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Abstract: The semantic segmentation of high-resolution remote sensing images (HRRSIs) is a basic
task for remote sensing image processing and has a wide range of applications. However, the
abundant texture information and wide imaging range of HRRSIs lead to the complex distribution of
ground objects and unclear boundaries, which bring huge challenges to the segmentation of HRRSIs.
To solve this problem, in this paper we propose an improved squeeze and excitation residual network
(SERNet), which integrates several squeeze and excitation residual modules (SERMs) and a refine
attention module (RAM). The SERM can recalibrate feature responses adaptively by modeling the
long-range dependencies in the channel and spatial dimensions, which enables effective information
to be transmitted between the shallow and deep layers. The RAM pays attention to global features
that are beneficial to segmentation results. Furthermore, the ISPRS datasets were processed to focus
on the segmentation of vegetation categories and introduce Digital Surface Model (DSM) images to
learn and integrate features to improve the segmentation accuracy of surface vegetation, which has
certain prospects in the field of forestry applications. We conduct a set of comparative experiments
on ISPRS Vaihingen and Potsdam datasets. The results verify the superior performance of the
proposed SERNet.

Keywords: remote sensing; forestry technology; smart forestry; residual module; semantic segmentation

1. Introduction

Semantic segmentation of high-resolution remote sensing images (HRRSIs) is a funda-
mental task in remote sensing image processing that classifies each pixel in an image into a
specified category. With the development of remote sensing technology and the applica-
tion of computer vision technology, semantic segmentation of HRRSIs becomes a current
research hotspot [1] and has a wide range of applications such as building extraction, land
use mapping, urban planning, environmental change monitoring, precision agriculture
and smart forestry [2].

In terms of forestry applications, semantic segmentation of HRRSIs is one of the im-
portant contents of forest resource monitoring and sustainable rational planning. Among
them, vegetation segmentation plays an important role in the study of vegetation growth
state and ecological environment, the distribution and structure information of vegeta-
tion in the study area can be obtained accurately through the segmentation of vegetation,
which plays an essential role in formulating relevant forestry sustainable development
strategies and improving environmental quality, so accurate segmentation of vegetation
from the background is the key issue. In recent years, this problem is a hot issue for scientific
workers in the forestry research field, many studies use remote sensing images to achieve
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vegetation segmentation [3]. However, HRRSIs contain complex and diverse ground in-
formation, different target objects often have the same shapes, scales, textures, and colors,
which results in large intraclass variance and small interclass variance [4]. The boundary
of the surface vegetation is often unclear because of the effect of illumination conditions,
imaging angles, and shadows. As shown by the areas with yellow rectangles in Figure 1,
the similarities between categories “Low Vegetable” and “Tree” may also lead to wrong
segmentation results, thereby bringing great challenges to a semantic segmentation task [5].
Fortunately, HRRSIs contain rich geographic information, such as digital surface model
(DSM) images that can provide elevation information. Several recent works have shown
that height estimation and semantic segmentation can benefit from each other, mainly
based on the implicit assumption that changes in height generally correspond to changes
in class [6,7]. Studies in recent years show that DSM images can significantly improve clas-
sification accuracy [8]. Sun et al. used DSM data [9] to improve the semantic segmentation
performance of HRRSIs. This shows that the introduction of multi-source data can break
through the upper limit of segmentation accuracy of traditional methods. Considering that
the categories “Low Vegetable” and “Tree” may have similar appearances but of different
heights, in this paper, we utilize the complementary information between IRRG images
and DSM images to improve the classification accuracy of these two categories.

Figure 1. Interclass similarity and fuzzy boundary (yellow rectangle box) of categories “Low Veg-
etable” and “Tree” in ISPRS Vaihingen dataset.

Semantic segmentation network with superior performance is the key to improve the
accuracy of vegetation segmentation, and the core of improving performance is to search
for more powerful feature representation. Therefore, how to improve the ability of feature
representation is one of the challenges of the current work. The early image segmentation
algorithms mainly extract the low-level features of the image for segmentation [10], and
the segmentation results often do not contain semantic information. With the development
of deep learning, a series of network models based on Convolutional Neural Networks
(CNNs) [11] have been proposed successively and have entered a new stage of semantic
segmentation. CNNs have powerful feature extraction ability and show superior perfor-
mance in semantic segmentation tasks. However, CNNs capture local context information
and pay little attention to the correlations among features that help in the accurate inference
of semantic information, which limits the feature representation capability of the model and
affects the capture of the most salient properties of an image for a given task to some extent.
Related research has shown that representations produced by models can be enhanced
by integrating learning mechanisms into the network, which helps to capture spatial and
channel correlations among features [12]. On this basis, more and more modified networks
were proposed to model the correlation in the channel or spatial dimensions [13,14], and
various learning mechanisms were proposed to focus on the significant attributes of an
image [15]. While most of the previous models focused on improving the joint coding of
spatial and channel information, there are relatively few studies on the parallel coding of
spatial and channel modes. Furthermore, as the depth of the model increases, problems
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such as over-fitting and gradient disappearance may occur, so our proposed model is
mainly presented to solve the above problems.

In general, to further improve the ability of feature representation and learn a deeper
and stronger network, we attempt to encode the channel and spatial information from
another perspective. We propose a new module to aggregate the features generated
by encoding spatial information and channel information in parallel. Additionally, we
combine the proposed module with the residual structure to solve the problems such
as network degradation and gradient disappearance that may occur in deep networks.
Furthermore, to improve the segmentation accuracy of surface vegetation, we combine the
height information provided by DSM images with IRRG images to segment the categories
“Low Vegetable” and “Tree” more accurately to a certain extent. Therefore, the squeeze and
excitation residual network (SERNet) is proposed, and the main contributions of this paper
are summarized as follows:

• We introduce two kinds of SERMs into the semantic segmentation network to recali-
brate feature responses adaptively and aggregate global information of the channel
and spatial dimensions in parallel. The RAM is embedded into the bottom of the
network to focus on features that are more informative among the features extracted
by the network.

