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Abstract: Corn is an important part of the Mexican diet. The crop requires constant monitoring to
ensure production. For this, plant density is often used as an indicator of crop yield, since knowing
the number of plants helps growers to manage and control their plots. In this context, it is necessary
to detect and count corn plants. Therefore, a database of aerial RGB images of a corn crop in weedy
conditions was created to implement and evaluate deep learning algorithms. Ten flight missions
were conducted, six with a ground sampling distance (GSD) of 0.33 cm/pixel at vegetative stages
from V3 to V7 and four with a GSD of 1.00 cm/pixel for vegetative stages V6, V7 and V8. The
detectors compared were YOLOv4, YOLOv4-tiny, YOLOv4-tiny-3l, and YOLOv5 versions s, m and
l. Each detector was evaluated at intersection over union (IoU) thresholds of 0.25, 0.50 and 0.75 at
confidence intervals of 0.05. A strong F1-Score penalty was observed at the IoU threshold of 0.75
and there was a 4.92% increase in all models for an IoU threshold of 0.25 compared to 0.50. For
confidence levels above 0.35, YOLOv4 shows greater robustness in detection compared to the other
models. Considering the mode of 0.3 for the confidence level that maximizes the F1-Score metric
and the IoU threshold of 0.25 in all models, YOLOv5-s obtained a mAP of 73.1% with a coefficient
of determination (R2) of 0.78 and a relative mean square error (rRMSE) of 42% in the plant count,
followed by YOLOv4 with a mAP of 72.0%, R2 of 0.81 and rRMSE of 39.5%.

Keywords: aerial images; plant count; weeds; detection; YOLO

1. Introduction

Corn (Zea mays L.) production in Mexico for the year 2020 exceeded 27.4 million
tons [1]. Corn is one of the most important crops in the country from a food, political,
economic and social perspective [2]. Cereals form a crucial part of the human diet and
livestock feed, so achieving self-sufficiency in their production is an effective way to
promote food security [3].

Knowing the number of plants and monitoring their growth status are important for
estimating yield [4,5]. Manual counting after plant emergence is not practical in large-
scale production fields due to the amount of labor required, in addition to which it is
inherently inaccurate [3,4,6]. One approach that has been applied in recent years is the use
of remotely piloted aerial systems (RPAS) equipped with optical sensors for agricultural
remote sensing [7]. Several studies have reported on the use of RPAS to determine planting
densities in different crops; for example, in [8], they reported on its use for the detection
of cotton plants, based on machine learning with convolutional neural networks (CNNs),
in [9], they used CNNs for the detection and counting of tobacco plants, in [10], they
propose a CNN (WheatNet) based on MobileNetV2 with two outputs for the localization
and counting of wheat ears from images; similarly, in [11], they propose an integrated
image pre-processing method (Excess Green Index and Otsu’s method) and CNNs for
identifying and counting spinach plants.
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Three methods for counting and classifying corn plants have been reported in the literature:
(1) Classical image processing techniques. In [12], RGB cameras mounted on RPAS

were compared using templates and normalized cross-correlation, obtaining R2 coefficients
of 0.98, 0.90 and 0.16 for vegetative stages V2, V5 and V9, respectively. Gnädinger and
Schmidhalter [13], using the decorrstrech contrast enhancement procedure with thresh-
olding, obtained R2 coefficients of 0.89 for vegetative stages V3 and V5. Shuai et al. [14]
employed the excess green (ExG) vegetation index, achieving a precision of 95% and recall
of 100% for plant counts at vegetative stage V2.

(2) Classical image processing techniques plus machine learning procedures. In [15],
they used principal component analysis (PCA) and Otsu’s thresholding method to extract
features as input to Naive Bayes neural network and Random Forest classifiers to classify
corn plants and weeds in images captured with mobile devices. Varela et al. [6] used color
indices, geometric descriptors and decision tree classifiers for corn counting, achieving
accuracies of 96% for stages V2 and V3. Pang et al. [16] combined geometric descriptors
and convolutional neural networks to count corn plants, achieving accuracies of 95.8% for
vegetative stages V5 and V4.

