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Abstract: Terrestrial LiDAR (light detection and ranging) has been used to quantify micro-topographic
changes using high-density 3D point clouds in which extracting the ground surface is susceptible to
off-terrain (OT) points. Various filtering algorithms are available in classifying ground and OT points,
but additional research is needed to choose and implement a suitable algorithm for a given surface.
This paper assesses the performance of three filtering algorithms in classifying terrestrial LiDAR
point clouds: a cloth simulation filter (CSF), a modified slope-based filter (MSBF), and a random
forest (RF) classifier, based on a typical use-case in quantifying soil erosion and surface denudation. A
hillslope plot was scanned before and after removing vegetation to generate a test dataset of ground
and OT points. Each algorithm was then tested against this dataset with various parameters/settings
to obtain the highest performance. CSF produced the best classification with a Kappa value of 0.86,
but its performance is highly influenced by the ‘time-step’ parameter. MSBF had the highest precision
of 0.94 for ground point classification but the highest Kappa value of only 0.62. RF produced balanced
classifications with the highest Kappa value of 0.75. This work provides valuable information in
optimizing the parameters of the filtering algorithms to improve their performance in detecting
micro-topographic changes.

Keywords: terrestrial LiDAR; point cloud classification; cloth simulation filter; modified slope-based
filter; random forest classifier; micro-topographic change detection

1. Introduction

Light detection and ranging (LiDAR) technologies can produce highly precise three-
dimensional (3D) topographic data by emitting lasers and measuring their return time [1].
These technologies have the capability to quantify structural changes on the surface, such as
erosion and deposition, without surface disturbance and detailed field measurement. When
operated from aircraft, LiDAR sensors can measure 3D data with a point density of sub
meters to meters and on scales from a single kilometer to over a hundred kilometers [2–4].
In comparison, ground-based laser scanners can acquire the data with a significantly
higher point density but on a much smaller spatial extent. In a typical use-case of LiDAR
technologies in quantifying soil erosion and surface denudation, a high density and fine
spatial resolution are necessary to estimate micro-topographic changes, such as hillslope
and streambank erosion [5–7]. In particular, when erosion is dispersed across space as
sheet or interrill erosion, an unsustainable level of erosion can result from millimeter-scale
topographic changes. Ground-based LiDAR can be implemented from stationary-fixed
laser scanners on tripods or from personal wearable, movable laser scanners. The laser
scanner operated from tripods is commonly known as Terrestrial Laser Scanning (TLS). TLS
has been used in various settings where accurately measuring surface changes necessitates
high point density and precision, such as hillslopes [5–7], tilled soils [8–10], badlands [11],
erosion plots [12], gullies [13–17], bluffs [18], and channels [19].

When measuring surface changes from 3D point clouds at fine scales where TLS is
frequently used, special care is needed to mitigate the effect of erroneous non-ground
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points [5,6]. Non-ground or off-terrain (OT) points can be produced by many sources,
such as scanner error, noise, vegetation, or ground litter. Any point obscuring the accurate
representation of the ground surface reduces the accuracy of subsequent analysis. Therefore,
most uses of TLS data are accompanied by a 3D point cloud filtering process to isolate
ground points. Filtering can substantially increase the accuracy of a surface represented by
a 3D point cloud at fine resolutions [20,21].

Many approaches have been used in filtering 3D point clouds. TLS point clouds can be
manually examined to remove OT points [22,23]. Although it is a straightforward approach,
manually filtering points can be labor-intensive, and the results are not easily replicated.
Automatic filtering approaches that are repeatable with minimal user input are beneficial
when data quantity is relatively high, particularly in multitemporal TLS datasets [24].
Several automatic filtering algorithms have been developed and deployed in TLS-based
topographic change studies, such as a cloth simulation filter (CSF) [25], a modified slope-
based filter (MSBF) [26], and a random forest (RF) classifier filter [27]. Additional research
is needed to choose and implement an automatic filtering algorithm for a given surface.

In an initial study of ground filtering algorithms applied to TLS data, Roberts et al. [28]
found that no single algorithm was adequate for every variety of surface based on the
comparison with a manually classified reference dataset. However, the reference datasets
in their study were of a lower point density than would be expected when measuring fine
surface changes related to erosion. Further research is necessary to evaluate the effect of
point filtering algorithms on high-density TLS point clouds.

