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Abstract: A common problem with matching algorithms, in photogrammetry and computer vision,
is the imperfection of finding all correct corresponding points, so-called inliers, and, thus, resulting in
incorrect or mismatched points, so-called outliers. Many algorithms, including the well-known ran-
domized random sample consensus (RANSAC)-based matching, have been developed focusing on
the reduction of outliers. RANSAC-based methods, however, have limitations such as increased false
positive rates of outliers, and, consequently resulting in fewer inliers, an unnecessary high number of
iterations, and high computational time. Such deficiencies possibly result from the random sampling
process, the presence of noise, and incorrect assumptions of the initial values. This paper proposes a
modified version of RANSAC-based methods, called Empowered Locally Iterative SAmple Consen-
sus (ELISAC). ELISAC improves RANSAC by utilizing three basic modifications individually or in
combination. These three modifications are (a) to increase the stability and number of inliers using
two Locally Iterative Least Squares (LILS) loops (Basic LILS and Aggregated-LILS), based on the
new inliers in each loop, (b) to improve the convergence rate and consequently reduce the number
of iterations using a similarity termination criterion, and (c) to remove any possible outliers at the
end of the processing loop and increase the reliability of results using a post-processing procedure.
In order to validate our proposed method, a comprehensive experimental analysis has been done on
two datasets. The first dataset contains the commonly-used computer vision image pairs on which
the state-of-the-art RANSAC-based methods have been evaluated. The second dataset image pairs
were captured by a drone over a forested area with various rotations, scales, and baselines (from
short to wide). The results show that ELISAC finds more inliers with a faster speed (lower computa-
tional time) and lower error (outlier) rates compared to M-estimator SAmple Consensus (MSAC).
This makes ELISAC an effective approach for image matching and, consequently, for 3D information
extraction of very high and super high-resolution imagery acquired by space-borne, airborne, or
UAV sensors. In particular, for applications such as forest 3D modeling and tree height estimations
where standard matching algorithms are problematic due to spectral and textural similarity of objects
(e.g., trees) on image pairs, ELISAC can significantly outperform the standard matching algorithms.

Keywords: UAV image matching; UAV photogrammetry; Empowered Locally Iterative SAmple
Consensus (ELISAC); inliers; outlier; RANSAC; collinearity equations; fundamental matrix

1. Introduction

Matching is the process of finding the corresponding points in two or more images
of the same area (overlapping images) and is a fundamental step in 3D model generation
in photogrammetry and computer vision [1]. Matching is used in many photogrammetric
and computer vision applications, such as image registration, triangulation, 3D model and
digital surface model (DSM) generation, change detection, target detection, and image mo-
saicking. Despite the presence of many matching algorithms, the accurate, fast, and highly
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reliable performance of existing matching processes still has significant limitations due to
the complex characteristics of the images used in photogrammetric applications, as well as
the requirements for improving the accuracy, speed, and reliability of this process [2–8].
For example, standard matching algorithms such as the well-known Randomize Random
SAmple Consensus (RANSAC) do not provide promising results when applied to UAV
imagery over forest areas due to spectral and textural similarities of objects, resulting in a
fairly large number of mismatched points (outliers or noise).

Matching is a fundamental step in photogrammetry for the generation of DSM using
a set of two or more overlapping images. The traditional photogrammetric procedure is
effective when applied to imagery acquired by metric cameras (sensors) onboard aerial or
space-borne platforms. Although there are UAVs with metric cameras, most of the UAVs
on the market capture imagery with nonmetric cameras, resulting in the ineffectiveness
of traditional photogrammetry for applications such as DSM generation. In addition,
the super high-spatial resolution of UAV images (i.e., centimetric level) makes the use
of conventional photogrammetric processing less effective [9,10]. In general, the DSM
generation steps are (1) feature extraction and matching; (2) finding the best match (outlier
rejection); (3) triangulation, bundle block adjustment, and sparse point cloud generation;
(4) point cloud densification; and, finally, (5) DSM generation. The high number of inliers
increases the observations and directly improves the accuracy of triangulation, bundle
block adjustment, and sparse point cloud. Therefore, finding more inliers (best matches) is
essential for generating a denser and well-distributed sparse point cloud and, consequently,
a preciser DSM [11,12].