(3) Machine learning with CNNs. In [17], they compared color indices with CNN
architectures, specifically “You Only Look Once” (YOLO) in its YOLOv3 and YOLOv3-tiny
versions, to evaluate the detection of corn plants in images captured at a height of 0.3 m
from the ground, achieving a 77% intersection over union (IoU). Wan et al. [18] used a
robot-mounted camera for real-time plant detection and counting, employing YOLOv3
and a Kalman filter, and achieved accuracies of 98% at stages V2 and V3. Vong et al. [19]
performed semantic segmentation with the U-NET architecture, obtaining R2 coefficients
of 0.95 at the V2 stage. Velumani et al. [20] evaluated the performance of Faster-RCNN for
corn plant counting at different spatial resolutions, achieving an rRMSE value of 8% with a
ground sampling distance (GSD) of 0.3 cm/pixel. Osco et al. [5] proposed a CNN-based
architecture for segmenting and counting corn plants, achieving F1-Scores of 0.87 for stage
V3. Etienne et al. [21] compared classical methods for image processing and Faster-RCNN
in counting corn, sugar beet and sunflower plants.

In general, the best results were obtained when using CNNs with deep learning
methods. Although there are some works that analyze the effects of weeds on the detection
and counting of corn plants in aerial images [5,15,21], given the complexity of possible
scenarios and the conditions of corn fields in Mexico, labeled databases are still required to
assess the robustness of state-of-the-art object detection algorithms. Therefore, the following
contributions are made in this paper: (i) a database with 11,191 aerial images of dimension
416 × 416 × 3 labeled, (ii) a comparison of the results obtained by YOLOv4, YOLOv4-
tiny, YOLOv4-tiny-3l, YOLOv5-s, YOLOv5-m and YOLOv5-l models in the detection and
counting of corn plants in weed-infested fields, considering the value of the intersection
over union and confidence and (iii) the optimization of the confidence level and the
intersection over union that maximize the F1-Score metric in the evaluation of the models.

The paper is organized as follows. Section 2.1 describes the conditions and the process
used for the acquisition of aerial images, as well as the labeling process for the formation of
the database; Sections 2.2 and 2.3 describes the algorithms used and the evaluation metrics.
The results and discussion are provided in Sections 3 and 4, respectively. Finally, Section 5
provides conclusions and offers ideas for future research.

2. Materials and Methods
2.1. Dataset

The research area was divided into five experimental sites, located at the Universidad
Autónoma Chapingo, Texcoco, State of Mexico, geographically located at: 19°29′27.3′′N
Lat., 98°53′06.9′′W Long., and 2260 m a.s.l. For easy identification, the experimental fields
were named Irrigación, Xerona, San Juan A1, San Juan A2 and Ranchito X13 (Figure 1).
All experimental sites had the hybrid corn variety CP-HS2 except for the Ranchito X13
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site, which had multiple varieties intended for breeding purposes. Table 1 describes the
planting arrangement, variety and geographic coordinates for each experimental site.

Figure 1. Location and distribution of experimental sites.

Table 1. Data capture areas.

Experimental Sites Geographic Coordinates Variety Planting
Latitude Longitude Arrangement

Irrigación 19° 28′ 56′′N 98° 53′ 28′′W Hybrid CP-HS2 1 Row
Xerona 19° 29′ 02′′N 98° 53′ 57′′W Hybrid CP-HS2 2 Rows

San Juan A1 19° 29′ 32′′N 98° 51′ 38′′W Hybrid CP-HS2 1 Row
San Juan A2 19° 29′ 31′′N 98° 51′ 34′′W Hybrid CP-HS2 1 Row
Ranchito X13 19° 29′ 36′′N 98° 52′ 43′′W Varied a 1 Row

a More than one variety in the same area.

2.1.1. Data Acquisition

In addition to image acquisition, samples of the number of leaves and the height of
the corn plant were taken. Aerial images were acquired using a DJI Mavic Pro multirotor
RPAS (SZ DJI Technology Co., Shenzhen, Guangdong, China), equipped with an FC220
model RGB camera, with the following features:

• 1/2.3′′ CMOS sensor with 12.7 M total pixels and 12.3 M effective pixels;
• FOV 78.8° 26 mm lens;
• 2.22 mm focal length;
• Distortion < 1.5%;
• ISO range from 100 to 1600;
• Image size: 4000 × 3000 pixels;
• 8 s–1/8000 s shutter speed.

Flight missions were planned and carried out from 10:00 a.m. to 2:00 p.m., with an
overlap between images of 80%, both frontal and lateral, and a nadir-pointing camera
view. The RPAS flight altitude was 10 m for a GSD of 0.33 cm/pixel and 30 m for a GSD of
1.00 cm/pixel. Table 2 summarizes the flight missions, sampled area, captured images and
weather conditions.
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Table 2. Characteristics of flight missions.