This study assesses the performance of three filtering algorithms: CSF, MSBF, and RF,
in identifying ground points from a high-density TLS dataset. Successive TLS scans, one
scan under highly vegetated conditions and a second under bare conditions, were collected
from a controlled erosion plot to produce a testing dataset of classified ground and OT
points. This testing dataset was used to tune the algorithm parameters and measure the
performance of each filtering algorithm. The following questions are addressed using
these results: (1) Can any of the filtering algorithms effectively remove the vegetation
points at fine resolutions?; (2) What is the impact of parameter tuning on the performance
of each algorithm?; and (3) Which algorithm provides the best performance with the
optimized/tunned parameters? This study provides critical insight into the ground point
filtering process, which is essential in using TLS to quantify fine-scale topographic changes.

2. Materials and Methods
2.1. Study Area

The study area is an experimental field site located at the Plant Science unit of the East
Tennessee Research and Education Center, University of Tennessee (ETREC) (Figure 1).
Data were collected from a hillslope plot at the site. The plot has an approximate length
of 21 m, a width of 6 m, and a slope of 15%. The plot is designed to be hydrologically
isolated from other parts of the hillslope, with raised berms at the top and sides of the
plot and a sediment capturing installation at the bottom. The plot was used for testing the
detection limit of TLS on bare hillslope erosion [29], so it was established to be largely free
of vegetation with the application of herbicide, allowing time for vegetation to die off and
burning off all remaining residues. Photographs demonstrating this process can be seen in
Figure 2. The plots underwent no physical disturbance during these processes nor for the
ten prior years, so the soil surface elevation should not have been measurably affected.
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Figure 2. Vegetation removal process.

2.2. Research Design and Filtering Algorithms

Figure 3 shows a flowchart of the whole research design. A test dataset of classified
3D point clouds is needed to assess the performance of different filtering algorithms and
the impact of filtering parameters. Several studies have classified points manually, but
it is time-consuming and labor-intensive [27,28,30]. In this study, successive TLS scans
were collected from the studied plot. One scan was conducted under densely vegetated
conditions, and the second scan was conducted about a month after the first scan under
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bare conditions after removing vegetation. This experiment presents a chance to capture
the same plot under different vegetation conditions in a short period without significant
surface erosion. These two scans are processed to produce the testing dataset to evaluate if
the vegetation points can be effectively removed by filtering algorithms, assess the impact
of parameter tuning on vegetation removal for each filtering algorithm, and compare the
best performance of different filtering algorithms.
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Three automatic filtering algorithms were selected and applied to the testing dataset:
Zhang et al.’s [25] inverted cloth simulation filter (CSF), Vosselman’s [26] modified slope-
based filter (MSBF), and a random forest (RF) classifier. These algorithms were selected
because they are freely available, can be implemented programmatically, and operate only
on the positional information of the 3D point cloud (X, Y, Z).

CSF is a surface-based classifier designed for airborne LiDAR that can be concep-
tualized as a cloth falling over an inverted 3D point cloud. Places touching or within a
threshold of this cloth are classified as ground, and the remaining points are classified as
OT points. CSF’s input parameters include: (1) ‘smoothing’, a Boolean variable controlling
if steep slopes are normalized; (2) ‘cloth resolution’, controlling the grid resolution of the
simulated cloth; (3) ‘rigidness’, the rigidity of the simulated cloth; (4) ‘time step’, affect-
ing the displacement of simulated cloth particles during each iteration; (5) ‘classification
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threshold’, the threshold used to classify the point cloud based on the distance to the
simulated cloth, and (6) ‘iterations’, controlling the maximum iterations of the algorithm. A
detailed description of the algorithm is given by Zhang et al. [25]. The CSF filter has been
implemented in python and MATLAB and is included with the CloudCompare software
(https://www.danielgm.net/cc/, accessed on 2 August 2022) as a plugin. For this study,
CSF is applied through python Anaconda binaries.