One of the challenges in processing UAV data for 3D generation is the presence of
outliers in the matching step and, as a result, the generation of the sparse and dense
points cloud with low accuracy and, finally, the generation of DSM of the scene with low
accuracy [13]. Therefore, it is necessary to eliminate the outliers in each stage, including
the generation of tie, sparse, and dense point clouds, in order to increase the accuracy and
quality of the matching process and, consequently, generate an accurate DSM.

In general, the outlier removal methods can be categorized as handcrafted and deep
learning methods [14]. There are various traditional (handcrafted) methods for removing
outliers, such as M-estimators, L-estimators, R-estimators, Least Median Squares (LMedS),
and Hough transform [15]. One of the most widely used algorithms is RANSAC, which
estimates both matched features and outliers [16]. RANSAC is based on an iterative
selection of minimal random samples in order to estimate the model parameters [16]. To
find correct matches, RANSAC needs a high number of iterations to detect the possible
inliers among the existing outliers. In other words, RANSAC first selects an initial set of
a random sample (points) and solves the model (collinearity equations or fundamental
matrix) parameters; then, it checks the number of inliers and calculates the maximum
iteration number (N). If the inliers ratio (the ratio between the number of inliers to the
total number of points) is more than the last iteration, N is updated using the new number
of inliers. This procedure continues until the iteration number reaches N. However, an
important missing part in RANSAC is that it only considers the minimum number of
points required to solve the model parameters in all iterations and does not consider the
possibility of using new inliers found in each iteration (or early best matches) to update
the model and, consequently, to increase inliers before going to the next iteration. This
results in a remaining significant number of mismatches (outliers) after the process is
completed. This shortcoming, together with other requirements such as enormous memory
and computation time requirements and the need for a threshold for error rejection, [15,16]
reduces the efficiency of the RANSAC matching outlier rejection method.

Convolutional neural network (CNN) architecture, as a deep learning method, presents
a new method of feature detection [17], feature description [18], model design [19], and
matching procedure [14]. Deep learning-based methods train neural networks for the
matching process, followed by a RANSAC-based loop as an outlier rejection [20]. The
difference between traditional and deep learning methods is that the deep learning-based
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method usually processes all correspondences in one step without generating hypotheses
repeatedly [21–24].

However, in comparison to well-tuned RANSAC-based methods, the deep learning-
based methods still need to be further studied in terms of network structure [25], loss
function [26], matching metrics [27], generalization ability [28], typical image-matching
problems such as large viewpoint changes [29], surface discontinuities [30], shadows [31],
and repetitive patterns [14,32]. More importantly, after careful revision, Jin and his col-
leagues concluded that RANSAC-based methods still outperform the deep learning meth-
ods by tuning the proper settings [20,33].

Related Works

To date, various extensions and derivations of RANSAC have been introduced to im-
prove its performance [34]. Such RANSAC-based algorithms include the M-estimator SAm-
ple Consensus (MSAC) [35]; Locally Optimized RANSAC (LO-RANSAC) [36]; Progressive
Sample Consensus, which speeds up the sampling probability of hypotheses (PROSAC) [37];
RANSAC for Quasi-Degenerate data (QDEGSAC) [38]; Optimal RANSAC [39]; Universal
framework for a random Sample Consensus (USAC) [40]; Marginalizing Sample Consensus
(MAGSAC) [41]; Latent RANSAC [42]; degeneracy check using homography (DEGEN-
SAC) [43]; Graph Cut as a local optimization (GC-RANSAC) [44]; auto-tuning of thresholds
using confidence margins (MAGSAC) [41]; Grid-based motion statistics RANSAC (GMS-
RANSAC) [45]; and Geometrical Constraint SAmple Consensus (GCSAC) [46]. However,
most of these new versions of RANSAC still suffer the problems described for standard
RANSAC when applied to super high-resolution imagery of UAVs for DSM generation,
especially over spectrally and texturally similar environments such as forest areas.