• We introduce DSM data and IRRG data to focus on the segmentation of surface
vegetation categories, which helps to obtain better segmentation results.

• We conduct multiple comparative experiments using different data combinations
and different models on the ISPRS Vaihingen and Potsdam datasets [16] to prove the
superiority of the model.

2. Related Work

This section briefly describes some semantic segmentation methods based on deep
learning, mainly including the following two aspects: semantic segmentation methods and
attention mechanisms.

2.1. Semantic Segmentation Methods

Existing semantic segmentation methods generally include traditional methods based
on machine learning and contemporary methods based on deep learning. Many tradi-
tional methods use machine learning algorithms to extract features based on the color,
texture and spatial location of objects for image segmentation, such as threshold [17], edge
detection [18], and clustering [19], but the handcrafted features used in most traditional
methods have some limitations in terms of feature representation capacity. To address this
problem, many advanced methods based on deep learning have been proposed and widely
used recently [20]. Among them, the classical convolutional neural network (CNN) is the
pioneer and became the tool of choice for many image segmentation tasks in computer
vision [21,22]. The basic building block of CNN is the convolution layer. In each convolu-
tion layer, a set of filters extract spatial information and channel information within the
local receptive fields and fuse them to generate feature maps. Then, global features and
hierarchical patterns are generated by applying sequential convolution layers with nonlinear
functions and down-sampling operators. The fully convolutional network (FCN) [23] is the
first successful end-to-end deep convolutional neural network (DCNN) of semantic segmen-
tation, which replaces the fully connected layer with the convolution layer to output the
feature maps. Then, the segmentation result is generated by an up-sampling operation.
FCN-based methods generally include an encoder and a decoder, but the size of the feature
map decreases continuously in the process of feature extraction, resulting in loss of image
content and spatial location information, which weakens the representation capacity of
the network. To solve this problem, some improvements have been made based on the
encoder and decoder structures [24,25]. Among them, U-Net [26] and its variants [27–29]
concatenate global feature maps and local feature maps through skip connection, which
helps the network generate precise semantic prediction. The contextual information in
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remote sensing images is particularly important for the feature representation capacity of
the semantic segmentation model. In order to fuse multi-scale information of images, some
studies use improved convolution operations such as dilated convolution to expand the
receptive field and improve the performance of semantic segmentation [30–32]. One such
approach, the pyramid scene parsing network (PSPNet) [33], aggregates contextual infor-
mation of different scales through the spatial pyramid pooling module to avoid the loss of
information representing the relationships between different subregions. DeeplabV3 [34]
applies atrous convolution to extract multi-scale information, and DeepLabV3+ [35] fur-
ther adds an effective decoder module to improve segmentation boundary accuracy. For
mining multi-scale features, Inception models [36] integrate local information with global
information and introduce multi-scale features to improve the performance. Furthermore,
VGGNets [37] show that increasing the depth of a network could significantly improve the
capacity of representation. ResNets demonstrate that it was possible to learn considerably
deeper and stronger networks through the use of identity-based skip connections [38,39],
which help the network to transfer information directly between low and high levels and
solve the gradient problem that may occur in deep networks.

Building on these works, in order to improve the feature representation ability of
semantic segmentation models, many studies apply the attention mechanism to model the
correlation between features and focus on the features that are more meaningful to the
current task. For example, the squeeze-and-excitation network (SENet) [40] introduces
a channel attention mechanism and brings significant improvements in performance by
modeling the interdependencies between the feature maps, so that the network can auto-
matically learn the importance of different channel features. Pyramid Attention Network
(PAN) [41] selects precise features through a global attention module in the channel di-
mension. However, these methods do not consider the interrelation of features in the
spatial dimension, so many modified networks are proposed to model the correlation in
the channel or spatial dimensions and propose various attention mechanisms to capture
those attributes of an image that are most significant, such as the convolutional block
attention module (CBAM) [42] and the semantic segmentation network with Spatial and
Channel Attention Version 2 (SCAttNet V2) [43]. In addition, the Dual Attention Network
(DANet) [44] uses two self-attention modules to calculate the feature representation of
each position by the weighted sum of all other positions, which can model the long-range
context information. The Residual Attention Network [45] uses a self-attention mechanism
to obtain the self-attention weight by calculating the autocorrelation matrix of feature maps,
which achieves better performance. In addition, some works utilized multi-modal data,
mainly 3D elevation data (DSM or nDSM), to assist the semantic segmentation of remote
sensing images, improving the accuracy of semantic prediction [46,47].

2.2. Land Cover Segmentation of Remote Sensing Images

With the development of earth observation technology, as a means to obtain land cover
information in a wide range, remote sensing has been widely used in the task of land cover
segmentation. The use of remote sensing images for land cover segmentation is an earlier
application of remote sensing in the field of land use and monitoring. At present, the land
cover segmentation of remote sensing images mainly adopts machine learning methods
represented by Random Forest and deep learning methods represented by CNNs. Deep
learning methods automatically extract features of objects by building deep networks to
obtain higher segmentation accuracy. Penatti et al. [48] showed that CNNs vastly outperform
the classical machine learning methods in terms of land cover segmentation. In the land
cover segmentation part of the DeepGlobe challenge [49], the ranking list was completely
dominated by deep neural networks (DNNs) [50], which have become the mainstream
methods for land cover segmentation research of remote sensing images.