MSBF is a conventional morphology and slope-based technique that uses a white
top-hat transformation to equalize ground elevation differences between points before
analyzing the slope and height between a point and its neighbors. Points exceeding a
set height and slope threshold within a neighborhood are classified as OT points and
the remaining points as ground. Adjustable parameters for the MSBF algorithm are:
(1) ‘radius’, the radius for a point’s neighborhood; (2) ‘minimum neighbors’, the minimum
number of points of a neighborhood; (3) ‘slope threshold’ and ‘height threshold’, the
slope and height thresholds for a point to be classified as an OT point relative to its
neighbors; and (4) ‘slope normalization’, controlling if slope normalization is performed. A
detailed description of the MSBF algorithm is given by Vosselman [26]. This algorithm is
available through WhiteBoxTools with command-line tools, a python library, and software
implementations [31]. The python implementation is used in this study.

The RF classifier is a supervised machine learning algorithm that classifies points based
on a ‘forest’ of decision trees built automatically from relationships between identified
features in training data. The RF classifier can be tuned with hyperparameters. Similar
to Weidner et al. [27], this study deviates from default settings by using 100 trees with a
maximum tree depth of 1000. RF training data are composed of features used to predict
labels. The OT points classified in the testing dataset make up the labels for this study.
The features used to predict the labels are the three normalized eigenvalues calculated
at each point, considering all points within a neighborhood radius of 0.005 m, 0.0075 m,
0.01 m, 0.015 m, and 0.025 m. This results in five features for each neighborhood, for a
total of fifteen features considering five spatial scales. The eigenvalues were normalized
by dividing a given eigenvalue by the sum of all three eigenvalues for the considered
neighborhood radius. Two models were built and tested on a subset of the testing dataset.
The first model considered the full range of neighborhood eigenvalues, and the other
model only the 0.005 m, 0.01 m, and 0.015 m neighborhood eigenvalues. Conceptually,
this should allow the classifier to consider the shape of the surface at slightly different
scales. Eigenvalues were calculated using CloudCompare command-line tools. The points
within a subset of the testing dataset were randomly split 75/25% for training and testing
purposes in building and comparing the two models. The RF classifier was implemented
using the sklearn python library [32].

While CSF and MSBF require input parameters, the implementation of the RF classifier
requires defined features from testing data to set internal parameters. To examine the
influence of different parameters for CSF and MSBF, several hundred combinations of a
range of parameters were applied to a subset of the testing dataset on the central portions of
the plot (Figure 1b). The same subset was also used as training data to build the RF models.
The subset of the testing dataset contains approximately 7 million points, with 2.8 million
points classified as ground and 4.2 million points classified as OT points. A subset of
the testing dataset was used for analyzing parameters and building the RF classifier to
significantly reduce computation time when exploring parameters.

2.3. Data Collection, Registration, and Preprocessing

Two TLS surveys were conducted on 4 June 2020 (June scan) and 6 July 2020 (July scan).
The June scan captured plot conditions before removing vegetation and contains dense live
and dead, standing and flat vegetation on the plot. The July scan was conducted under
bare plot conditions after vegetation was almost completely removed through herbicide
killing and burning of standing and surface residue. All scans were collected using a
FARO Focus3D X 330 (Faro Technologies, Lake Mary, FL, USA). This scanner has a laser
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wavelength of 1.55 × 10−6 m, a beam divergence of 0.00019 rad, and a beam diameter
at exit of 0.00255 m. The scanner is rated to measure the distance to surfaces from 0.6 m
to 130 m with a ranging error of ±0.002 m at 20 m. The device’s field of view is 360◦

horizontal and 300◦ vertical. The scanner is mounted on an extending tripod to gain a
favorable scanning angle. After an approximate alignment of the tripod, the scanner’s
internal dual-axis compensator levels the scan data with an accuracy of 0.015◦. A scanning
resolution of 0.5 of the scanner’s full capability is used to balance the density of points with
scan time, which results in over 177 million points over the entire field of view with an
average point density of 93,000 points/m2 within 20 m and a scan time of roughly 8 min.
Scans were collected with the scanner at the top, bottom, and sides of the plot to gain a
more even distribution of point densities and a greater likelihood of points reaching the
ground (Figure 1). Each scan renders a 3D point cloud file that reports each point with
geometric fields (X, Y, Z), color fields (R, G, B), and return intensity.