As discussed, deep learning-based methods are followed by RANSAC-based outlier
rejection, so it still is important to have a good outlier rejection method to address some
limitations of the RANSAC-based methods [35,40,47]. This paper proposes a modified
version of RANSAC called Empowered Locally Iterative SAmple Consensus (ELISAC)
utilizing three basic enhancements to improve the performance of the RANSAC-based
method in terms as follows.

• number of inliers found;
• lower number of iterations;
• increased convergence rate;
• the refinement of the final inlier output (reducing the remaining outliers in the last

stage of the loop).

The next section (Section 2) starts by providing an overview of RANSAC-based meth-
ods followed by a detailed description of our proposed ELISAC and its three enhancement
steps. Section 3 presents the experimental results of applying ELISAC to two datasets, a
well-known dataset used in computer vision and UAV images of a forest area, and evalu-
ates and discusses its performance on a dense point cloud, sparse point cloud, and DSM
generation against the standard RANSAC algorithm and Agisoft commercial software
(Agisoft LLC, Saint Petersburg, Russia) [48]. Finally, Section 4 presents our remarks and
conclusions.

2. Methods
2.1. An Overview of the RANSAC-Based Methods

Since our proposed method is a modified version of RANSAC, it is essential to un-
derstand how RANSAC-based algorithms work to better understand the improvements
(enhancements) we are proposing.

RANSAC and its extensions are arguably one of the most common outlier rejection
methods in photogrammetry and computer vision. RANSAC is an iterative two-step
process. Algorithm 1 shows a pseudocode for RANSAC. In the first step, a small number
of random samples (s) are selected to determine the model’s parameters (i.e., Collinearity
or Coplanarity conditions in photogrammetry and the Essential Matrix or Fundamental
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Matrix in the computer vision field [49,50]). The interior and relative orientations are
performed simultaneously using the collinearity equations (the model) and utilizing at least
eight corresponding points [51] in two (or more) overlapping images, which are called tie
points [52]. The use of more points increases the degree of freedom and, consequently, the
model′s geometrical strength. In the second step, the model is tested against the rest of the
tie points through a distance function (e.g., Euclidian or Sampson distance) to determine
the number of inliers (I), the inlier ratio (e), and a number of iterations (N) using Equations
(1) and (2). The inlier ratio is the ratio between the number of inliers and the total number
of points (M). Equations (1) and (2) are as follows. ρ is the desired probability of selecting a
good sample (all inlier).

N =
log(1− ρ)

log(1− es)
(1)

e =
I

M
(2)

Algorithm 1: Standard RANSAC procedure.

Inputs: M: all tie points, s: minimum number of points required to solve the unknown parameters of the model, and θ: a
predefined threshold.
Output: Iglobal−best : global-best-inliers
iteration = 0, Icurrent−best = 0
While iteration < N

Select an initial random sample (s points)
Generate the hypothesis using the initial sample (collinearity equations)
Evaluate the hypothesis (i.e., Euclidian distance for all tie data points (M))
Count the supporting points (Iiteration)
If Iiteration > Icurrent−best

Icurrent−best = Iiteration
Update N based on the new Icurrent−best (Equation (2))

End If
iteration = iteration + 1

End While
Iglobal−best = Icurrent−best
Re-estimate the Collinearity equations or the Fundamental matrix using Iglobal−best

In the next iteration, if I is greater than that of the previous iteration, N is updated
using the new I; otherwise, N remains unchanged. This procedure continues until the
iteration number reaches N or the inlier ratio (e) exceeds a predefined threshold. It should
be noted that N is an adaptive termination (AT) criterion that is updated in each iteration
based on e. Finally, the subset with the highest number of inliers is considered the best
match points, and the model generated using all inliers is considered the best model.

2.2. ELISAC: Empowered Locally Iterative SAmple Consensus

Our proposed ELISAC method improves the MSAC version of RANSAC in three
different ways. MSAC is operated similarly to RANSAC, although, in contrast to RANSAC,
it considers an interest value for both inliers and outliers to evaluate the hypothesis [35].
First, it increases stability and the number of inliers by introducing two Locally Iterative
Least Squares (LILS) loops, i.e., Basic LILS and Aggregated LILS. These two loops are
interchangeable. Second, it improves the convergence rate and, consequently, reduces the
number of iterations using a Similarity Termination (ST) criterion. Third, it removes any
possible outliers and thus increases the reliability of the results using a post-processing
procedure. The highlighted boxes in Chart 1 show these proposed improvements.



