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Abstract: Cloud and snow identification in remote sensing images is critical for snow mapping
and snow hydrology research. Aimed at the problem that the semantic segmentation model is
prone to producing blurred boundaries, slicing traces and isolated small patches for cloud and snow
identification in high-resolution remote sensing images, the feasibility of combining DeepLab v3+ and
conditional random field (CRF) models for cloud and snow identification based on GF-1 WFV images
is studied. For GF-1 WFV images, the model training and testing experiments under the conditions of
different sample numbers, sample sizes and loss functions are compared. The results show that, firstly,
when the number of samples is 10,000, the sample size is 256 × 256, and the loss function is the Focal
function, the model accuracy is the optimal and the Mean Intersection over Union (MIoU) and the
Mean Pixel Accuracy (MPA) reach 0.816 and 0.918, respectively. Secondly, after post-processing with
the CRF model, the MIoU and the MPA are improved to 0.836 and 0.941, respectively, compared with
those without post-processing. Moreover, the misclassifications such as blurred boundaries, slicing
traces and isolated small patches are significantly reduced, which indicates that the combination
of the DeepLab v3+ and CRF models has high accuracy and strong feasibility for cloud and snow
identification in high-resolution remote sensing images. The conclusions can provide a reference for
high-resolution snow mapping and hydrology applications using deep learning models.

Keywords: cloud and snow identification; semantic segmentation; deep neural network; DeepLab
v3+; conditional random field; GF-1 image

1. Introduction

As an important part of the cryosphere, snow is one of the most active natural elements
on the earth’s surface [1]. Snow cover is the product of atmospheric circulation and plays
an extremely important role in the Earth’s climate system because its changes can, in turn,
affect the climate by changing the surface energy balance, water cycle and atmospheric
circulation [2]. Snow cover change also has a wide and profound impact on the future
ecological security, environmental security and social economy [3]. With the rapid im-
provement in the spatial resolution of remote sensing images, high-resolution snow cover
identification and mapping have attracted attention in the field of hydrology and water re-
sources. Due to the lack of short-wave infrared bands, the commonly used spectrum-based
cloud and snow identification algorithm is difficult to apply in high-resolution remote
sensing images. This means that the study of cloud and snow identification methods for
high-resolution remote sensing images has become one of the important directions of snow
remote sensing research.

The current algorithms for cloud and snow identification in remote sensing images
mainly include the spectral feature method, spatial texture method and pattern recognition
method, and so on [4]. Among these, the spectral feature method is mature and widely
used for cloud and snow identification in medium and low spatial resolution remote
sensing images with a short-wave infrared band, but it cannot be used for cloud and snow
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identification in high-resolution remote sensing images without a short-wave infrared
band [5]. The spatial texture method uses the differences in the texture features between
snow and cloud to distinguish them [6]. However, due to the influence of cloud and snow
thickness and the complexity of surface features, the spatial textures of snow and cloud will
also change. Therefore, the method only using spatial texture cannot usually distinguish
cloud and snow well. With the improvement in the spatial resolution of satellite remote
sensing images, the features of the ground objects on the images are more and more refined,
and the pattern recognition method has a higher accuracy in the identification of cloud and
snow in high-resolution remote sensing images [7,8]. As an advanced pattern recognition
method, the semantic segmentation method based on the deep neural network model can
effectively mine and utilize the deep semantic features of data compared with traditional
methods, and provide a new technical method for cloud and snow identification in high
spatial resolution remote sensing images. A variety of deep neural network models have
been proposed and applied in recent years. Among them, full convolutional networks
(FCN) [9], as a special usage of convolutional neural networks (CNN), can solve the
problem of generating excessive redundant information by traditional convolutional neural
networks in image semantic segmentation. Maggiori et al. (2016) constructed a remote
sensing image classification framework using FCN to achieve pixelwise classification of
high-resolution remote sensing images [10]. Liu (2019) used a multi-dimensional residual
convolution network (M-ResNet) to identify cloud and snow, which effectively solved
the problem of gradient disappearance and improved the classification accuracy [11].
Wang et al. (2019) used a conditional random field to optimize the output results of
the DeepLab v3+ model, and realized the fine classification of remote sensing images’
identification [12]. Guo et al. (2020) first used the snow samples automatically extracted
by NDSI from Landsat 8 OLI data to train the DeepLab v3+ model, and then retrained
the trained model on a small amount of samples of GF-2 by transfer learning, and finally
achieved snow cover identification on the GF-2 images. This provides ideas for snow cover
identification by deep learning models with a small amount of samples [13]. Wang et al.
(2022) trained the U-Net model with different band combinations of Sentinel-2, thus finding
the best band combination to improve the accuracy of cloud and snow identification [14].
In addition to some commonly used neural network models, some scholars have also
proposed some neural networks specifically improved for cloud and snow identification,
and achieved good accuracy [15,16]. However, misclassification problems such as blurred
boundaries, slicing traces and isolated small patches still exist in the cloud and snow
identification by deep neural networks for high-resolution remote sensing images [17–19].
A conditional random field can capture the fine-grained information using the contextual
information of both original and labeled images, and infer the output results of target pixels
from nearby pixels. It is usually used as a post-processing link to optimize the uncertain
markers in the classification results of the neural network models, to correct the problems
of blurred boundaries, slicing traces and isolated small patches caused by the classifier’s
misclassification, and to effectively preserve feature detail information [20].