Although remote sensing technology has become the most effective means to obtain
land cover information because it can provide dynamic and rich data sources, the variety
and complex background of remote sensing images often lead to high inter-class similarity
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and low intra-class diversities similarity, which results in blurred boundaries and the
difficult identification of small-scale targets [51] in remote sensing image segmentation.
To solve these problems, many studies have embedded Pyramid Pooling Module (PPM),
Attention Mechanism (AM), and other blocks in deep networks to improve the ability
of extracting features from complex scenes. However, these methods do not make full
use of the spatial position information contained in the global features, so they are more
suitable for the recognition of large-scale objects, while the recognition effect of small-
scale objects is not ideal. Therefore, in the research of land cover segmentation based
on remote sensing images, the current methods mostly combine feature extraction and
feature fusion to gradually recover the detailed information of the image and improve
the recognition ability of multi-scale features, representative networks include U-Net,
FPN [52] and Swin [53], etc. For instance, FPN proposed an approach for automatic multi-
class land segmentation based on a fully convolutional neural network of the FPN family.
RAANet [54] constructed an improved residual ASPP, which obtains multi-scale semantic
information by embedding an attention module and residual structure and achieving
superior land cover segmentation results.

In addition, as one of the land cover types, the accurate segmentation of surface veg-
etation is of great significance for monitoring the dynamic changes in vegetation cover,
grassland degradation, and forest health status evaluation [55]. The research on vegetation
segmentation is mostly based on traditional machine learning methods, which require
artificial selection of feature variables, but the selection of feature variables has a greater
impact on accuracy and is not generalizable. While the semantic segmentation method
based on deep learning has good robustness and segmentation performance, it can avoid
the impact of feature selection on the accuracy. With the rapid development of deep
learning in the field of image segmentation, neural networks have been gradually applied
to vegetation extraction and have achieved good segmentation results. Many scholars
have proposed relevant vegetation segmentation methods, among which the denoising
autoencoder [56] combines the traditional autoencoding structure and ensemble neural
network so that the model can learn the essential features of the input to improve the
accuracy of vegetation segmentation. You Only Look Once version 3 (YOLOv3) [57] and
the faster region-based convolutional neural network (Faster R-CNN) [58,59] focus on
the rapid detection and extraction of vegetation, which has great advantages in speed
and comprehensive performance. Moreover, the double input residual DeepLabv3plus
network (DIR DeepLabv3plus) [60] is proposed to reduce the impact of shading on vege-
tation segmentation, which can effectively improve the accuracy of vegetation extraction
under shadowy conditions. Due to the powerful feature extraction and feature representa-
tion ability, deep-learning-based methods are often more effective than other vegetation
segmentation methods based only on pixels or vegetation categories.

3. Methods

In this section, we introduce the proposed SERNet and give detailed descriptions of
the SERM and RAM modules.

3.1. Network Architectures

The overall architecture of the proposed SERNet is shown in Figure 2. We use two
different inputs for semantic segmentation of the original category and vegetation category
in ISPRS datasets.

3.1.1. Squeeze and Excitation Residual Network

As shown in Figure 2a, SERNet is based on ResNet and consists of two major parts:
stacked SERMs for feature extraction and a RAM for better feature reconstruction. The
SERM is composed of squeeze and excitation block (SE Block) and residual structure. In
addition, for input HRRSIs, feature extraction is carried out by the deep network consisting
of several SERMs. Afterward, the extracted features are fed into the RAM to enhance
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beneficial features. Then, semantic segmentation results are obtained through transposed
convolution and softmax operations.

Figure 2. SERNet Architecture. (a) SERNet with IRRG image as input, the convolution kernels of the
first three modules are 3 × 3, the convolution kernel of the last module is 1 × 1, and the pool size of
max pooling is 3 × 3. (b) SERNet with IRRG and DSM images as inputs.

3.1.2. Segmentation of Surface Vegetation

Because of the similarity of the color and texture between the two categories “Low
Vegetable” and “Tree” and the fuzzy boundary, the segmentation result is not very accurate.
To this end, we add height information of DSM images in the feature extraction process. As
shown in Figure 2b, IRRG images and DSM images in ISPRS datasets are extracted through
the backbone of SERNet separately. Here, we make simple processing of the original
labels, and merge categories other than “Low Vegetable” and “Tree” into the category
“Background” to focus on the segmentation effect of “Low Vegetable” and “Tree”. The
extracted feature maps are then fused through concentrate operation, the RAM is used to
focus on the meaningful features, and the prediction results are obtained after transposed
convolution and softmax operations.

3.2. Squeeze and Excitation Residual Module

The structures of the SE Block and two kinds of SERMs are depicted in Figures 3 and 4.
We introduce two new architectural units termed as: SERM-a and SERM-b, which insert
SE Block into two kinds of regular residual structures. The SE Block consists of channel
squeeze and excitation block (CSE Block) and spatial squeeze and excitation block (SSE
Block), to improve the capacity of feature representation via modeling the interdependencies
in the channel and spatial dimensions. We propose a mechanism that places the SE Block
into two kinds of residual structures to perform feature recalibration adaptively, and the high-
quality features can be spread smoothly in the deep network at the same time. Problems
that might occur such as network degradation or vanishing gradient can be avoided
in a certain way. In the notation that follows, we define the input feature maps X =
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[x1, x2, · · · , xc, · · · , xC], xc ∈ RH×W . Here H, W, and C represent the height, width, and
channels of the input feature maps, respectively, and the subscript c is the cth channel.

Figure 3. Squeeze and Excitation Block. The dimensions of input and output are consistent.

Figure 4. Squeeze and Excitation Residual Modules. The first line is SERM-a, the number of output
channels is twice the number of input channels, and the second line is SERM-b.

3.2.1. Channel Squeeze and Excitation Block

The feature maps X are first passed through CSE Block, which models the interdepen-
dencies between the channels. Firstly, a multi-channel descriptor is produced by encoding
feature maps across spatial dimensions, this descriptor is used to aggregate global informa-
tion and transmitted at subsequent layers of the network. It is implemented by a global
average pooling layer and generates the feature distribution of channel dimension, then
producing vector Z with its elements by shrinking X through its spatial dimensions and
using X = [x1, x2, · · · , xc, · · · , xC] to denote a collection of channels of input feature maps
xi ∈ RH×W .