Remote Sens. 2022, 14, 4917 5 of 24

Remote Sens. 2022, 14, 4917 5 of 24 
 

 

possible outliers and thus increases the reliability of the results using a post-processing proce-

dure. The highlighted boxes in Chart 1 show these proposed improvements.  

 

Chart 1. Processing steps in MSAC and the proposed ELISAC method (gray boxes show the three 

enhancements steps). 

 

No 

Yes 

Yes 

No 

No 

Yes 

Generate the initial random sample and set the number of inliers to 0  

(         −    =  ) 

Met the adaptive termination 

criterion (based on     −    )? 

 

Generate the model (Epipolar geometry or the fundamental matrix) using the initial 

samples 

Apply the model to all data points 

  

The Locally Iterative Least Squares  (LILS) Loop 

Post-processing procedure (      ) 

Set        −    =      −     

  

Met the Similarity 

Termination criterion? 

                   −     

Increase the iteration-number by one 

  

Re-estimate the Epipolar geometry or the fundamental matrix using        

  

Set         −    =             

Update the maximum required number of iterations (adaptive termination) 

Count the support data (the number of inliers or           ) 

Chart 1. Processing steps in MSAC and the proposed ELISAC method (gray boxes show the three
enhancements steps).



Remote Sens. 2022, 14, 4917 6 of 24

2.3. Locally Iterative Least Squares (LILS) Loop

As described earlier, MSAC uses an initial minimum random sample set of matched
points (eight points in our case) to estimate the model parameters (collinearity equations)
and evaluate the model against all other matched points to determine the inliers. If the
number of inliers found is more than the previous number of best inliers, the current
best inliers will be updated (Algorithm 1). However, the algorithm does not consider the
inclusion of these early found inliers to estimate and improve the model. To include the
early best matches (inliers) in improving the model at each iteration, we propose two types
of a Locally Iterative Least Squares (LILS) loop. These loops enhance the performance of
the MSAC in terms of stability, the number of inliers found, and the convergence rate.

2.3.1. Basic LILS

Algorithm 2 shows the Basic LILS loop, where all inliers found at each iteration are
directly used to solve the unknown parameters of the model (collinearity equations). The
parameters are estimated using the least squares solution. In other words, unlike MSAC,
where the model is updated using a minimum number of points at each iteration, the
Basic LILS utilizes all inliers found at each iteration and applies a least squares solution to
improve the model (Algorithm 2). Once the model is updated, it will be applied to all other
points to find more inliers at each iteration, and the process continues until the inlier ratio
meets the threshold or the number of iterations reaches N (i.e., adaptive termination—AT).
The number of inliers found by this method is significantly higher than any initial random
sampling procedure (even the uncontaminated samples) in the RANSAC-based methods.
After each inner iteration, the AT criterion is updated based on the highest number of
inliers found using the local loop. This process is called AT-Basic.

Algorithm 2: Basic LILS.

Inputs: M: all match points, s: minimum number of points required to solve the unknown parameters of a model, and θ: a
predefined threshold.

Output: Iglobal−best : global-best-inliers

iteration = 0, Icurrent−best = 0, Isave−best = 0
While iteration < N

Select an initial random sample (s points)
Generate a hypothesis using the initial sample
Evaluate the hypothesis (evaluation procedure against all data points (M))
Count the support data (Iiteration)
If Iiteration > Icurrent−best

Icurrent−best = Iiteration
Iloop−best = 0
While (Iloop−best > Icurrent−best OR Iloop−best = 0)

If Iloop−best 6= 0
Icurrent−best = Iloop−best

End If
Select all inliers (Icurrent−best) as initial sample
Generate a hypothesis (least-squares-based) using the initial sample
Evaluate the hypothesis (evaluation procedure against all data points (M))
Count the supporting data (Iloop−best)

End While
If Icurrent−best ≥ Isave−best

Isave−best = Icurrent−best
Else

Icurrent−best = Isave−best
End If
Check the ST criterion (optional) and terminate the program if it is satisfied.
Update N based on the new Icurrent−best (AT-Basic criterion)
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Algorithm 2: Cont.