To control the quality of the TLS data collection, concrete mounting piers were installed
at the corners of the plot to serve as permanent and fixed locations for registration targets.
Considering the capacity of TLS in delineating 3D shapes, identical spherical registration
targets with a diameter of 0.139 m were used. Raw TLS scans were registered using
Leica Cyclone software. After importing, the spherical registration targets were manually
identified. All eight scans were registered into a single local coordinate system using only
the identified spherical targets. For each spherical target, the registration software creates
target constraints pairing that target to the same target in every other scan. The registration
process attempts to minimize the distance between all target constraints. The quality of
registration is assessed through the absolute error, any remaining distance, between valid
registration target constraints after registration. A box plot of all absolute errors between
target constraints is shown in Figure 4. The registration software reported a mean of the
absolute error between target constraints of 0.0035 m. Please check Fan et al. [33] for the
details in calculating registration errors. Individual viewpoint scans for the plot at each
date were merged into one 3D point cloud. The 3D point cloud is then manually clipped to
include only points within a boundary about a half meter away from the plot edge to avoid
potential edge effects and reduce the size of the data before further processing (Figure 1b).
To remove outlier and noise points, the ‘statistical outlier filter’ tool in CloudCompare was
applied to the 3D point clouds. This tool removes any point whose distance, considering
a neighborhood of the nearest 50 points, was two standard deviations higher than the
average distance between points within the neighborhood.
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Assuming that the June and July scans measured the same surface with and without
vegetation, any point within the vegetated June 3D point cloud whose distance away
from the nearest point in the bare July dataset is greater than the registration error could
be reasonably classified as an OT point. However, removing vegetation from the plot
took around a month, and the plot did experience some surface erosion during this time.
The weather station at the McGhee Tyson Airport, 9.5 km away, recorded 98.2 mm of
precipitation between the June and July scan. While the vegetation and residue were still
present on the plot until just before the July scan, providing some protection of the surface,
it can be assumed that the plot did experience some degree of erosion. To account for this,
the threshold distance between points in the vegetated June and bare July clouds used
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to classify OT points was set to 0.01 m after visual inspection (Figure 5). This distance is
considered sufficiently far that the great majority of points in the vegetated June 3D point
cloud that are at least 0.01 m away from the bare July 3D point cloud and thereby classified
as OT points are a result of genuinely representing a non-ground object rather than a result
of noise or an eroded surface. The distances between 3D point clouds were calculated
using the cloud-to-cloud (C2C) absolute distance tool within the CloudCompare software,
which computes an unsigned distance between every point in one 3D point cloud and
the nearest point in another 3D point cloud. After running the C2C tool on the vegetated
June and bare July scans, a binary field was generated for the vegetated June 3D point
cloud to classify each point as ground or OT based on the C2C absolute distance. This
classification is treated as the ‘ground truth’ for further assessment of the performance of
the filtering algorithms.
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2.4. Performance Assessment Methods

The performance of each filtering algorithm was analyzed using a set of classification
accuracy metrics, including overall accuracy, F1-score, recall, and precision. Excluding
overall accuracy, the accuracy metrics are defined in the following equations using the
terms of a binary classification confusion matrix: true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). Precision, P, is defined as the ratio of correct
positive classifications to all positive classifications (Equation (1)).

P =
TP

TP + FP
(1)

Recall, R, is defined as the ratio of correct positive classifications to all true positives
(Equation (2)).

R =
TP

TP + FN
(2)

The F1-score, F1, is the harmonic mean of precision and recall (Equation (3)).

F1 = 2 × P × R
P + R

(3)

F1-score, recall, and precision are reported for both OT and ground classes. In addi-
tion, Cohen’s Kappa score, k, is calculated and used as the primary metric for analyzing
parameter performance and overall model performance (Equation (4)).

k =
2 × (TP × TN − FN × FP)

(TP + FP)× (FP + TN) + (TP + FN)× (FN + TN)
(4)
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Cohen’s Kappa considers the possibility of agreement occurring by chance among
raters [34] and is more robust to imbalances in the dataset. Unlike F1-score, recall, and
precision, it provides a single agreement value that considers both classes. McHugh [35]
suggests Cohen’s Kappa scores above 0.6 indicate a ‘Moderate’ agreement, scores above 0.8
a ‘Strong’ agreement, and scores above 0.9 an ‘almost perfect’ agreement.