After this, a simple mechanism is adopted to successively feed the multi-channel
descriptor Z into two shared multilayer perceptrons with hidden layers to generate a set of
modulation weights for each channel, and we use V = [v1, v2, · · · , vc, · · · , vC] to denote the
number of the hidden layer units is C/16 and C/1, respectively. The generated modulation
weights V are applied to the feature maps X through multiply operation to obtain the result
of the CSE Block UCSE = [u1, u2, · · · , uc, · · · , uC]. The formula is shown in the following
equation:

UCSE = V‖X = MLP2(MLP1(Z))‖X = MLP2(MLP1(
1

H×W

H

∑
i=1

W

∑
j=1

xc(i, j)))‖X, (1)

where the MLP1 and MLP2 represent two shared multilayer perceptrons, and ‖ represents
concatenate operation.
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3.2.2. Spatial Squeeze and Excitation Block

Similarly, SSE Block models the relationship between elements of the same spatial
position in the input feature maps X and generates the feature distribution of spatial
dimension. Furthermore, the spatial information is extremely effective for the deep network,
while the distribution is complicated in HRRSIs and the size of ground objects varies greatly,
especially for fine-grained image segmentation. To extract more recognizable spatial
information and aggregate spatial feature maps across channel dimensions effectively, we
use a global max pooling to obtain a feature tensor M = [m1, m2, · · · , mc, · · · , mC]. Here,
we use Xc = [x1,1, x1,2, · · · , xi,j, · · · , xH,W ] to denote a collection of the spatial position of
the cth input feature map, and i ∈ {1, 2, · · · , H}, j ∈ {1, 2, · · · , W}. The superscript i, j is
the ith row and the jth column, and mc is the maximum value among the elements of Xc
and c ∈ {1, 2, · · · , C}.

Then, the spatial feature recalibration is achieved through a reshape operation on M
and a convolution operation with weight W = [w1, w2, · · · , wc, · · · , wC], and we generate a
set of modulation weights S = [s1,1, s1,2, · · · , si,j, · · · , sH,W ]. Finally, the result S is applied
to the feature map X and passes through a sigmoid layer σ to recalibrate and excite X
spatially. Then we can obtain the output of SSE Block USSE = [u1,1, u1,2, · · · , ui,j, · · · , uH,W ]:

USSE = σ(S‖X) = σ((W ·M)‖X), (2)

where the ‖ represents concatenate operation, and · represents convolution operation.

3.2.3. Squeeze and Excitation Residual Block

We combine the channel and spatial information by an addition operation on the
outputs of CSE Block and SSE Block, the generated feature of the SE Block is denoted as
USE = UCSE + USSE. On this basis, we insert it between the addition and the activation
operations of the two residual structures shown in Figure 4. The SERMs parallelly encode
spatial information and channel information and enable deep SERNet to avoid gradient
problems and network degradation to a certain extent. Additionally, the extracted features
are more global with the increasing depth of the network, SERM-a changes the dimension
of the feature vector accordingly. The following SERM-b are connected in series, and the
dimensions of input and output are the same.

3.3. Refine Attention Module

The RAM is constructed to focus on the more beneficial features to reconstruct the
segmentation images accurately. For the extracted feature maps X that are generated by the
deep layers, we feed them into the max pooling layer and average pooling layer; afterwards,
two kinds of aggregating feature distributions are generated. To take advantage of the
feature distributions, we employ a convolution operation with a set of weights W

′
and

a sigmoid layer to generate U, then combine it with feature maps X through multiply
operation. Finally, we can obtain the prediction results by transposed convolution and
softmax operations. The structure is shown in Figure 5 and the formula for generating U is
shown in the following equation:

U = σ(W
′ · (AvgPool(X)‖MaxPool(X))), (3)

where the AvgPool and MaxPool represent average pooling and max pooling, respectively,
‖ represents concatenate operation, and σ represents sigmoid.
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Figure 5. Attention Module. The kernel size of the convolution is 7 × 7.

4. Experiments

In this section, we briefly describe the datasets, evaluation metrics, and implementa-
tion details and verify the superiority of the proposed SERNet over other classic segmenta-
tion models through multiple sets of experiments. Firstly, IRRG images in ISPRS datasets
are used to obtain segmentation results of different models, and the model performance
is analyzed according to the results. Secondly, we verify the positive effect of introducing
DSM images in helping the model achieve better results in vegetation segmentation.

4.1. Datasets

For ground object segmentation and surface vegetation segmentation, we use the
original ISPRS dataset and the ISPRS dataset with labels processed into three categories.

4.1.1. Original Datasets

We evaluate the proposed model on ISPRS Vaihingen and Potsdam datasets provided
by the International Society for Photogrammetry and Remote Sensing (ISPRS), which
contains the high-resolution True Ortho Photo (TOP), Digital Surface Model (DSM), and
ground truth images. The ground truth images are annotated according to six types:
impervious surfaces, low-vegetation, cars, trees, buildings, and backgrounds.

The ISPRS Vaihingen dataset contains 33 true orthophoto images, 16 images with
corresponding labels are used for training, and the remaining 17 images are used for testing.
The resolution of the image is 9 cm, and the average size is 2064 × 2494. Moreover, each
image includes three channels: near-infrared (NIR), red (R), and green (G). The ISPRS
Potsdam dataset contains 38 orthophoto images, 24 images with corresponding labels
are used for training, and the remaining 14 images are used for testing. The resolution
of the image is 5 cm, and the size of each image is 6000 × 6000. In addition to the
above three bands, it also contains blue (B). The categories are consistent with the ISPRS
Vaihingen dataset.

For the ISPRS Vaihingen dataset, the accessible data are 16 pairs of original images
and labeled images. We crop the images into pieces of size 256 × 256, and the training set
and testing set are randomly divided from all available pieces in a ratio of 80%:20%. Due to
the large original size of the ISPRS Potsdam dataset, IRRG images are used and we crop the
24 pairs of original images and labeled images into bigger patches with a size of 512 × 512.
The training set and testing set are randomly divided from all available pieces in a ratio of
80%:20%.