Therefore, in this paper, it is intended to discuss the feasibility and optimal parameter
selection of combining DeepLab v3+ and CRF models for cloud and snow identification in
GF-1 WFV images based on the comparison of model training and testing experiments with
different sample numbers, sample sizes, loss functions and CRF post-processing or not, so
as to improve the accuracy of cloud and snow identification of the semantic segmentation
model of high-resolution remote sensing images, and improve the problems of blurred
boundaries, slicing traces and isolated small patches of segmentation results. It will provide
support for high-resolution snow mapping and hydrological application.

The remainder of this paper is structured as follows: Section 2 introduces the experi-
mental data and the methodology. Section 3 shows the experiments and results. Finally,
the discussions and conclusions are presented in Sections 4 and 5, respectively.
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2. Data and Methodology
2.1. GF-1 WFV Data

The high-resolution remote sensing image used in this paper is the Wide Field View
(WFV) sensor data of China Gaofen-1 (GF-1) satellite. The orbit height of GF-1 satellite is
645 km. The image of WFV sensor contains four bands of red, green, blue and near-infrared,
with a spatial resolution of 16 m and a width of 800 km. The specific parameters of GF-1
WFV are shown in Table 1. The specific data used in this paper are listed in Table 2. A total
of ten GF-1 WFV data images from November 2017 to October 2020 were used. Among
them, seven images were used for model training and validation, and the other three
images were used for model testing. Radiometric calibration and atmospheric correction of
these images was performed before sample labeling and model training.

Table 1. GF-1 WFV parameters.

Sensor Band Band Range
(µm)

Radiometric
Resolution

(Bit)

Spatial
Resolution

(m)

Wide Field View
(WFV)

1 0.45~0.52

10 16
2 0.52~0.59
3 0.63~0.69
4 0.77~0.89

Table 2. List of data used in the paper.

Number Sensor Scene Serial Number Imaging Time Remarks

1 WFV1 6013180 22 January 2019

Model training and
validation images

2 WFV3 8348146 31 October 2020
3 WFV4 6252997 29 March 2019
4 WFV3 5848541 8 December 2018
5 WFV4 5416209 16 August 2018
6 WFV3 7050682 5 November 2019
7 WFV2 8155402 16 September 2020

8 WFV1 4330375 13 November 2017
Model test images9 WFV3 6658981 18 July 2019

10 WFV1 4314475 9 November 2017

2.2. Sample Labeling

Since cloud and snow cover vary frequently with time, it is necessary to label samples
by manual vectorization. The labeling categories are divided into three categories, which
are snow, cloud and background. Considering the difficulty and limited accuracy of manual
labeling for snow in shadows, both mountain shadows and cloud shadows are annotated
as background samples in order to not affect the accuracy of model training and testing.
Firstly, the regions with relatively concentrated cloud and snow in the seven training and
validation images are manually vectorized and labeled, and the labeled regions are cropped
to a total of 2000 pieces of sample with 256 × 256 pixel size and four bands. Secondly, in
order to avoid overfitting of the model due to the small amount of training samples and to
improve the robustness of the model, in this paper, the data augmentation methods such
as rotation, Blur transform and adding Gaussian noise are used to increase the amount of
samples. Here, the above 2000 pieces of sample are expanded to 10,000. These 10,000 pieces
of sample with a size of 256 × 256 × 4 pixels are all used as the training and validation set
of the cloud and snow identification neural network model, in which the training subset
accounts for 75% and the validation subset accounts for 25%. At the same time, for the
other three test images, the regions with relatively concentrated cloud and snow are only
manually vectorized and annotated, without cropping and data augmentation, and the
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annotation results are directly used as the test data for the accuracy evaluation. Some
labeled data are shown in Figure 1.
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different dates, each with remote sensing image on the left and corresponding labeled image on
the right.

2.3. DeepLab V3+ Model

DeepLab v3+ is the latest model in Google’s DeepLab series, and the model structure
is shown in Figure 2. Compared with the DeepLab v3 model, its biggest feature is to replace
most of the convolutions in the network with dilated convolutions, which enhances the
ability of the model to extract dense features of images without increasing the amount of
calculated parameters while obtaining a larger sensory domain.

The skeleton network of the DeepLab v3+ encoder part is an Xception network with
atrous convolution. The network is developed based on Inception v3+, and the model
structure is similar to the residual connection in ResNet. It is considered that spatial correla-
tions and inter-channel correlations should be dealt with separately. Therefore, Depthwise
separable convolution is used to divided the ordinary convolution into Depthwise convolu-
tion and Pointwise convolution. Deepwise convolution performs spatial convolution only
for each channel eigenvalue independently, and Pointwise convolution only performs for
different channel eigenvalues of each pixel, which can reduce parameters and computation,
and reduce computational complexity and maintain similar performance [21]. Xception
replaces all the maximum pooling layer operations with depth separation convolution
with step size without modifying the entry flow, middle flow and exit flow structure of
the traditional entry flow network. Finally, the same as DeepLab v3, the Atrous Spatial
Pyramid Pooling (ASPP), is used to extract the context information of remote sensing
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images at four different scales in four different sensory domains, so as to achieve robust
segmentation and thus improve the segmentation effect.
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The decoding part of DeepLab v3+ model refers to the step-skipping connection mode
of the Full Coiler Network (FCN), and fuses the low-level detail features in the encoder
part with the high-level features’ output from the encoder part by convolutional dimension
reduction. Then the feature fusion image is restored to the original image size using
1 × 1 convolution and bilinear interpolation upsampling method. Finally, the Softmax
activation function is also used to classify each pixel.