Considering the immense dataset size and the challenges of displaying three-
dimensional data, we illustrate the classified points using three smaller sites within the plot
representing a range of conditions and a cross-sectional profile across the middle of the plot.
At each site, the 3D point cloud is viewed from two perspectives. A top-down perspective
compresses the Z (height) axis, highlighting the X (side-to-side) and Y (up-and-down slope)
axes. A side view looking upslope compresses the Y axis, showing the X and Z axes. At
each site and from each perspective, the colors of the points in the 3D point cloud are
used to visualize site conditions, testing data, and algorithm results. The testing dataset
classifications and RGB points from the bare and vegetated scans provide context for the
surface. The results from each algorithm are shown using four classes. ‘True Ground’ and
‘True OT’ are points correctly classified as ground or OT. ‘False OT’ is a ground point in the
testing dataset that the algorithm classified as OT, and ‘False Ground’ is an OT point in the
testing dataset classified as ground by the algorithm. The same four classes are also used to
illustrate the cross-sectional profile across the middle of the plot.

3. Results

Of the over 30 million points, approximately 13 million points had a C2C absolute
distance of <0.01 m between the vegetated June and bare July scans, and 17 million points
had a C2C absolute distance of >0.01 m. These points are classified as ground and OT
points, respectively. Figure 6 shows the histogram of the C2C absolute distances and
classifications. Cross sections of the testing dataset overlaying the bare July 3D point cloud
reveal a close agreement between the ground classified points and the points from the bare
scan where vegetation is sparse (Figure 7). In highly vegetated areas, fewer points fall
under the 0.01 m threshold, and ground-classified points occur much more infrequently.
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The adjustable parameters of the CSF algorithm are ‘smoothing’, ‘cloth resolution’,
‘rigidness’, ‘time step’, ‘classification threshold’, and ‘iterations’. Of these parameters, only
‘cloth resolution’, ‘time step’, and ‘classification threshold’ were found to substantially
affect the classification. The parameters that did not affect classification were set to the
recommended default values of ‘smoothing = false’, ‘rigidness = 3’, and ‘iterations = 500’.
For the parameters affecting the classification, combinations of the following value ranges
were used: ‘cloth resolution’ from 0.002 m to 0.012 m; ‘time step’ from 0.1 m to 0.65 m;
and ‘classification threshold’ from 0.005 m to 0.01 m. This resulted in 277 combinations
of parameters being applied to a subset of the testing dataset. These values were selected
considering the point density of the dataset and the expected scale of changes.

For the MSBF algorithm, combinations of input parameters of the following value
ranges were used: ‘radius’ from 0.005 m to 0.07 m; ‘minimum neighbors’ from 10 to 75;
‘slope threshold’ from 40◦ to 54◦; ‘height threshold’ from 0.005 m to 0.02 m; and ‘slope
normalization’ at True or False. This total of 721 combinations were applied to a subset
of the testing dataset. Like CSF, considering point density and surface topography, these
values were selected as reasonable inputs.

Nearly 1000 iterations of input parameters for the CSF, MSBF algorithms, and two
variations of RF models are applied to the subset of the testing dataset. The highest
performing CSF parameter iteration resulted in a Kappa value of 0.86, with the lowest
iteration resulting in a Kappa score of 0.24. Iterations of the CSF parameters where the
‘time step’ parameter was below 0.15 m resulted in a failed classification. Of the impactful
CSF parameters, the ‘time step’ parameter was most strongly correlated with the Kappa
score and appears to be the primary driver of algorithm performance (Figure 8). The sets
of input parameters that produced the highest Kappa value are given in Table 1 and are
further applied to the entire dataset.
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Figure 8. CSF algorithm parameter performance results by Kappa score. The blue line shows the
trendline generated through locally estimated scatterplot smoothing, and the grey areas represent the
corresponding confidence interval of 95%.