4.1.2. Processed Datasets

In order to focus on the segmentation effect of the categories “Low Vegetable” and
“Tree”, we process the label images of the ISPRS datasets and merge the categories “Im-
pervious Surfaces”, “Cars”, and “Buildings” into the category “Background”; then, only
three categories are left in the merged label images. In addition, the cropping and division
methods are consistent with those described above.

Both datasets provide corresponding DSM data generated from the original images
by dense matching using the Match-T software [61]. The true orthophoto data and DSM
data are defined on the same grid with consistent ground resolution. A part of the area
covered by the DSM grid does not contain any data. In the DSM, these void areas are
marked with a specific height value, and small void areas were filled using a variant of
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nonlinear diffusion that is adaptive to height changes [62]. We cropped the DSM images
corresponding to ISPRS Vaihingen dataset to 256× 256 and the DSM images corresponding
to ISPRS Potsdam dataset to 512 × 512.

4.2. Evaluation Metrics

The semantic segmentation model is evaluated based on the confusion matrix of
pixels, the confusion matrix represents the record of the true values and the predicted
values, where the rows of the matrix represent the true value and the columns of the matrix
represent the predicted value. The True Positives (TP) and the True Negative (TN) are
the elements on the main diagonal, the False Positives (FP) are the accumulation of each
column, excluding the main diagonal elements, while the False Negative (FN) is along
the row. To evaluate the semantic segmentation results of the networks, we adopt three
evaluation metrics, including mean intersection over union (mIoU), average F1-score (AF),
and overall accuracy (OA). These metrics are defined as follows:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, (4)

F1 = 2× (
Precision · Recall

Precision + Recall
), AF =

∑N
i=1 F1

N
, (5)

IoU =
TP

TP + FP + FN
, mIoU =

∑N
i=1 IoU

N
, (6)

OA =
TP + TN

TP + TN + FP + FN
, (7)

where N is the number of categories. OA is evaluated over a whole image, while F1 and
IoU are evaluated for a specific class. AF and mIoU are evaluated for all categories as the
averages of F1 and IoU, respectively.

Implementation Details

We train all the models from the scratch without using pre-training parameters and
models. The parameter settings on the Vaihingen and Potsdam datasets are consistent
during training: the batch size is set to 4, the learning rate is set to 1 × 10−4, and the Adam
optimizer is adopted. We implement all the experiments on the Keras platform with an
NVIDIA Tesla V100 GPU. Moreover, considering the distribution of dataset categories,
we use the dice function to solve the class imbalance problem of the inputs and enforce
a smooth training using cross entropy. Therefore, the combo loss [63] is adopted as the
loss function, it is the weighted sum of modified cross entropy (C) and dice loss (D). The
relevant formulas are as follows:

C(p, t) = − 1
N

N

∑
i=1

β(ti ln pi) + (1− β)[(1− ti) ln (1− pi)], (8)

D(p, t) =
N

∑
i=1

(
2×∑N

i=1 piti + S

∑N
i=1 pi + ∑N

i=1 ti + S
), (9)

LCombo = αC(p, t)− (1− α)D(p, t), (10)

where pi and ti represent the predicted value and the true value, respectively; α controls the
amount of dice term contribution in the combo loss function LCombo; and β ∈ [0, 1] controls
the level of model penalization for FP and FN. N is the product of the number of categories
and number of samples. In our implementation, the value of α and β are both set to 0.5. To
prevent division by zero, we set a smoothing factor S, and the value of S is set to 1.
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4.3. Analysis
4.3.1. Segmentation of Original Categories

To evaluate the proposed SERNet framework, we compare the performance with
the classic models shown in Tables 1 and 2 on ISPRS Vaihingen and Potsdam datasets,
which include the FCN-32s [23], FCN-8s [23], UNet [26], ResNet50 [38], RefineNet [28],
CBAM [42], ResUNet++ [64], SCAttNet V2 [43], PSPNet [33], FPN [52], Deeplab v3+ [35],
RAANet [54], and SENet [40]. We do not evaluate the category “Background” due to the
fewer backgrounds in the ISPRS datasets.

Table 1 shows the results of different models on the ISPRS Vaihingen dataset. It can be
seen that among the three selected evaluation metrics mIoU, AF, and OA have achieved
72.69%, 84.49%, and 88.19% accuracy, respectively. Among the remaining models, SENet
obtains the highest segmentation accuracy, the mIoU, AF, and OA are increased by 2.10%,
2.11%, and 2.44% respectively compare with SENet, which shows the effectiveness of the
SERNet in extracting the category-based information. Table 2 shows the experimental
results on the ISPRS Potsdam dataset, SERNet can produce 76.76% in mIoU, 87.04% in AF,
and 90.29% in OA. Compared with SENet with the second highest results, the mIoU, AF,
and OA are improved by 1.98%, 1.39%, and 2.38%, respectively. From Tables 1 and 2, it can
be clearly seen that our proposed SERNet is more accurate than other methods in terms of
the segmentation accuracy for the categories “Imperious Surface”, “Building”, and “Car”,
and the overall performance of SERNet is superior to other comparison methods. However,
the best results are not obtained in the categories “Low Vegetable” and “Tree”. We also note
the segmentation accuracy of these two categories is generally not ideal on all models. We
think it is mainly because the small interclass variance between these two categories, such
as color, texture, and other aspects, show high similarity, which brings great challenges to
accurate semantic segmentation. In addition, the vegetation is widely distributed, with
divergent and irregular edges and fuzzy boundaries. The proposed network has room
for improvement in accurately segmenting irregular edges, and it is difficult to identify
scattered objects belonging to these categories.