End If
iteration = iteration + 1

End While
Iglobal−best = Icurrent−best
Re-estimate the Collinearity equations or the Fundamental matrix using Iglobal−best

2.3.2. Aggregated LILS

The second proposed local loop, Aggregated LILS, uses a similar procedure as the
Basic LILS. The only difference is that it uses the aggregated inliers found in the current
and the previous loops in each iteration. It increases the number of inliers and speeds up
the overall convergence rate (Algorithm 3). The idea of aggregating was proposed by [53],
where they aggregated the best models obtained in each iteration of a local optimization
step using a statistical weighting procedure. Our proposed aggregation method simply
combines the best inlier set found after each Basic LILS loop without considering any
weighting procedure. In this step, the AT criterion is updated based on the highest number
of aggregated inliers found using the local loop. This process is called AT-Improved.

Algorithm 3: Aggregated LILS.

Inputs: M: all match points, s: minimum number of points required to solve the unknown parameters of a model, and θ: a
predefined threshold.
Output: Iglobal−best : global-best-inliers

iteration = 0, Icurrent−best = 0, Isave−best = 0, IAggregate−best = 0
While iteration < N

Select an initial random sample (s points)
Generate a hypothesis using the initial sample
Evaluate the hypothesis (evaluation procedure against all data points (M))
Count the support data (Iiteration)

If Iiteration > Icurrent−best
Icurrent−best = Iiteration
Iloop−best = 0

While (Iloop−best > Icurrent−best OR Iloop−best = 0)
If Iloop−best 6= 0

Icurrent−best = Iloop−best
End If

Select all inliers (Icurrent−best) as the initial sample
Generate a hypothesis (least-squares-based) using the initial sample
Evaluate the hypothesis (evaluation procedure against all data points (M))
Count the supporting data (Iloop−best)

End While
If Icurrent−best ≥ Isave−best

If Isave−best 6= 0

IAggregate−best = Aggregate
(

IAggregate−best & Icurrent−best

)
Check the ST criterion (optional) and terminate the program if it is satisfied.

Isave−best = Icurrent−best
Else If Isave−best = 0

Isave−best = Icurrent−best
IAggregate−best = Icurrent−best

End If
Else

Check the ST criterion (optional) and terminate the program if it is satisfied.
Icurrent−best = Isave−best

IAggregate−best = Aggregate
(

IAggregate−best & Icurrent−best

)
End If

Update N based on the new Icurrent−best (AT-Basic criterion) or IAggregate−best (AT-Improved)
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Algorithm 3: Cont.

End If
iteration = iteration + 1

End While
Iglobal−best = IAggregate−best
Re-estimate the Collinearity equations or the Fundamental matrix using obtained Iglobal−best

2.4. The Similarity Termination (ST) Criterion

In the standard MSAC algorithm, the process is terminated either when the inlier
ratio meets the predefined threshold (θ) or the number of iterations reaches N. Since N is
dependent on e, the inlier ratio, the number of inliers (I) found at each iteration directly
impacts the termination process. A small I limits the search space and, hence, increases the
chance of selecting a local optimum rather than a global one. In contrast, the high number
of samples (i.e., when LILS enhancement is applied) increases the computational time
irrationally. Therefore, an efficient stopping criterion should have a good balance between
local and global searches. To increase the convergence rate and decrease the computational
time, we propose an additional termination criterion named Similarity Termination (ST). ST
considers the similarity of inlier points between two consecutive iterations. If the similarity
is more than 95%, the algorithm will terminate; otherwise, the algorithm will continue until
AT or ST meets the threshold. The use of ST does not require any input parameter, which is
an essential factor, especially when the inlier ratio is unknown.