Table 1. Input parameters of the highest performance by Kappa scores for CSF and MSBF based on
the subset of the testing dataset.

Filtering Method Input Parameters Best Value Tested Range

CSF
Cloth Resolution 0.005 m 0.002 m to 0.012 m

Time Step 0.15 m 0.1 m to 0.65 m
Classification Threshold 0.009 m 0.005 m to 1.00 m

MSBF

Radius 0.03 m 0.005 m to 0.07 m
Slope Threshold 54◦ 40◦ to 54◦

Height Threshold 0.01 m 0.005 m to 0.02 m
Slope Normalization TRUE TRUE, FALSE

The parameter iterations of the MSBF algorithm applied to the subset dataset produced
a tighter range of Kappa values from 0.67 to 0.52. For this dataset, the ‘Slope Threshold’
parameter had the closest correlation with algorithm performance (Figure 9). The parame-
ters producing the highest Kappa value are listed in Table 1, and these parameters were
applied to the entire testing dataset.

The performances of the two RF models were compared for the subset dataset using a
randomly generated 75% and 25% of points for model training and testing, respectively.
Relative to the 25% of points from the subset, the RF model built considering the eigenvalues
of five neighborhood scales outperformed the model built on three scales in all metrics. The
inclusion of two additional neighborhood scales, 0.0075 m and 0.025 m, into the model’s
base training dataset of 0.005 m, 0.01 m, and 0.015 m increased the Kappa value from 0.63
to 0.72. The RF model built using the full range of neighborhood scales was then applied to
the entire dataset (including all points within the subset).
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Only the optimal parameters/models were used for the whole testing dataset to
evaluate the performances of CSF, MSBF, and RF approaches (Table 2). The CSF algorithm
outperforms the other algorithms in most metrics except the ground precision and OT
recall, for which MSBF narrowly outperformed CSF. The accuracy metrics for CSF and
RF are balanced between the ground and OT classes, with CSF scoring slightly higher in
every category.

Table 2. Accuracy metrics for all filtering methods on the full testing dataset.

Filtering
Method

Overall
Accuracy

Ground
F1

Ground
Recall

Ground
Precision

OT
F1

OT
Recall

OT
Precision

Cohen’s
Kappa

CSF 0.93 0.92 0.95 0.90 0.94 0.92 0.96 0.86

MSBF 0.82 0.75 0.62 0.94 0.86 0.97 0.78 0.62

RF 0.88 0.88 0.87 0.88 0.88 0.88 0.87 0.75

Figure 10 shows a portion of the plot free of vegetation. At this location, the few OT
points of the testing dataset result from noise reflections and portions of a small pebble
that moved into the area between scans. All algorithms easily identify these OT points.
The only noticeable difference is with the MSBF, which consistently falsely classifies OT
points over most of the surface. The cross-section results also show this pattern for MSBF
(Figure 11): along the correctly classified ground points, there is a layer of falsely classified
OT points that is not present for the other algorithms.
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rithms in densely vegetated areas. The MSBF’s high OT recall score suggests that the 
MSBF excels in this vegetated area, although the same pattern of disqualifying many 
ground points is still evident on the right portion of the area. 

Figure 11. The classified points along a cross section profile across the middle of the plot.

Figure 12 shows a portion of the plot dominated by vegetation. At this site, CSF
is remarkably accurate relative to the other algorithms. CSF falsely classifies some OT
points as ground on the left portions of the site where the vegetation is thicker but to a
lesser degree than RF. The RF classifier misclassifies points more frequently than the other
algorithms in densely vegetated areas. The MSBF’s high OT recall score suggests that
the MSBF excels in this vegetated area, although the same pattern of disqualifying many
ground points is still evident on the right portion of the area.