Table 1. Experimental results of original categories segmentation on the ISPRS Vaihingen dataset. The
accuracy of each category is assessed by the IOU/F1-Score. Boldface indicates the best performance.

Method Imp. Surface Building Low Veg. Tree Car mIoU(%) AF(%) OA(%)

FCN-32s [23] 68.24/81.14 70.55/82.71 58.19/72.26 61.05/75.59 27.35/39.02 57.08 70.14 78.13
FCN-8s [23] 72.23/83.41 75.54/84.98 63.64/77.78 64.98/77.86 44.97/59.91 64.27 76.79 80.56
UNet [26] 78.09/86.93 79.47/86.87 66.52/79.67 66.13/79.35 52.38/67.63 68.52 80.09 83.69
ResNet50 [38] 78.71/87.16 80.43/87.37 66.71/79.94 67.72/81.17 54.21/70.15 69.56 81.16 84.45
RefineNet [28] 78.56/87.58 80.31/88.13 64.76/78.98 65.36/79.23 56.98/73.13 69.19 81.41 84.85
CBAM [42] 78.98/88.21 81.17/89.02 66.83/80.14 69.87/81.98 53.32/69.46 70.03 81.76 85.03
ResUnet++ [64] 79.47/88.65 81.23/89.23 65.93/79.62 69.11/81.33 53.04/68.77 69.76 81.52 85.07
SCAttNet V2 [43] 80.32/89.07 82.06/90.26 66.81/80.05 67.18/80.14 54.16/69.88 70.11 81.88 85.42
PSPNet [33] 81.13/89.63 82.67/90.51 66.43/79.89 67.52/80.61 53.81/70.14 70.31 82.16 85.64
FPN [52] 79.72/88.44 81.19/89.31 65.75/79.58 67.29/80.44 57.63/73.95 70.32 82.34 85.65
Deeplab v3+ [35] 79.67/88.37 81.91/89.64 67.75/81.70 68.70/81.73 54.43/70.04 70.49 82.30 85.69
RAANet [54] 79.49/88.26 83.42/91.06 67.93/82.01 67.35/80.51 55.29/71.56 70.50 82.37 85.73
SENet [40] 80.57/89.01 82.11/90.02 67.03/80.79 68.44/81.43 54.81/70.63 70.59 82.38 85.75
SERNet w/o SE, RAM 80.52/89.32 82.75/90.38 66.84/80.43 67.70/81.42 56.66/72.39 70.89 82.79 86.38
SERNet w/o RAM 83.00/91.69 84.10/91.25 67.47/81.31 68.04/81.01 59.27/75.12 72.38 84.08 87.78
SERNet (ours) 83.15/91.79 84.59/91.64 67.72/81.68 67.73/81.64 60.25/75.68 72.69 84.49 88.19

The structure of SERNet (ours) is shown in Figure 2a.
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Table 2. Experimental results of original categories segmentation on the ISPRS Potsdam dataset. The
accuracy of each category is assessed by the IOU/F1-Score. Boldface indicates the best performance.

Method Imp. Surface Building Low Veg. Tree Car mIoU(%) AF(%) OA(%)

FCN-32s [23] 68.40/78.98 74.54/84.85 46.06/63.77 60.78/74.86 58.76/74.00 61.71 75.29 79.73
FCN-8s [23] 71.65/83.16 72.58/83.47 50.16/65.95 62.11/75.06 58.73/73.81 63.05 76.29 82.17
UNet [26] 74.69/85.15 85.01/91.53 49.47/66.11 62.62/76.05 59.76/74.64 66.31 78.70 84.09
ResNet50 [38] 76.13/86.47 86.57/92.67 50.03/67.21 62.58/77.19 65.11/79.43 68.08 80.59 85.65
RefineNet [28] 76.27/86.49 86.10/92.54 50.95/67.49 62.75/77.33 62.93/77.17 67.80 80.20 85.46
CBAM [42] 76.23/85.72 84.17/90.92 49.65/66.58 62.78/77.40 76.87/86.62 69.94 81.45 85.99
ResUNet++ [64] 77.91/87.56 87.36/91.29 50.26/66.79 64.27/78.34 70.43/81.14 70.05 81.02 86.39
SCAttNet V2 [43] 80.44/89.18 88.89/94.20 56.17/71.91 63.45/77.63 77.80/87.36 73.35 84.06 87.58
PSPNet [33] 79.78/88.75 87.91/93.60 54.43/70.48 64.12/78.08 78.97/88.23 73.04 83.83 87.45
FPN [52] 77.49/87.33 86.98 /92.88 56.28/72.05 64.71/78.26 81.34/91.71 73.36 84.45 87.67
Deeplab v3+ [35] 78.75/88.06 87.72/93.44 58.49/74.52 65.86/79.37 77.15/87.09 73.59 84.50 87.23
RAANet [54] 78.83/88.14 88.65/94.12 55.34/71.03 64.07/77.92 79.58/88.72 73.29 83.99 87.56
SENet [40] 81.57/90.41 88.09/93.67 57.12/73.29 67.13/81.79 79.98/89.10 74.78 85.65 87.91
SERNet (ours) 84.31/91.75 91.87/95.30 57.58/73.74 67.81/82.26 82.24/92.13 76.76 87.04 90.29

The structure of SERNet (ours) is shown in Figure 2a.

To display the segmentation results of the above models more visually, we visualize
the original images, ground truth, and prediction results. In Figures 6 and 7, it can be
seen that the overall performance of SERNet is superior to other comparison methods and
the boundaries among different classes are clearer. In addition, we can see from the red
dashed box marked in Figure 6 that our model has obvious superiority for segmenting the
small-size target category “Car”, and for the segmentation of large-size target categories
such as “Building”, the edges are smoother.