2.4. Loss Function

In the training process of neural network, the loss function is used to calculate the
difference between the model predicted value and the true label value, to optimally adjust
the parameters and training process in the model, and to evaluate the training results of
the model. It is inversely proportional to the accuracy of the model. Cross Entropy Loss
(CE) is generally used as the loss function in image segmentation, examines each pixel one
by one, but is prone to fitting difficulties caused by too small loss when the sample amount
of different types is extremely unbalanced. In medical image processing, because the
anatomical structure of interest usually occupies only a small area in the scanned image, the
Dice loss function is proposed in V-Net [22] to increase the weight of the foreground area,
which prevents the model from falling into the local minimum of the loss function during
the training process. In the field of target detection, the Focal loss function [23] is usually
used to solve the problem of severe imbalance in the proportion of positive and negative
samples. In the case of unbalanced categories, it can make the loss smaller for samples with
high prediction probability and the loss larger for samples with low prediction probability,
thus strengthening the attention of the model on the positive samples. In this study, because
there are many more background samples and more cloud samples than snow samples in
the labeled dataset, the Focal function is chosen as the loss function, which can effectively
solve the problem that the proportion of foreground samples is too small. The formulas are
as follows:

Cross Entropy : E = −∑n
i=1 Pi log(Qi), (1)

Dice : E = 1 − ∑n
i=1 PiQi + ε

∑n
i=1 Pi + Qi + ε

− ∑n
i=1(1 − Pi)(1 − Qi) + ε

∑n
i=1 2 − Pi − Qi + ε

, (2)
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Focal : E = −∑n
i=1(1 − Qi)

γPi log(Qi), (3)

where n is the number of categories; Pi is the true probability distribution; Qi is the model
prediction probability distribution; the value of ε in the Dice loss function formula is
generally one to avoid the gradient explosion caused by denominator being zero or too
small. γ in the Focal loss function is the parameter that controls the orientation of the sample
tendency, generally takes the value of zero to five. In this paper, a triple classification (cloud,
snow, background) problem is discussed, so n is three, Pi and Qi are 256 × 256 matrices,
where Pi is the sample label image, Qi is the model classification image.

2.5. Conditional Random Field

The conditional random field model is a probabilistic graph model proposed by
Lafferty et al. (2001) [24]. It combines the unary potential energy of a single pixel and the
pairwise potential energy between neighboring pixels, so that the spatial pixels are assigned
to the same label. It is usually applied to smooth the segmentation maps with edge noise.
However, its structure cannot model the pixels far apart and is prone to over-smoothing
of target object boundaries. To solve this problem, Krähenbühl et al. (2011) proposed the
concept of fully connected CRF based on CRF [25]. In fully connected CRF, the energy of
predicted label value X is defined as

E(X) = ∑i ψu(xi) + ∑i<j ψp(xi, xj), (4)

where, i, j represent pixels; xi and xj are the labels assigned to pixels i and j, respectively;
ψu(xi) represents unary potential energy; ψp

(
xi, xj

)
represents pairwise potential energy.

The unary potential energy represents the class probability distribution obtained from
independent prediction of each pixel i in the classification image to be improved in accuracy,
which contains much noise and is discontinuous. The pairwise potential energy represents
a fully connected graph that connects all pixels of the image and classifies pixels with the
same properties into the same category as much as possible. When the energy E(X) of
fully connected CRF is smaller, the predicted pixel category label X is more accurate. The
average field approximation is generally used to iterate and find the minimum energy
function so as to obtain the result of improved boundary accuracy. In this paper, the pixel
category distribution probability map output from DeepLab v3+ neural network model is
taken as unary potential energy, and the original high-resolution remote sensing image is
taken as pairwise potential energy.

2.6. Evaluation Indicators

In order to explore the advantages and disadvantages of different neural network
models in cloud and snow identification, the accuracy criteria in this paper are Mean
Intersection over Union (MIoU) and the Mean Pixel Accuracy (MPA) [26,27]. The MIoU is
the result of averaging the ratio of the intersection set to the union set of the true values
derived from each class of prediction results, which can represent the accuracy of each
class. MPA is the result of averaging the proportion of correctly classified pixels for each
class. Both evaluation indicators take values in the range of zero to one, with closer to one
representing better segmentation. Both of them are commonly used criteria to verify the
accuracy of neural network model. Therefore, these two indicators are used as quantitative
research criteria in this paper. The expressions are as follows

MIoU =
1

K + 1 ∑K
I=0 (

nii

∑K
j=0

(
nij + nji

)
− nii

), (5)

MPA =
1

K + 1 ∑K
I=0 (

nii

∑K
j=0 nij

), (6)
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where there are a total of K + 1 label categories (K classes of objects and one other category)
in the classified image; nii is the number of correct predictions of class i; nij is the number of
class i pixels predicted as class j; and nji is the number of class j pixels predicted as class i.