The area shown in Figure 13 contains a variety of conditions: taller, denser vegetation
on the left, a single plant surrounded by flat ground in the center, and short vegetation
close to ground on the right. The CSF and RF algorithms classify most ground and densely
vegetated areas correctly. The MSBF algorithm again shows the pattern of excessively
excluding ground points.
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4. Discussion
4.1. Testing Dataset

A test dataset is needed to assess the performance of the point filtering algorithms.
Studies have generated the testing dataset by manual classification of ground and OT
points, which is time consuming and labor intensive [28]. It is also difficult to generate a
large and high-density testing dataset using the manual classification approach. The 3D
point clouds obtained by terrestrial LiDAR include millions of points, and the point spacing
is in millimeters to centimeters.
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In this paper, we used a novel approach to generate the testing dataset by the compari-
son of the two successive scans before and after removing vegetation. Assuming no ground
surface changes occur during vegetation removal, the C2C absolute distancing between
two ground points at the same location would be within two registration errors (0.007 m)
of the two 3D point clouds (99% confidence level). However, we did observe some ground
surface changes during the one-month period between the two scans. To account for this
potential impact, we used a much larger distance of 0.01 m as the C2C absolute distance
threshold to classify the testing dataset into ground and OT points (about three registration
errors, 99.9% confidence level). This method is fast and efficient, and the created dataset is
also large enough for the performance assessment of the filtering algorithms.

However, despite the use of a much larger distance threshold of 0.01 m between the
two scans for the point classification, misclassified OT points still exist within the testing
dataset. These misclassified OT points are from true ground surfaces that experienced
erosion between the two scans. Figure 14 shows an example of the misclassified OT points
in the testing dataset. Another example can be seen in the second cross sectional profile
from the bottom at the 4 m length mark in Figure 7. It is possible to manually identify
and remove errors in the testing dataset. However, it is time consuming and requires
a significant effort to check and fix these errors on a complex dataset of many millions
of points. In future studies, these errors may be mitigated by either shortening the time
between conducting vegetated and bare scans or preventing the experimental plot from
being exposed to rainfall between scans. Overall, this misclassification appears rare and is
considered an acceptable trade-off to enable the automated classification of the ground and
OT points from the 3D point cloud of >30 million points.
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4.2. The Impacts of Various Parameters on the Performance of Different Algorithms

Each filtering algorithm uses various parameters for 3D point cloud filtering or clas-
sification. However, few studies have examined the impacts of these parameters on the
performance of varied types of 3D point clouds. In this study, we identified the most sensi-
tive and the best performance parameters of each filtering algorithm by the comparison
of a set of classification results using different combinations of parameters. Our results
based on the CSF algorithm directly contrast with the original study of this algorithm for
airborne LiDAR, which suggested that a ‘time step’ parameter of 0.65 m was suitable for
most situations [25]. For our TLS data, the use of 0.65 m for the ‘time step’ parameter
produces the least accurate results, whereas the use of a much smaller ‘time step’ value
of 0.15 m achieves the highest Kappa score. It seems that TLS and airborne LiDAR data
have dramatically different scales in terms of the ‘time step’ parameter. In addition to the
challenges associated with applying CSF to TLS, the simulated cloth used by CSF may ‘stick’
to true OT points whose elevation profile transitions gradually away from the true ground,
resulting in a false ground classification. Our results suggest that the CSF algorithm can
produce excellent classifications on dense TLS datasets if the input parameters are carefully
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considered, as the default parameter settings do not seem to apply to high-density TLS
point clouds.

Our initial observation of the correlations between individual parameters and the
Kappa values for MSBF suggested that the impacts of different parameters are somewhat
obfuscated by the interactions between parameters. Future research is needed for a more
detailed sensitivity analysis on the impact of the MSBF parameters.

In terms of the RF classifier, the inclusion of additional scales improved the classi-
fication results, although a trade-off exists between the benefit of additional scales and
increased computation time and complexity. For our test dataset, it appears that the im-
provement of the Kappa value by 0.09 is worth the computational cost of moving from a
3-neighborhood scale (9 features) to a 5-neighborhood scale (15 features).

4.3. The Comparison of Different Algorithms on 3D Point Cloud Classification

The results based on our testing dataset indicate that CSF outperformed RF and MSBF
for the ground and OT point classification of TLS-generated point clouds. CSF scored
higher in most metrics, including a Kappa score of 0.86 compared to 0.75 for RF and 0.62
for MSBF when using the best performance parameters. Although CSF was originally
designed for airborne LiDAR data, it can produce a highly accurate classification of TLS
data when the parameters are carefully considered.