Data of
Capture

GSD
(cm/pixel) Area (m2)

Captured
Images

Temperature
(°C)

Wind Speed
(km/h) Visibility (km)

Irrigación

2 August 2021

0.33

2883 479 23 7.41 6.7
9 August 2021 3564 438 18 9.26 11.3
18 August 2021 3722 436 23 13.00 8
26 August 2021 1950 466 23 7.41 16.1

Xerona

8 July 2021 0.33 1663 293 16 7.56 9.66
8 July 2021 1.00 16,106 360 16 7.56 9.66
14 July 2021 0.33 1667 294 14 5.4 6.66

San Juan A1

17 June 2021 1.00 15,177 361 16 13 12.9

San Juan A2

1 July 2021 1.00 11,281 222 17 7.56 11.3

Ranchito X13

24 June 2021 1.00 10,696 306 19 7.41 4.84

To define the state of the crop, 30 random samples of the number of leaves and
plant height were obtained during each flight mission, determining the vegetative stage
expressed with the letter V plus the number of true leaves, following the methodology
described in [22], and the average height of the corn plants. As in [21], weed infestation
was qualitatively determined by assigning values of 0, 1 and 2 for weed-free areas, low
weed presence and weed infestation, respectively. Subscripts F, P and T were included to
locate weeds between rows, between plants and total cover (Table 3).

Table 3. Crop characterization.

Date of Capture Days after Planting Vegetative Stage Average Plant Height (cm) Weed Infestation

Irrigación

2 August 2021 16 V3 9.62 ± 1.66 1T
9 August 2021 23 V4 16.8 ± 4.39 2T

18 August 2021 32 V5 25.16 ± 6.00 2T
26 August 2021 40 V6 34.68 ± 8.00 1T

Xerona

8 July 2021 44 V6 52.94 ± 6.64 0F, 2P
8 August 2021 44 V6 52.94 ± 6.64 0F, 2P

14 July 2021 50 V7 75.68 ± 10.43 0F, 2P

San Juan A1

17 June 2021 57 V7 49.86 ± 10.39 0T

San Juan A2

1 July 2021 71 V8 92.94 ± 21.67 2T

Ranchito X13

24 June 2021 59 V7 75.78 ± 18.41 0T

2.1.2. Plant Labeling

Pix4D mapper software (Pix4D SA, Lausanne, Switzerland) was used in the orthorec-
tification of the images, obtaining the best results with the following parameter settings:
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in the initial process for the extraction of key points, the full image, alternative calibration
and internal parameter optimization with high priority were used. For the generation of
the point cloud and the mesh, half of the image was used.

For each flight mission, an orthomosaic was obtained and divided into 416 × 416 pixel
images to form the corn plant database. The manual labeling of the plants (ground truth
label) was performed with the LabelImg tool [23], respecting the format required by YOLO.
Each label corresponds to the group of pixels in RGB belonging to a corn plant, assigned
the name “MAIZ,” the Spanish word for corn. In the labeling process, the following consid-
erations were taken into account: (1) the box of each label covered the whole plant, (2) in
case of incomplete plants at the edges of the image, blurred plants and plants with ghost
leaves, labels were considered correct only if the center of the plant was completely visible,
and (3) images with errors in their stitching or too much complexity in the labeling were
eliminated. Examples of labeling and weed infestation conditions at different vegetative
stages with different ground sampling distances are shown in Figure 2a–f.

(a) (b) (c)

(d) (e) (f)
Figure 2. Manually labeled image samples. (a,b) correspond to Irrigación with corn at stage V40.33,
(c) to San Juan A2 with corn at stage V81.00, (d) to Xerona with corn at stage V61.00, (e) to Ranchito
X13 with corn at stage V71.00 and (f) to Irrigación with corn at stage V60.33

2.1.3. Database Description

The database is composed of images with a size of 416 × 416 pixels, obtained com-
pletely at random from each orthomosaic with the proportion of 70% for training, 15% for
testing and 15% for evaluation, making a total of 11,191 images and 85,419 labels. Consid-
ering each vegetative stage and its GSD spatial resolution in cm/pixel, Figure 3 shows the
distribution of corresponding images for training, testing and evaluation.



Remote Sens. 2022, 14, 4892 6 of 18

0 500 1000 1500 2000 2500
No. Images

V30.33

V40.33

V50.33

V60.33

V61.00

V70.33

V71.00

V81.00

Ve
ge

ta
tiv

e 
st

ag
e

Training
Testing
Evaluation

Figure 3. Distribution of the database according to vegetative stage and GSD.