2.7. Experimental Environment

The experimental platform in this paper is an Inter (R) Core (TM) i7-9700F @ 3.0 GHz
CPU, NVIDIA GeForce RTX 2060 SUPPER 8 GB graphics card and 16.0 GB running memory.
In terms of software environment, Python is used as the main programming language
under Windows 10 system, and the high-performance computing library CUDA11.0 for
the display card is installed. The deep learning framework adopts TensorFlow 2.5.0 and
Keras 2.3.1. In the training process, Adam is selected as the optimizer to update the network
gradient, and Softmax activation function is used to classify each pixel. The learning rate is
set to 0.001, the batch size is 5 and the iteration number (epoch) is 200.

3. Experiments and Results

The number of samples, sample size and loss function have a certain impact on the
accuracy of the semantic segmentation neural network model, and the post-processing
work will also affect the identification results. Generally, the smaller the sample number,
the easier it is to cause overfitting. If the sample size is too small, it is impossible to learn
to obtain more spatial semantic information, and it is easy to misclassify snow and cloud
with similar spectral characteristics; if the sample size is too large, the model training time
increases and the generalization ability decreases. At the same time, the model training
accuracy will be different while using the different loss functions. Therefore, this study
analyzed the effects of different sample numbers, sample sizes and loss functions on the
DeepLab v3+ model for cloud and snow identification, as well as the impact of CRF post-
processing on the accuracy of cloud and snow identification, so as to provide a reference
for the optimal parameter selection of the semantic segmentation neural network model
for cloud and snow identification.

3.1. Sample Number Analysis

In order to investigate the optimal number of samples required for model training,
2000, 5000 and 10,000 samples were randomly taken from the 10,000 training and validation
sets prepared above, respectively, and input to the DeepLab v3+ model, in turn, for train-
ing. Among them, 2000 samples were directly taken from those training and validation
samples without data augmentation. The batch size was 5, epoch was 200 and neural
network models for cloud and snow identification trained by different sample numbers
were obtained. The curves of loss value and the accuracy of model training with each batch
are shown in Figure 3.

It can be seen from Figure 3 that the larger the number of samples, the smaller the
fluctuation in the training loss value and training accuracy, and the higher the stability
of the model. When the number of samples is 2000, the training loss value and training
accuracy fluctuate greatly, and the model stability is very low. When the number of samples
is 5000 and the iteration times is more than 100, the training loss value and training accuracy
are comparable to those when the number of samples is 10,000, but the stability of the
model is still insufficient. When the number of samples is 10,000 and the time of iterations
reaches 170, the model training accuracy is high and the stability is strong. Therefore,
the number of 10,000 training samples is more suitable for training the cloud and snow
identification model with high accuracy and stability.

Figure 4 shows the prediction maps for the test data by using the models with different
sample numbers. The prediction accuracies are shown in Table 3. As seen in Figure 4, when
sample numbers are 2000 and 5000, there are more misclassified cloud and snow pixels.
Snow IoU, Cloud IoU, Snow PA and Cloud PA, as well as MIoU and MPA, are relatively
low. In addition, compared with the number of 2000 samples, the prediction accuracy of
the model trained by 5000 samples has not improved, and even Cloud IoU, MIoU and
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Snow PA have some reduction. When the number of samples is 10,000, the misclassified
pixels of cloud and snow are significantly reduced. The MIoU and MPA are 0.816 and 0.918,
respectively, which are 0.066 and 0.061 higher than the accuracy of 5000 samples. This is a
significant improvement. In summary, the model training accuracy, stability and prediction
accuracy are optimal when the number of samples is 10,000.
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Table 3. Comparison of model test accuracy under different sample numbers.

Sample
Number Snow IoU Cloud IoU MIoU Snow PA Cloud PA MPA

2000 0.761 0.647 0.756 0.827 0.760 0.845
5000 0.766 0.619 0.750 0.808 0.810 0.857

10,000 0.804 0.757 0.816 0.891 0.934 0.918

3.2. Sample Size Analysis

In order to analyze the appropriate sample size for cloud and snow identification in the
GF-1 WFV image using the DeepLab v3+ model, the previous 10,000 samples of 256 × 256
size were cut into 10,000 samples of 64 × 64 size and 10,000 samples of 128 × 128 size,
respectively. These samples with different sizes were input to the DeepLab v3+ model for
training in turn. The loss function was set to the Focal function, the batch size was set to 5
and the epoch was set to 200. The variation curves of the loss value and accuracy of model
training with the iteration times are shown in Figure 5.
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As seen in Figure 5, in the early stage of training, the larger the sample size, the faster
the fitting speed is. As the number of iterations increases, the differences in model training
loss between different sample sizes gradually decrease, as does the difference in model
training accuracy. However, within 200 iterations, the training loss value of the model
trained by the sample sizes of 256 × 256 is always better than those trained by the sample
sizes of 64 × 64 and 128 × 128; the training accuracy of the model is always higher than
that of the sample sizes of 64 × 64 and 128 ×128 accuracy; and the model stability is better
when the sample sizes is 256 × 256, and the model tends to be stable when the number of
iterations reaches 170.