Even with the lowest Kappa score, MSBF produced the highest ground precision and
OT recall score, suggesting that it may be advantageous when it is critical to capture only
ground points at the cost of excluding some ground points. A closer observation of the
MSBF classification results suggests that many falsely classified OT points are slightly
above the other ground points in relatively flat areas. This distribution pattern indicates
that these points may originate from an individual scanning view farther away from the
site. Because these points are less than 0.01 m from the bare surface, they are classified as
ground points in the testing dataset. However, MSBF likely classified these points as OT
points based on the slope threshold. The application of MSBF to varied surface conditions
within a single site may be limited as only a single set of slope and height thresholds are
used. Additionally, if OT points are clustered together to create a relatively large and
smooth enough surface, the measured neighborhood slope and height may fall below the
thresholds, resulting in the misclassification of these OT points to the ground points.

In an area illustrated in Figure 13, both CSF and RF classify most flat ground and
densely vegetated areas correctly, whereas MSBF again shows the pattern of excessively
excluding ground points. However, this site also contains portions of the testing dataset
that are incorrectly classified as OT points because of >0.01 m surface erosion between the
two scans. Detailed examination of the classification results suggests that CSF and MSBF
classify the ground points more accurately at this site because both methods classify the
eroded portions as ground. Interestingly, the RF classifier agrees with the misclassified
testing data because of the use of these misclassified points as the training data, suggesting
that the RF implementation is sensitive to the training data selection, and even the relatively
few errors in our testing dataset may be inappropriate for training RF models. However,
our study is only a case study. More work is needed in the future to examine if there are
more appropriate surface features that may be used to generate RF models or if the selected
features are applicable to a site with different surface characteristics.

5. Conclusions

This study used successive high-density TLS scans of a hillslope plot before and after
removing vegetation to generate an automatically classified testing dataset to assess the
performance of three point filtering algorithms: CSF, MSBF, and RF. Our results indicate
that the performance of each algorithm is affected by the selection of input parameters.
The ‘time step’ parameter was highly influential over classification accuracy for the CSF
algorithm. The default value recommended by the algorithm in processing airborne
LiDAR data leads to the least accurate classifications for these 3D point clouds, whereas
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a much smaller ‘time step’ value produces the highest classification for TLS data. The
variations of parameters for the MSBF algorithm produced a tighter—though less accurate—
range of classification accuracies. The ‘slope threshold’ parameter showed the closest
correlation with classification accuracy. Two RF models were tested, considering 3 and
5 neighborhoods of eigenvalues, and RF classification accuracy increased with increasing
numbers of neighborhoods.

In terms of classification accuracy, CSF outperformed both RF and MSBF. CSF scored
higher in most metrics, including a Kappa score of 0.86 compared to 0.75 for RF and 0.62
for MSBF. It is evident that although designed for airborne LiDAR data, CSF can produce a
highly accurate classification of TLS data if the parameters are carefully considered. Even
with the lowest Kappa score, MSBF produced the highest ground precision and OT recall
score, suggesting that it may be advantageous when it is critical to capture only ground
points at the cost of excluding some ground points. In addition, a detailed examination of
MSBF-classified results displayed a pattern of falsely identifying ground points as OT in
locations where the points were slightly above relatively flat areas. RF produced moderate
classifications despite being trained using only fifteen features.

This study suggests that the performance of filtering algorithms varies depending
on parameter settings. An in-depth sensitivity analysis for different parameter settings
may further extend the applications of these filtering algorithms in TLS data. It should
be noted that the testing dataset developed in this study is not perfect because the plot
experienced some erosion between the two scans. To mitigate the effects of erosion, this
study used a larger threshold (0.01 m) than the registration error (0.0035 m) to classify
the testing dataset. Despite this, misclassified points can be observed in some sites, and
these affected the performance assessment of the filtering algorithms. Future studies may
consider applying the filtering algorithms to other well-classified testing datasets obtained
by TLS. In addition, the surface characteristics of the experimental plot in this study are
fairly homogenous, and the best parameters derived for these filtering algorithms require
further testing before being applied to other surfaces where TLS data may require filtering.
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