According to the definitions of [24] and the COCO database [25] regarding the size of
the labels, they were grouped into small (area < 322 pixels), medium-sized
(322 < area < 962 pixels) and large (area > 962 pixels) categories. Figure 4 shows the
size distribution of the labels in the database, where 35.58% of the labels are small, 59.58%
medium-sized and 4.48% large.
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Figure 4. Distribution of the labels according to the area in pixels2 for an image size of 416× 416 pixels.

2.2. Detection Algorithms and Their Training

A convolutional neural network (CNN) is a variant of the multilayer perceptron
(MLP) architecture, inspired by the animal visual cortex and designed for image processing,
based on three main types of neural layers: convolutional layers that apply 2D convolu-
tion operations to find different features of interest in an image; downsampling layers
that reduce the spatial dimension of the convolutional layers and fully connected layers
(MLP) that handle high-level inference in the network [26,27]. Automatic feature extrac-
tion through convolutional filter optimization gives CNNs a competitive advantage over
traditional algorithms.
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Object detection using CNNs combines image classification and object localization.
Generally, they are based on region proposals and the classification of each region into
different categories or as a regression/classification problem. Generally, these algorithms
fall into two broad categories: two-stage detectors that perform object location based on
the proposal of regions and then are classified into different categories, and detectors
that directly determine the location and classification of objects in a single step based on
regression/classification [28].

Analyzing the results obtained by [29], when comparing different CNNs architectures
in object detection and considering the proposal of [20], the YOLOv4 [30] and YOLOv5 [31]
architectures were selected as the basis for this research work. These versions of YOLO [32]
are mainly composed of three parts: feature extractor (Backbone), feature aggregation for de-
tection at different scales (Neck) and prediction/regression (Head); the difference between
these YOLO variants is based on the modification of these three parts, such as changes in
the loss function, activation function, and regularization techniques, among others.

The YOLOv4 model uses CSPNet + Darknet53 architectures previously trained with
the ImageNet database for feature extraction, SSP + PANet for feature aggregation and
the proposed YOLOv3 regression/classification [33] for object detection [34]. Figure 5
shows the diagram corresponding to the YOLOv4 architecture with an input image of size
416 × 416 × 3 and three prediction heads at different scales with 3 boxes each, obtaining a
tensor N × N × [3 × (4 bounding box offsets + 1 objectness prediction + n_classes )].
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Figure 5. Diagram of the YOLOv4 architecture with an input image of 416 × 416 pixels and 3 channels.

Following the full version of YOLOv4, the versions YOLOv4-tiny with two prediction
outputs at different scales and YOLOv4-tiny-3l with three outputs were derived, keeping
a reduced number of layers from its original version. Figure 6 shows the diagram of the
YOLOv4-tiny-3l architecture; in our case, for the YOLOv4-tiny version, the 52 × 52 × 18
output was removed.
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The YOLOv4-tiny version was selected because it has faster inference times and the
YOLOv4-tiny-3l version because it was expected to provide better results than YOLOv4-tiny
due to its having one more output at similar inference times. In the same way as YOLOv4,
the implementation of YOLOv5 presents versions n, s, m, l and x with different accuracy
and detection speeds [28]; therefore, the s, m and l versions were implemented.

Like YOLOv4, YOLOv5 is based on the architectures of CSPNet + Darknet53 (back-
bone), SSP + PANet (neck), and YOLOv3 Head for object detection. The latest changes in
the architecture (V6.0/6.1) are in the first layer FOCUS by the CBS equivalent with inputs
[NKernels = 64, Kernel = 6, Stride = 2, Padding = 2] and SPP by an equivalent called SPPF,
improving the training and inference times of the network.

The structure for all YOLOv5 variants is maintained (Figure 7); only the width and
depth of the network are modified.
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Figure 7. Diagram of the YOLOv5-l (V6.0/6.1) architecture with an input image of 416 × 416 pixels
and 3 channels.

The modification of the network depth was carried out by taking the positive integer
of the multiplication of the B_Neck blocks by a factor and the width of the network by
multiplying the number of filters by a factor, as shown in Table 4.
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Table 4. YOLOv5 versions.