Figure 6 shows the prediction maps for the test data by using models with different
sample sizes, and the prediction accuracies are shown in Table 4. As seen in Figure 6 and
Table 4, when the training sample sizes are 64 × 64 and 128 × 128, the cloud and snow are
seriously misclassified in the prediction maps, and Snow IoU, Cloud IoU, Snow PA and
Cloud PA, as well as MIoU and MPA are relatively low. The MIoU and MPA are only 0.754
and 0.862, the prediction accuracy of the 128 × 128 size is not improved compared with
that of the 64 × 64 size, and the Cloud IoU, MIoU, Cloud PA and MPA are even reduced
to a certain extent; in addition, the classification map of 128 × 128 size shows serious
slicing traces. When the training sample size is 256 × 256, the prediction accuracy of the
model is greatly improved, and the misclassified pixels of cloud and snow are significantly
reduced. The MIoU and MPA reach 0.816 and 0.918, respectively, and the Cloud PA even
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reaches 0.934. It can be seen that the appropriate increase in sample size can reduce some
misclassification pixels and improve the accuracy of the model, but at the same time, it
also makes the model training slower and less efficient. In summary, when the sample
size is 256 × 256, the training accuracy, stability and prediction accuracy of the model are
relatively better.
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3.3. Selection of Loss Function

To investigate the accuracy differences of different loss functions on the DeepLab v3+
model for cloud and snow identification, the CE loss function, Dice loss function and Focal
loss function were selected, respectively, in the experiment, and 10,000 pieces of 256 × 256
size samples were input to train the DeepLab v3+ models for cloud and snow identification.
The batch size was set to five, and the epoch was 200. The changes in training loss value
and training accuracy were recorded, as shown in Figure 7.
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Figure 7. The change curve of training loss value with the iterations times (a) and the change curve
of training accuracy with the iterations times (b) under different loss functions.

It can be seen from Figure 7 that the training loss curve of Dice converges faster and
the loss value is smaller in the whole process of training, but the training accuracies of these
three loss functions are relatively close. In terms of the stability of training accuracy, the
CE function has the most stable performance, but the difference with the Dice and Focal
functions is not obvious.

Figure 8 shows the prediction maps for the test data by using models under different
loss functions, and the prediction accuracies are shown in Table 5. From Figure 8 and
Table 5, it can be seen that the model using the CE loss function has more snow pixels
misclassified as cloud, and the slicing traces are obvious. Compared with the Dice function
and Focal function, the prediction accuracy of the model using the CE function is also
the lowest, with MIoU and MPA only 0.741 and 0.827, respectively. The model accuracy
using the Dice or Focal loss functions improves somewhat. In particular, because the Focal
function increases the focus of the model on snow and cloud samples, the problem of an
unbalanced number of samples of each category in the training samples set improves. In
the model prediction maps, the misclassified pixels of cloud and snow are significantly
reduced, and the model prediction accuracy is significantly improved. The Cloud PA
reaches 0.934 and the Snow PA reaches 0.891. The MIoU and MPA are higher than those of
CE and the Dice loss function. In summary, the training accuracies of the models using the
CE, Dice and Focal functions are comparable, but the model using the Focal loss function
has higher prediction accuracy and stronger generalization ability.

Table 5. Comparison of model test accuracy under different loss functions.

Loss Function Snow IoU Cloud IoU MIoU Snow PA Cloud PA MPA

CE 0.759 0.595 0.741 0.846 0.683 0.827
Dice 0.777 0.763 0.803 0.845 0.917 0.899
Focal 0.805 0.757 0.816 0.891 0.934 0.918



Remote Sens. 2022, 14, 4880 12 of 18Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 19 
 

 

 

Figure 8. Comparison of cloud and snow identification under different loss functions. The three 

columns of subfigures (a–c) represent the original image, the label image, and the prediction maps 

under CE, Dice, and Focal loss functions at three different dates, respectively. 

Figure 8. Comparison of cloud and snow identification under different loss functions. The three
columns of subfigures (a–c) represent the original image, the label image, and the prediction maps
under CE, Dice, and Focal loss functions at three different dates, respectively.



Remote Sens. 2022, 14, 4880 13 of 18

3.4. Conditional Random Field Post-Processing

In order to investigate the effectiveness of CRF post-processing on the accuracy im-
provement of the DeepLab v3+ model for cloud and snow classification, the CRF model is
used to post-process the cloud and snow classification results of DeepLab v3+ model. The
cloud and snow classification map predicted by the DeepLab v3+ model on the test data
is taken as the univariate potential energy of the conditional random field, and the GF-1
WFV image is used as the unary potential energy. The mean field approximation method is
used to iteratively find the minimum energy function E(X). The smaller E(X) is, the more
accurate the predicted pixel class label X is, resulting in a classification map with improved
boundary accuracy, as shown in Figure 9.
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Figure 9 shows the comparison of prediction maps before and after CRF post-processing,
and Figure 10 shows the comparison of their local details before and after post-processing.
From Figures 9 and 10, it is obvious that the DeepLab v3+ model misidentifies some iso-
lated small patches of snow as clouds; and the boundaries of the snow are smoother and
different from the true snow cover. In addition, the semantic segmentation neural network
classifies the image after slicing, and then splices the classified slices. Different slices will
take global consideration, respectively, so that different prediction results are generated
at the boundaries of adjacent slices, thus leading to some slicing traces in the final spliced
classification map. After the CRF post-processing, the misclassified clouds are correctly
identified as snow again, and the boundaries of the snow cover are also finer and more
closely match the true ground objects; at the same time, the slicing traces and isolated small
patches are also eliminated.
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In order to quantitatively analyze the effectiveness of CRF post-processing on the
accuracy improvement of cloud and snow identification, The MIoU and MPA of the
classification maps before and after CRF post-processing were calculated respectively and
are shown in Table 6. It can be seen that Snow IoU, Cloud IoU and Cloud PA, as well
as MIoU and MPA, are effectively improved, where MIoU and MPA are improved from
0.816 and 0.918 to 0.836 and 0.941, respectively, and the improvement compared with
no post-processing is 0.020 and 0.023, respectively. In summary, the combined model of
DeepLab v3+ and CRF can effectively correct the misclassification problems such as blurred
boundaries, slicing traces and isolated small patches, thus further improving the cloud and
snow identification accuracy.