Figure 6. Visualization results of the ISPRS Vaihingen dataset. (a) Original image. (b) Ground
truth. (c) FCN-32s. (d) FCN-8. (e) UNet. (f) RefineNet. (g) ResNet50. (h) CBAM. (i) ResUNet++.
(j) SCAttNet V2. (k) PSPNet. (l) FPN. (m) Deeplab v3+. (n) RAANet. (o) SENet. (p) SERNet.
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Figure 7. Visualization results of the ISPRS Potsdam dataset. (a) Original image. (b) Ground
truth. (c) FCN-32s. (d) FCN-8. (e) UNet. (f) RefineNet. (g) ResNet50. (h) CBAM. (i) ResUNet++.
(j) SCAttNet V2. (k) PSPNet. (l) FPN. (m) Deeplab v3+. (n) RAANet. (o) SENet. (p) SERNet.

4.3.2. Segmentation of Vegetation Categories

To improve the segmentation accuracy of the categories “Low Vegetable” and “Tree”,
we train all the models using the processed datasets which are merged into three categories.
The results are shown in Tables 3 and 4, and it can be seen that the segmentation results
obtained with the processed datasets have improved compared with the original dataset
on the three evaluation indicators we select, but the accuracy of each category has not
improved that much. We consider that this is because the merger of categories improves
the segmentation accuracy of the category “Background” while reducing the overall classi-
fication error; thus, the segmentation results appear to have a large improvement in OA.
However, in fact, there is no significant impact on the vegetation segmentation that we
focus on. The experimental results obtained by using only DSM images as input are shown
in SERNet(A-DSM) in Table 3. DSM images train the feature representation ability of the
model to a certain extent, and the elevation information provided by DSM images can
achieve approximate segmentation of target categories, so we introduce DSM images to
provide the elevation information and use the structure shown in Figure 2b to train SERNet
with DSM images and IRRG images. As can be seen from the segmentation results in the
penultimate line and the last line of Tables 3 and 4, both vegetation category accuracy and
overall accuracy have been significantly improved. Table 3 shows the results of different
models on the ISPRS Vaihingen dataset. It can be seen that the mIoU, AF, and OA have
achieved 76.85%, 87.29%, and 91.45%, respectively. Compared with SERNet(a), which only
uses IRRG images as input, the mIoU, AF, and OA are improved by 1.45%, 1.90%, and
1.44%, respectively. Table 4 shows the experimental results on the ISPRS Potsdam dataset.
SERNet(b) can produce 74.05% in mIoU, 85.66% in AF, and 92.59% in OA. Compared with
SERNet(a), the mIoU, AF, and OA are improved by 1.53%, 1.61%, and 1.56%, respectively.
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Table 3. Experimental results of vegetation segmentation on the ISPRS Vaihingen dataset. The
accuracy of each category was assessed by the IOU/F1-Score. Boldface indicates the best performance.

Method Low Veg. Tree Background mIoU(%) AF(%) OA(%)

FCN-32s [23] 58.47/73.67 61.67/76.43 84.59/89.17 68.24 79.76 81.24
FCN-8s [23] 64.31/78.05 65.80/79.37 87.74/91.02 72.62 82.81 83.76
UNet [26] 65.97/79.02 65.81/79.04 86.21/90.45 72.66 82.84 86.57
ResNet50 [38] 66.49/79.68 66.93/80.42 88.40/91.94 73.94 84.01 86.61
RefineNet [28] 65.61/79.70 66.04/79.86 89.04/92.56 73.56 84.04 87.49
CBAM [42] 67.11/80.35 69.98/82.02 88.39/92.03 75.16 84.80 89.16
ResUnet++ [64] 65.38/79.23 68.46/80.79 88.13/91.78 73.99 83.93 87.99
SCAttNet V2 [43] 67.04/80.11 67.13/80.14 89.21/93.04 74.46 84.43 88.53
PSPNet [33] 67.17/80.20 68.15/81.01 88.46/92.15 74.59 84.45 88.38
FPN [52] 66.55/79.76 68.67/81.59 89.32/92.81 74.85 84.72 89.38
Deeplab v3+ [35] 68.21/81.54 68.92/81.80 88.01/91.76 75.05 85.03 89.67
RAANet [54] 68.06/81.83 67.62/80.60 89.05/92.29 74.91 84.91 89.54
SENet [40] 67.83/81.16 68.37/81.23 88.67/92.31 74.96 84.90 88.72
SERNet (a-DSM) 50.34/62.71 48.47/61.23 67.59/71.86 55.47 65.27 71.83
SERNet (a) 68.02/81.39 68.78/81.95 89.41/92.82 75.40 85.39 90.01
SERNet (b) 69.71/83.42 70.69/83.87 90.14/94.57 76.85 87.29 91.45

The structures of SERNet (a) and SERNet (b) are shown in Figure 2a,b, respectively.

Table 4. Experimental results of vegetation segmentation on the ISPRS Potsdam dataset. The accuracy
of each category was assessed by the IOU/F1-Score. Boldface indicates the best performance.

Method Low Veg. Tree Background mIoU(%) AF(%) OA(%)

FCN-32s [23] 46.08/63.72 61.29/74.98 74.99/84.91 60.79 74.54 82.74
FCN-8s [23] 50.57/66.47 62.65/75.55 76.79/85.34 63.34 75.79 84.95
UNet [26] 50.24/66.71 62.04/75.46 84.76/89.62 65.68 77.26 86.19
ResNet50 [38] 50.01/66.43 63.98/77.59 87.47/93.30 67.15 79.11 88.91
RefineNet [28] 50.74/67.59 63.11/77.32 86.12/92.19 66.66 79.03 87.78
CBAM [42] 51.62/68.01 64.23/78.14 85.73/91.25 67.19 79.13 88.79
ResUnet++ [64] 49.59/66.24 61.71/75.34 86.59/92.77 65.96 78.12 87.90
SCAttNet V2 [43] 56.10/71.84 63.40/77.57 88.84/94.09 69.45 81.17 89.75
PSPNet [33] 55.46/71.29 64.57/78.38 87.41/93.26 69.15 80.98 89.86
FPN [52] 56.22/71.92 64.32/78.26 86.09/92.00 68.88 80.73 89.57
Deeplab v3+ [35] 58.75/74.64 65.42/79.07 88.31/93.8 70.83 82.50 89.42
RAANet [54] 57.38/73.33 65.10/78.87 88.67/92.36 70.38 81.52 89.93
SENet [40] 57.43/73.51 67.66/82.14 90.29/94.67 71.79 83.44 90.01
SERNet (a-DSM) 40.27/53.46 50.28/63.45 70.16/75.18 53.57 64.03 70.87
SERNet (a) 58.17/74.09 68.34/83.21 91.05/94.84 72.52 84.05 91.03
SERNet (b) 59.63/75.73 69.85/84.73 92.68/96.53 74.05 85.66 92.59