Version Depth of Architecture Layer Width

YOLOv5-n 0.33 0.25
YOLOv5-s 0.33 0.50
YOLOv5-m 0.67 0.75
YOLOv5-l 1.00 1.00
YOLOv5-x 1.25 1.25

The implementation of YOLOv4 was based on the darknet framework written in the
C programming language and YOLOv5 on the Pytorch library implemented in Python,
both open-source tools. To train of the algorithms, the hyperparameters proposed in
each implementation of each CNN optimized for the COCO database were used, and are
described in detail in Table 5.

Table 5. Algorithm training hyperparameters.

Algorithm Image Size Batch Optimizer Learning Rate Decay (% Iterations) Iterations Pre-Training Weights

YOLOv4

41
6
×

41
6
×

3 64 SGD 0.0013 25, 80 and 90 10,000 COCO
YOLOv4-tiny 64 SGD 0.00261 80 and 90 20,000 COCO

YOLOv4-tiny-3l 64 SGD 0.00261 80 and 90 20,000 COCO
YOLOv5-s 179 Adam 0.01 Automatic 200 COCO
YOLOv5-m 99 Adam 0.01 Automatic 200 COCO
YOLOv5-l 179 Adam 0.01 Automatic 200 COCO

2.3. Evaluation Metrics

The metrics precision (Pr), recall (Rc), mean average precision (mAP) and F1-Score,
commonly used to evaluate the results in object detection work [35], were employed.
As only one class was considered, the mAP was equal to average precision (AP). The AP
calculation was performed using the so-called all-point interpolation (APall) [35], adopted
in the Pascal Challenge [36].

Pr is the percentage of correct positive predictions [35].

Pr =
TP

TP + FP
, (1)

Rc is the percentage of correct positive predictions among all given ground truths [35].

Rc =
TP

TP + FN
, (2)

where:

• TP (True positive): a correct detection of a ground-truth bounding box if its area of
intersection over the area of union (IoU) with the corresponding labeled bounding
box is greater than a given threshold.

• FP (False positive): an incorrect detection of a non-existing object or a misplaced
detection of an existing object.

• FN (False negative): an undetected ground-truth bounding box.

The F1-Score is defined as the harmonic mean of the precision and recall of a given detector.

F1-Score = 2 ∗ Pr ∗ Rc
Pr + Rc

, (3)

To determine the above metrics, an open source software developed by [35] was used
and the source code was modified to evaluate all the proposed CNN models.

To measure the counting performance of the models, we used the coefficient of de-
termination (R2) [37] and the relative root mean square error (rRMSE) proposed in [21],
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where an rRMSE < 5% is considered good, satisfactory between 5% < rRMSE < 10%, poor
between 10% < rRMSE < 20% and very poor rRMSE > 20%.

3. Results
3.1. Training

The training process of the neural algorithms was performed offline, using the services
of Google Colab, which provides a virtual environment with a Graphics Processing Unit
(GPU). Table 6 shows the training duration in hours, number of iterations and the GPU
assigned to each trained model.

Table 6. Training time for each neural algorithm

Algorithm GPU Training Time (Hours) N Iterations

YOLOv4 Tesla T4-15 GB 27.40 10,000
YOLOv4-tiny Tesla P100-PCIE-16 GB 4.70 20,000
YOLOv4-tiny-3l Tesla T4-15 GB 7.90 20,000
YOLOv5-s Tesla P100-PCIE-16 GB 3.60 200
YOLOv5-m Tesla P100-PCIE-16 GB 10.00 200
YOLOv5-l Tesla T4-15 GB 7.16 145

Figure 8 shows the behavior of the mAP metric for each model in the test dataset
during the training. It can be seen that, for the YOLOv4 network, the mAP remained at
values of 73% after iteration 2500, with no significant improvement in subsequent iterations.
In the case of the YOLOv4-tiny and YOLOv4-tiny-3l models, the mAP value remained in
the range from 60% to 65% until 16,000 iterations, reaching maximum values of 68% and
69% after applying a decay in the learning rate. For the YOLOv5-s and YOLOv5-m versions,
the mAP was stable after epoch 75 and increased slightly in later epochs. For YOLOv5-l,
the mAP values stabilized and increased until epoch 75, where learning remained constant
and, as there was no further improvement, the process stopped at epoch 145.