Table 6. Comparison results of different models.

Model Snow IoU Cloud IoU MIoU Snow PA Cloud PA MPA

DeepLab v3+ 0.805 0.757 0.816 0.891 0.934 0.918
DeepLab v3+ and CRF 0.829 0.787 0.836 0.890 0.997 0.941

4. Discussion

When conducting image semantic segmentation experiments, it can be better to use
authoritative public datasets. Tian et al. (2019) summarized some common public datasets
for image semantic segmentation [28]. PASCAL VOC 2012 is one of the public standard
datasets commonly used in the field of computer vision [29], and many scholars have stud-
ied the effectiveness and generalization of models using public datasets [30–32]. However,
due to the frequent temporal changes in snow and cloud, there are few publicly available
high spatial resolution cloud and snow labeling datasets. Therefore, the training datasets
used in this paper are all completed by manual visual annotation. Since the annotation of
deep learning datasets is time-consuming and labor-intensive, and the number of samples
is relatively insufficient, many scholars have used data augmentation methods to increase
the amount of sample data, including operations horizontal flips, vertical flips, diagonal
mirroring and random scaling [33,34]. In this paper, various data augmentation operations
are also used to increase the sample number of the labeled dataset, eliminate the overfitting
caused by the small number of samples and improve the robustness of the model. The
experimental results of different sample numbers in Section 3.1 also demonstrate that in-
creasing the sample number by data augmentation can improve the identification accuracy
of the model.

Wieland et al. (2019) achieved an accuracy of 0.89 for cloud and snow identification
in multi-spectral satellite images based on the improved U-Net convolutional neural
network [35]. The Fmask 4.0 algorithm proposed by Qiu et al. (2019) has an overall
accuracy of 0.924 for cloud identification in Landsat 4–7 images [36]. In the tests of this
paper, the accuracy for cloud and snow identification using only the DeepLab v3+ neural
network is 0.918. However, as seen from the prediction maps above, there are still some
misclassification problems such as blurred boundaries, slicing traces and isolated small
patches. The CRF model can capture fine-grained information and infer the output class of
target pixels by combining the target pixels with the nearby pixels, which is not achieved by
the convolutional neural network focusing on local information. Some scholars previously
used the CRF to extract the target features in remote sensing images, and the results
show that the CRF model can improve the accuracy of the segmentation results [37,38].
In this paper, CRF post-processing for the predicted maps of the DeepLab v3+ model is
carried out to further improve the pixel accuracy. The accuracy reaches 0.941, which is
0.023 higher than the accuracy before CRF post-processing, and 0.051 and 0.017 higher than
the accuracy of the U-Net and Fmask 4.0 models, respectively, and the misclassification
problems of blurred boundaries, slicing traces and isolated small patches are corrected.
This further demonstrates that the CRF post-processing method can effectively optimize the
boundary of cloud and snow and improve the accuracy of the segmentation. Therefore, it
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is feasible to combine the DeepLab v3+ and CRF models for cloud and snow identification
in high-resolution remote sensing images.

5. Conclusions

Aimed at the problem that it is difficult to use the snow index algorithm to identify
cloud and snow in high-resolution remote sensing images lacking the short-wave infrared
band, and the problem that the semantic segmentation neural network model is prone to
producing blurred boundaries, slicing traces and isolated small patches, in this paper, the
feasibility and the optimal parameter selection of the DeepLab v3+ and CRF combined
model for cloud and snow identification in high-resolution remote sensing images are
explored through the comparative experimental analysis of different sample numbers,
sample sizes, loss functions and CRF post-processing using GF-1 WFV images. The main
conclusions are as follows:

(1) The DeepLab v3+ model is used to identify cloud and snow in a GF-1 WFV image.
When the number of samples is 10,000, the sample size is 256 × 256, and the loss
function is the Focal function, the model has the optimal accuracy and strong stability,
where the MIoU and the MPA reach 0.816 and 0.918, respectively.

(2) For the cloud and snow identification, CRF post-processing can significantly improve
the misclassification problems such as blurred boundaries, slicing traces and iso-
lated small patches caused by the semantic segmentation of neural network model.
Compared with the prediction maps without post-processing, the prediction accu-
racy after CRF post-processing is effectively improved. The MIoU and MPA are
improved to 0.836 and 0.941, respectively, which proves the effectiveness of the
post-processing method.

(3) The DeepLab v3+ and CRF combined model for cloud and snow identification in a
high-resolution remote sensing image has high accuracy and strong feasibility. The
conclusions can provide a technical reference for the application of deep learning
algorithms in high-resolution snow mapping and hydrological application.

The sample accuracy is a key factor affecting the prediction results of the semantic
segmentation model. The manual labeling accuracy of cloud and snow samples is greatly
affected by human factors; in particular, the manual labeling of snow in shadows is more
difficult and has limited accuracy. Therefore, this paper treats both mountain shadows
and cloud shadows as background categories. This treatment has certain limitations,
which reduces the accuracy of cloud and snow identification. Therefore, how to reduce
the influence of human factors on the accuracy of samples and improve the accuracy of
cloud and snow identification, especially to improve the accuracy of snow identification in
shadow areas, is the direction of further research. The authors will next try to use a weakly
supervised learning method to identify cloud and snow in high-resolution remote sensing
images to reduce the impact of human factors.

