure A3. LS values of lake and intermountain plain areas are zero. (a) is the LS map of the
Hengduan Mountains region. (c) is a 3D rendering of the plain area from (b,d) is an aerial view of the
lake area from (b).



Remote Sens. 2022, 14, 4662 21 of 24

References
1. Haque, U.; Blum, P.; da Silva, P.F.; Andersen, P.; Pilz, J.; Chalov, S.R.; Malet, J.-P.; Auflič, M.J.; Andres, N.; Poyiadji, E.; et al. Fatal
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