0 2500 5000 7500 10,000 12,500 15,000 17,500 20,000
Iteration (Versions of YOLOv4)

0

20

40

60

80

100

m
AP

@
0.
50

 (%
)

Neural network
YOLOv4-tiny
YOLOv4-tiny-3l
YOLOv4
YOLOv5-s
YOLOv5-m
YOLOv5-l

0 25 50 75 100 125 150 175 200
Epoch (Versions of YOLOv5)

Figure 8. mAP@0.50 calculated for the test set during training of the CNN algorithms with a
confidence of 0.25.
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The maximum mAP@0.50 score in the test dataset was obtained by the YOLOv5-s
model with a value of 77.6% and F1-Score of 73.0%, followed by the YOLOv5-m model.
Although the YOLOv4 model is better in terms of the Rc metric, with a value of 77%, it
obtained a low Pr, which penalizes the F1-Score and mAP. Table 7 shows the Pr, Rc, F1-Score
and mAP metrics obtained by each model in the test dataset in more detail.

Table 7. Test set metrics for a confidence of 0.25 and IoU of 0.50.

Model Pr Rc F1-Score mAP@0.50

YOLOv4 0.650 0.770 0.700 0.736
YOLOv4-tiny 0.620 0.730 0.670 0.686
YOLOv4-tiny-3l 0.680 0.670 0.670 0.691
YOLOv5-s 0.720 0.742 0.730 0.776
YOLOv5-m 0.700 0.748 0.723 0.769
YOLOv5-l 0.683 0.725 0.703 0.740

3.2. Evaluation

The F1-Score for each CNN was determined at IoU threshold values of 0.25, 0.50 and
0.75, for confidence values in the range from 0.05 to 1.00 in intervals of 0.05, obtaining the
results shown in Figure 9 for the evaluation data. The maximum F1-Scores were obtained at
the same confidence values for an IoU threshold of 0.50 and 0.25, with an average increase
of 4.92% for each model when going from IoU threshold of 0.50 to 0.25.

0.00 0.25 0.50 0.75 1.00
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
IoU = 0.25

0.00 0.25 0.50 0.75 1.00
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
IoU = 0.50

0.00 0.25 0.50 0.75 1.00
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
IoU = 0.75

Confidence

 

F1
-S
co

re

YOLOv4
YOLOv5-s

YOLOv4-tiny
YOLOv5-m

YOLOv4-tiny-3l
YOLOv5-l

Figure 9. F1-Score vs. Confidence curves at IoU thresholds 0.25, 0.50 and 0.75 for each trained model.

Figure 10a,b show an example of the impact on TP and FP when evaluating YOLOv5-
l with IoU thresholds of 0.5 and 0.25. These images belong to stage V4 with GSD of
0.33 cm/pixel.
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(a) (b)
Figure 10. YOLOv5-l architecture detections for a confidence of 0.3 with an IoU threshold of 0.5 (a)
and 0.25 (b). The blue boxes represent the ground truth label, green ones TP and red ones FP.

Table 8 shows the results for the Pr, Rc, F1-Score, mAP, rRMSE and R2 metrics for each
evaluated CNN model. TP, FP and FN values are shown normalized from 0 to 1 and FP is
expressed relative to the sum of TP + FN. The highest F1-Scores were obtained with the
YOLOv5-s and YOLOv5-m models, with values of 0.7814 and 0.776, respectively. Regarding
the Rc metric, the YOLOv4 model outperformed the other models, with a value of 80.78%,
followed by YOLOv5-s, with a value of 79.37%. In terms of plant counts, the YOLOv4
model had the highest correlation with R2 of 0.81 and rRMSE of 39.55%, followed by the
YOLOv5-s model with R2 of 0.78 and rRMSE of 42.06%.

Table 8. Results for each model obtained in the evaluation dataset.

Model Pr Rc F1-Score mAP TP FP FN rRMSE R2

YOLOv4 0.7057 0.8078 0.7533 0.7201 0.8078 0.3368 0.1921 0.3955 0.8116
YOLOv4-tiny 0.7049 0.7460 0.7249 0.6491 0.7460 0.3122 0.2539 0.4869 0.7114
YOLOv4-tiny-3l 0.7700 0.6489 0.7042 0.5806 0.6489 0.1938 0.3510 0.6384 0.4970
YOLOv5-s 0.7695 0.7937 0.7814 0.7310 0.7937 0.2374 0.2062 0.4206 0.7857
YOLOv5-m 0.7770 0.7751 0.7761 0.7160 0.7751 0.2223 0.2248 0.4614 0.7426
YOLOv5-l 0.7637 0.7477 0.7557 0.6853 0.7477 0.2312 0.2522 0.5349 0.6542

In order to analyze the values obtained in Table 8, recall vs. precision curves were
plotted for each of the vegetative stages with their spatial resolution; these results are
shown in Figure 11. For stages V30.33 and V40.33, the models behaved consistently with Pr
values between 77% and 85%, and Rc above 90%, except for the YOLOv4-tiny-3l model, in
which it decayed to a value of 85%. The YOLOv4 model and YOLOv5 versions maintained
the results of 70% < Pr < 80% and 85% < Rc < 90% for vegetative stages V50.33 , V60.33 and
V70.33, where the highest score was obtained at stage V50.33, followed by V70.33.