Author Contributions: Z.W. and B.F. conceived and designed the experiments; Z.W., B.F. and Z.T.
performed the experiments and wrote the paper; H.L. and D.C. contributed thesis guidance and
revisions. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (Grant No.
41501379), Anhui Provincial Natural Science Foundation (Grant No. 2008085QD166), Anhui Provin-
cial Science and Technology Major Project (Grant No. 202003a06020002), Anhui Provincial Key
Research and Development Project (Grant No. 2021003), and Key Project of Anhui Provincial College
Excellent Youth Talents Support Program in 2022 (Grant No. 13).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2022, 14, 4880 17 of 18

References
1. Shi, Y.; Cheng, G. The Cryosphere and Global Change. Bull. Chin. Acad. Sci. 1991, 4, 287–291. [CrossRef]
2. Qin, D.; Zhou, B.; Xiao, C. Progress in studies of cryospheric changes and their impacts on climate of China. Acta Meteorol. Sin.

2014, 72, 869–879. [CrossRef]
3. Yao, T.; Qin, D.; Shen, Y.; Zhao, L.; Wang, N.; Lu, A. Cryospheric changes and their impacts on regional water cycle and ecological

conditions in the Qinghai-Tibetan Plateau. Chin. J. Nat. 2013, 35, 179–186.
4. Wu, H. Research of Cloud and Snow Discrimination from Multispectral High-Resolution Satellite Images. Master’s Thesis,

Wuhan University, Wuhan, China, 2018.
5. Ying, Q.; Yang, Y.; Xu, W. Research on Distinguishing between Cloud and Snow with NOAA Images. Plateau Meteorol. 2002,

21, 526–528.
6. Ding, H.; Ma, L.; Li, Z.; Tang, L. Automatic Identification of Cloud and Snow based on Fractal Dimension. Remote Sens. Technol.

Appl. 2013, 28, 52–57.
7. Joshi, P.P.; Wynne, R.H.; Thomas, V.A. Cloud detection algorithm using SVM with SWIR2 and tasseled cap applied to Landsat 8.

Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101898. [CrossRef]
8. Ghasemian, N.; Akhoondzadeh, M. Introducing two Random Forest based methods for cloud detection in remote sensing images.

Adv. Space Res. 2018, 62, 288–303. [CrossRef]
9. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.
10. Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional neural networks for large-scale remote-sensing image classifica-

tion. IEEE Trans. Geosci. Remote Sens. 2016, 55, 645–657. [CrossRef]
11. Liu, W. Cloud and Snow Classification in Plateau Area Based on Deep Learning Algorithms. Master’s Thesis, Nanjing University

of Information Science and Technology, Nanjing, China, 2019.
12. Wang, J.; Li, J.; Zhou, H.; Zhang, X. Typical element extraction method of remote sensing image based on Deeplabv3+ and CRF.

Comput. Eng. 2019, 45, 260–265, 271. [CrossRef]
13. Guo, X.; Chen, Y.; Liu, X.; Zhao, Y. Extraction of snow cover from high-resolution remote sensing imagery using deep learning on

a small dataset. Remote Sens. Lett. 2020, 11, 66–75. [CrossRef]
14. Wang, Y.; Su, J.; Zhai, X.; Meng, F.; Liu, C. Snow Coverage Mapping by Learning from Sentinel-2 Satellite Multispectral Images

via Machine Learning Algorithms. Remote Sens. 2022, 14, 782. [CrossRef]
15. Zhang, G.; Gao, X.; Yang, Y.; Wang, M.; Ran, S. Controllably Deep Supervision and Multi-Scale Feature Fusion Network for Cloud

and Snow Detection Based on Medium- and High-Resolution Imagery Dataset. Remote Sens. 2021, 13, 4805. [CrossRef]
16. Nambiar, K.G.; Morgenshtern, V.I.; Hochreuther, P.; Seehaus, T.; Braun, M.H. A Self-Trained Model for Cloud, Shadow and Snow

Detection in Sentinel-2 Images of Snow- and Ice-Covered Regions. Remote Sens. 2022, 14, 1825. [CrossRef]
17. Park, J.; Shin, C.; Kim, C. PESSN: Precision Enhancement Method for Semantic Segmentation Network. In Proceedings of the

2019 IEEE International Conference on Big Data and Smart Computing (BigComp), Tokyo, Japan, 4 April 2019; pp. 1–4.
18. Jeong, H.G.; Jeong, H.W.; Yoon, B.H.; Choi, K.S. Image Segmentation Algorithm for Semantic Segmentation with Sharp Boundaries

using Image Processing and Deep Neural Network. In Proceedings of the 2020 IEEE International Conference on Consumer
Electronics—Asia (ICCE-Asia), Seoul, Korea, 1 November 2020; pp. 1–4.

19. Sun, X.; Shi, A.; Huang, H.; Mayer, H. BAS4Net: Boundary-Aware Semi-Supervised Semantic Segmentation Network for Very
High Resolution Remote Sensing Images. IEEE J. Sel. Top. in Appl. Earth Obs. Remote Sens. 2020, 13, 5398–5413. [CrossRef]

20. Li, K. Semi-supervised Classification of Hyperspectral Images Combined with Convolutional Neural Network and Conditional
Random Fields. Master’s Thesis, China University of Geosciences, Beijing, China, 2021.