The structures of SERNet (a) and SERNet (b) are shown in Figure 2a,b, respectively.

To show the vegetation segmentation results more intuitively, we visualize the original
images, ground truth, and prediction results as shown in Figures 8 and 9. We observed from
the red dashed box in Figure 9 that the boundary between different categories is clearer and
smoother in the segmentation result of SERNet(b). In addition, the segmentation results
of object categories with random distribution and irregular shapes are more accurate. In
particular, we find some of the same incorrect predictions among the several segmentation
results. By comparing these visualization results with the real situation on the ground, we
found that there is a small number of labeling errors in the ISPRS dataset, as shown by
the areas with yellow rectangles in Figures 8 and 9, and these incorrect prediction results
actually correct the labeling errors in the original ISPRS datasets.



Remote Sens. 2022, 14, 4770 15 of 19

Figure 8. Visualization results of the ISPRS Vaihingen dataset. (a) Original image. (b) Ground
truth. (c) FCN-32s. (d) FCN-8. (e) UNet. (f) RefineNet. (g) ResNet50. (h) CBAM. (i) ResUNet++.
(j) SCAttNet V2. (k) PSPNet. (l) FPN. (m) Deeplab v3+. (n) RAANet. (o) SENet. (p) SERNet.

Figure 9. Visualization results of the ISPRS Potsdam dataset; the left side of (a) shows an enlarged
image of the main part of the “Tree” category in the original image. (a) Original image. (b) Ground
truth. (c) FCN-32s. (d) FCN-8. (e) UNet. (f) RefineNet. (g) ResNet50. (h) CBAM. (i) ResUNet++.
(j) SCAttNet V2. (k) PSPNet. (l) FPN. (m) Deeplab v3+. (n) RAANet. (o) SENet. (p) SERNet.
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5. Discussion
5.1. Ablation Study

We also conducted an additional ablation experiment on the Vaihingen dataset to test
the effects of SE Block and RAM on segmentation results. The third to last line of Table 1
is the network without SE Block and RAM, the second to last line is the network with SE
Block inserted only, and the last line is the proposed SERNet.

The third to last line and the second to last line are studies on SE Block. It can be seen
that the insertion of SE Block improves the semantic segmentation results significantly,
especially for “Imperious Surface” and “Car”. The mIoU, AF, and OA are increased by
1.49%, 1.29%, and 1.40%, respectively. We argue that the insertion of SEBlock can recalibrate
feature responses adaptively by modeling the long-range dependencies in the channel
and spatial dimensions. Then, effective information can be transmitted from the shallow
layer to the deep layer based on the deep residual network, which improves the feature
representation ability and helps obtain better segmentation results. Additionally, the
combo loss function we use solves the problem of class imbalance to a certain extent, so the
segmentation of small targets such as “Car” may have a better performance. The second
to last line and the last line are studies on RAM. Although RAM has a little effect on the
improvement of the model performance, it has a positive effect on the network, as the
mIoU, AF, and OA are increased by 0.31%, 0.41%, and 0.41%, respectively. We consider that
RAM focuses on the global information that is more meaningful to the current task, so it
has a certain effect on improving the prediction accuracy. However, since it is inserted at
the bottom of the network and does not participate in the feature extraction process of the
deep network, it has little influence on the feature extraction ability of the model.

5.2. Improvements and Limitations

The model we propose focuses on modeling the relationship between features in the
channel and spatial dimensions, and realizes information transmission in deep layers,
thereby improving the feature representation ability of the model. In addition, we further
focus on the segmentation of surface vegetation, integrating elevation information provide
by DSM images to improve the segmentation accuracy of the categories “Low Vegetable”
and “Tree” in ISPRS datasets. Experimental results prove that our model improves the
segmentation accuracy of the target objects through the proposed method.

In addition, our models and experimental results also have certain limitations. On the
one hand, we introduce DSM images to improve the accuracy of the surface vegetation
segmentation, but a simple fusion method is used to combine the features of the DSM
images and the IRRG images, which may result in feature redundancy and negative mutual
influence. Next, we will explore more appropriate methods in feature fusion, so that the
model can capture the information from the IRRG images and the DSM images more
effectively, and improve the segmentation performance of HRRSIs. On the other hand,
the number of parameters of SERNet is relatively large, which increases the computation
burden in a certain way. Therefore, an attempt can be made to reduce the computation of
the model without affecting the model performance.

6. Conclusions

In this paper, we propose a promising semantic segmentation network that can per-
form feature recalibration adaptively and improve the capacity of feature representation
to make high-quality features spread smoothly in the network. Experimental results on
the ISPRS Vaihingen and Potsdam datasets confirm the superiority of the proposed model.
Moreover, we merge the label images of the ISPRS datasets into three categories, and the
features of DSM images and IRRG images are extracted and fused by the proposed model to
improve the segmentation accuracy of vegetation categories. A series of experiments show
that although the predictions become more accurate as the model is further improved, it still
benefits from the introduction of elevation information. Therefore, additional information
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can increase the upper limit of segmentation accuracy, which may be emphasized when
more challenging remote sensing datasets are published in the future.
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