Remote Sens. 2022, 14, 4892 13 of 18

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.25

0.50

0.75

1.00
YOLOv4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.25

0.50

0.75

1.00
YOLOv5-s

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.25

0.50

0.75

1.00
YOLOv4-tiny

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.25

0.50

0.75

1.00
YOLOv5-m

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.25

0.50

0.75

1.00
YOLOv4-tiny-3l

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.25

0.50

0.75

1.00
YOLOv5-l

Recall
 

Pr
ec

isi
on

V30.33 V40.33 V50.33 V60.33 V70.33 V61.00 V71.00 V81.00

Figure 11. Recall vs. Precision curves by vegetative stage and spatial resolution.

Comparing the estimation of the number of plants per image for each model, the rRMSE
was obtained, Figure 12. The best results were obtained at vegetative stages V3, V4 and
V5 with a GSD of 0.33 cm/pixel with rRMSE values between 10 and 20%, an error that
increases at vegetative stages higher than V5.
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Figure 12. rRMSE obtained for each model by vegetative stage and spatial resolution.
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The R2 coefficient determines the relationship between the real plants and the number
of plants estimated by the network, considering a confidence of 0.3 and an IoU threshold of
0.25; values higher than 0.85 were obtained with the YOLOv4 model, for vegetative stages
V3, V4, V5, V6 and V7 with a GSD of 0.33 cm/pixel. Figure 13 shows the results obtained
for each of the CNN architectures in more detail.
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Figure 13. R2 determined for each vegetative stage considering detections with a confidence level
greater than 0.30 and IoU of 0.25.

The detections were visually inspected for errors. It was observed that TPs at vegeta-
tive stages V3, V4 and V5 with a GSD of 0.33 cm/pixel were mainly caused by corn plant
leaves at the edges of the image, and, in some cases, at V3, they were mistaken for weeds,
as shown in Figure 14a. For vegetative stages after V5 and a GSD of 1.00 cm/pixel, it was
observed that the FPs were mainly due to a lack of labels, since they were not due to the
complexity of manual labeling, as shown in Figure 14b–d.
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(a) (b)

(c) (d)
Figure 14. Visualization of manually labeled images (blue box), TP (green box) and FP (red box).
Detection of vegetative stage (a) V3 with YOLOv4, (b) V71.00 with YOLOv5-s, (c) V81.00 with YOLOv5-
s and (d) V61.00 with YOLOv5-s.

4. Discussion

The confidence value for the evaluation was chosen with the mode. When the models
reached the maximum F1-Score, this value of 0.3 is lower than that of [20], who report a
confidence of 0.5 when evaluating the Faster-RCNN architecture, indicating better results
in terms of plant classification. YOLOv4-based models with confidence values higher than
0.35 maintain a higher F1-Score value than YOLOv5 versions, indicating that YOLOv4
models are more reliable in terms of classifying corn plants.

Most of the works on object detection in large datasets evaluate CNN models at IoU
thresholds higher than 0.5 [35]. By analyzing the graphs in Figure 9, considering IoU
thresholds greater than 0.5, a decrease can be seen in the F1-Score metric, indicating that the
models lose precision in estimating the size of the corn plant. This can be seen in Figure 14a,
where it is observed that, in some cases, the label prediction does not include the plant
leaves, and since the IoU threshold of 0.5 is not exceeded, they would be considered FP
predictions. As in [20], the F1-Score metric was evaluated at an IoU threshold of 0.25.
An average increase of 4.92% was achieved for all YOLO models from an IoU threshold
of 0.50. For the purposes of plant counting and detection, accurate estimation of plant
dimensions is not considered critical [20]. Consequently, the IoU threshold value of 0.25
and a confidence of 0.3 were used to better account for the smaller size of the detected
bounding boxes and the classification of corn plants, as was done in [20].
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With respect to the plant count, YOLOv4 has a higher number of TPs, so it correlates
better with the actual number of plants, with R2 = 0.81 and rRMSE = 39.55%, followed
by the YOLOv5-s model, with R2 = 0.78 and rRMSE = 42.06%. Although there is a high
correlation with the actual number of plants in both models, according to [21], they would
still be considered very poor results as they have rRMSE values greater than 20%.