21. Chen, L.; Zhu, Y.; Papandreou, G.; Schrof, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September
2018; pp. 801–818.

22. Zhu, Z.; Liu, C.; Yang, D.; Yuille, A.; Xu, D. V-NAS: Neural Architecture Search for Volumetric Medical Image Segmentation.
In Proceedings of the 2019 IEEE International Conference on 3D Vision (3DV), Québec City, QC, Canada, 16–19 September
2019; pp. 240–248.

23. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal loss for dense object detection. In Proceedings of the 2017 IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007.

24. Lafferty, J.; Mccallum, A.; Pereira, F. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence
Data. In Proceedings of the Eighteenth International Conference on Machine Learning (ICML ‘01), San Francisco, CA, USA, 28
June–1 July 2001; pp. 282–289.

25. Krähenbühl, P.; Koltun, V. Efficient inference in fully connected crfs with gaussian edge potentials. In Proceedings of the
24th International Conference on Neural Information Processing Systems (NIPS’11), Red Hook, NY, USA, 12–15 December
2011; pp. 109–117.

26. Alberto, G.G.; Sergio, O.E.; Sergiu, O.; Victor, V.M.; Jose, G.R. A Review on Deep Learning Techniques Applied to Semantic
Segmentation. arXiv 2017, arXiv:1704.06857.

27. Jing, Z.W.; Guan, H.Y.; Peng, D.F.; Yu, Y.T. Survey of Research in Image Semantic Segmentation Based on Deep Neural Network.
Comput. Eng. 2020, 46, 1–17. [CrossRef]

http://doi.org/10.16418/j.issn.1000-3045.1991.04.002
http://doi.org/10.1007/s13351-014-4029-z
http://doi.org/10.1016/j.jag.2019.101898
http://doi.org/10.1016/j.asr.2018.04.030
http://doi.org/10.1109/TGRS.2016.2612821
http://doi.org/10.19678/j.issn.1000-3428.0053359
http://doi.org/10.1080/2150704X.2019.1686548
http://doi.org/10.3390/rs14030782
http://doi.org/10.3390/rs13234805
http://doi.org/10.3390/rs14081825
http://doi.org/10.1109/JSTARS.2020.3021098
http://doi.org/10.19678/j.issn.1000-3428.0058018


Remote Sens. 2022, 14, 4880 18 of 18

28. Tian, X.; Wang, L.; Ding, Q. Review of image semantic segmentation based on deep learning. J. Softw. 2019, 30, 440–468. [CrossRef]
29. Everingham, M.; Eslami, S.M.; Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes challenge: A

retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [CrossRef]
30. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional

nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [CrossRef]
31. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,

arXiv:1706.05587.
32. Meng, J.; Zhang, L.; Cao, Y.; Zhang, L.; Song, Q. Research on optimization of image semantic segmentation algorithms based on

Deeplab v3+. Laser Optoelectron. Prog. 2022, 59, 161–170.
33. Yan, Q.; Liu, H.; Zhang, J.; Sun, X.; Xiong, W.; Zou, M.; Xia, Y.; Xun, L. Cloud Detection of Remote Sensing Image Based on

Multi-Scale Data and Dual-Channel Attention Mechanism. Remote Sens. 2022, 14, 3710. [CrossRef]
34. Zhao, W.; Li, M.; Wu, C.; Zhou, W.; Chu, G. Identifying Urban Functional Regions from High-Resolution Satellite Images Using a

Context-Aware Segmentation Network. Remote Sens. 2022, 14, 3996. [CrossRef]
35. Wieland, M.; Li, Y.; Martinis, S. Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network. Remote

Sens. Environ. 2019, 230, 111203. [CrossRef]
36. Qiu, S.; Zhu, Z.; He, B.B. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery. Remote

Sens. Environ. 2019, 231, 111205. [CrossRef]
37. Zhu, Q.; Li, Z.; Zhang, Y.; Li, J.; Du, Y.; Guan, Q.; Li, D. Global-Local-Aware conditional random fields based building extraction

for high spatial resolution remote sensing images. Natl. Remote Sens. Bull. 2021, 25, 1422–1433.
38. He, Q.; Zhao, L.; Kuang, G. SAR airport runway extraction method based on semantic segmentation model and conditional

random field. Mod. Radar. 2021, 43, 91–100. [CrossRef]

http://doi.org/10.13328/j.cnki.jos.005659
http://doi.org/10.1007/s11263-014-0733-5
http://doi.org/10.1109/TPAMI.2017.2699184
http://doi.org/10.3390/rs14153710
http://doi.org/10.3390/rs14163996
http://doi.org/10.1016/j.rse.2019.05.022
http://doi.org/10.1016/j.rse.2019.05.024
http://doi.org/10.16592/j.cnki.1004-7859.2021.10.015

	Introduction 
	Data and Methodology 
	GF-1 WFV Data 
	Sample Labeling 
	DeepLab V3+ Model 
	Loss Function 
	Conditional Random Field 
	Evaluation Indicators 
	Experimental Environment 

	Experiments and Results 
	Sample Number Analysis 
	Sample Size Analysis 
	Selection of Loss Function 
	Conditional Random Field Post-Processing 

	Discussion 
	Conclusions 
	References