For a better analysis of the data, the models were evaluated for each plant growth
stage and their spatial resolution. For the evaluation of the models at stages V30.33 and
V40.33, with the exception of YOLOv4-tiny-3l, the performance results are consistent with
the findings reported in the literature. Similar results were found in [21], who reported
10% < rRMSE < 20% for stages V3 and V4 under moderately weedy conditions. In [13] a
coefficient R2 = 0.89 is reported for stages V3 and V5, while in [12] R2 = 0.98 is reported for
stage V2.

For the YOLOv4-tiny and YOLOv4-tiny-3l models, the results considerably decay from
the V50.33, stage, which is understandable since they reduce the number of convolutional
layers. In addition, the idea that YOLOv4-tiny-3l performs better than YOLOv4-tiny by
having one more output was rejected.

The YOLOv4 models and the YOLOv5 versions evaluated at stages V50.33, V60.33
and V70.33 maintain the results of 70% < Pr < 80% and 85% < Rc < 90%, with the best
scores at V50.33 followed by V70.33. As the rRMSE values for V60.33 and V70.33 exceed 20%,
the results are considered very poor and poor for V50.33. These results are consistent with
the limitation mentioned by [6], where plants are prone to leaf overlap, which reduces the
overall performance of the YOLO architecture evaluated in this work.

A visual inspection of the detections made by each YOLO model helped to understand
that FPs at stages lower than V5 with GSD of 0.33 cm/pixel are due to detections made at
the edges of the images and in isolated cases due to confusion with weeds. In these cases,
the FP count can be lowered by filtering the results with confidence values greater than 0.30.
For stages V60.33, V70.33, V61.00 and V71.00, the FPs are mostly due to predictions made for
unlabeled plants. Although partial labeling is not recommended in tasks addressed with
supervised learning, in this case.=, full labeling was extremely complicated due to various
errors in the image. Even so, the robustness of the YOLOv5-s model for detecting corn
plants under highly complex weed conditions can be seen in Figure 14b.

Although in [20], the effect of spatial resolution on the detection of corn plants was
evaluated, obtaining better results with a GSD of 0.3 cm/pixel in stages between V3 and
V5, in this work it was observed that, for stages higher than V5, a GSD greater than 0.3
but lower than 1.00 cm/pixel should be considered because the images become difficult to
visually interpret for labeling.

Finally, due to the characteristics of the camera mounted on the drone used in
this research work, the flight height at which the best results were obtained was 10 m
(GSD = 0.33 cm/pixel), which makes large-scale deployment unfeasible due to the limited
data acquisition capability. Better cameras that allow for the acquisition of sharper images
with plant-level detail at higher flight heights are required for better results when detecting
corn plants and to make the application feasible. Another limitation of this study is that a
range of GSD was not explored to determine an optimum for the detection of corn plants at
vegetative stages above V5.

5. Conclusions

In this research work, a database of aerial images of corn crops with different levels of
weed infestation and ground sampling distance was created. The detection and counting
of corn plants were evaluated using YOLOv4, YOLOv4-tiny, YOLOv4-tiny-3l, YOLOv5-
s, YOLOv5-m and YOLOv5-l architectures. It was shown that YOLOv5 and YOLOv4
architectures are robust in detecting and counting corn plants at stages below V5 in high-
resolution images (GSD = 0.33 cm/pixel) even under weed infestation conditions, obtaining
Pr results between 77 and 85%, an Rc above 90% and rRMSE between 10 and 20%.
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However, in case of stages after V5 with GSD of 1.00 cm/pixel, the results were not
favorable, due to the low quality of the images, which did not even allow for the complete
labeling of the corn plants. High-resolution images are crucial to improve the results
in plant detection; therefore, it is recommended to determine an optimal GSD for the
acquisition of aerial images in stages after V5.

The effect of considering different confidence values and IoU thresholds as evaluating
detection models was also observed. In this case, YOLOv4 has higher confidence levels than
the YOLOv5 versions, although the YOLOv5 versions are more accurate in determining
plant location and size. The largest errors in plant counts were obtained in case of the tiny
versions of YOLOv4 due to the reduced number of convolutional layers.

Finally, to make plant detection feasible on a larger scale, one direction for future work
would be to explore the use of super-resolution architectures coupled to an end-to-end
trainable detector, solving the problem of acquiring low-resolution images.
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