2.5. Post-Processing Procedure

To further clean up the obtained inliers in previous steps from any possible outlier (Our
experimental results show that it is quite common to have remaining outliers in the final
result.), we propose a post-processing procedure (PPP) to filter out any remaining outliers.
For this purpose, a final outlier rejection process (e.g., Basic LILS) is applied to the inliers
found in the final results. Since the inlier ratio (e) is high, N is low, and thus, implementing
the PPP step does not add a significant computational burden to the whole process. Once
the inliers are inspected and possible outliers removed, the final inliers will be used to
estimate the final accurate model of the collinearity equations or the fundamental matrix.

3. Experiments and Results

The proposed methods are evaluated both quantitatively and qualitatively. The quanti-
tative evaluation is done by comparing the number of inliers and the relative computational
time to MSAC. Then, we visualize how our best-performing algorithm improves the quality
of the generated DSM. To do so, we compare our generated DSM with a DSM generated
with well-known commercial software (Agisoft).

For this study, the Scale-Invariant Feature Transform (SIFT) algorithm was utilized to
extract match points for all the images [54]. The collinearity equations with a normalized
eight-point model were also used to estimate the epipolar geometry (hypothesis genera-
tion) [52,55]. The Sampson distance, 0.3 pixel with a confidence value of 95%, was utilized
as an error function between each point and its projection on the image. The Sampson dis-
tance defines the squared distance between point x to the corresponding epipolar line [56].
The projection is calculated by applying the epipolar geometry principles.

3.1. Dataset

To investigate the potential of the proposed scenarios, first, a freely available dataset [57]
was selected. These image pairs have been tested on some of the common state-of-the-art
RANSAC-based methods [36,57]. Therefore, we compared our proposed scenarios’ output
on this dataset in terms of the accuracy, computational time, and the number of inliers
generated by our method with MSAC’s output. The dataset contains image pairs with
rotation, scale, and viewpoint changes (Figure 1). For these image pairs, the number of
SIFT points is given in Table 1.
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Figure 1. The image samples of the first dataset (Books (a), Box (b), Kampa (c), Kyoto (d), Plant (e),
Valbonne (f)).

Table 1. The number of match points of the first dataset image pairs.

Image Pairs Books (a) Box (b) Kampa (c) Kyoto (d) Plant (e) Valbonne (f)

Number of
SIFT points 167 418 227 730 157 97

The second dataset consists of image pairs taken by FC330 as a sensor and DJI Phantom
3 as a platform at about a 60-m average flight altitude over an area covered by forest stands
(mostly coniferous), clear cuts, roads, and a single building. We purposely picked this
area to test the performance of our proposed algorithm in an area containing such land
cover types. The parameters of the UAV images are listed in Table 2. Among the acquired
UAV images, image pairs with different overlapped, various rotation angle, and different
baseline (short to wide) are selected over dense, semi-dense, and sparse forestry areas to
assess the proposed enhancements. Figure 2 shows the original images. We compare the
accuracy, computational time, and the number of inliers generated by our method with
MSAC output. For these image pairs, the number of SIFT points are given in Table 3.
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Table 2. The UAV image pair specifications.

Weight (g) 1280

Diagonal size (mm) 350

Max speed (m/s) 16

UAV model DJI Phantom 3

Camera

Model FC330

Sensor 1/2.3” CMOS (Effective pixels: 12.4 M)

Lens FOV 94◦20 mm

Hover Accuracy Range
Vertical ±0.5 m (with GPS Positioning)

Horizontal ±1.5 m (with GPS Positioning)

Max. flight time (minute) 23

Image size (pixels) 4000 × 3000

Ground resolution size of images (cm/pix) 2

Average flight altitude (m) 53.8

Focal length in 35 mm format (mm) 20

ISO speed 174

Exposure 1/60

Aperture Value 2.8

Image area coverage (m2) 81 × 61
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Table 3. The number of match points of UAV image pairs.

Image Pairs a and b a and c a and d a and e a and f a and g a and h a and i

Number of
SIFT points 7791 2621 1083 420 4265 2400 1324 728

3.2. Performance Evaluation

A total of two scenarios based on different enhancements, Basic and Aggregated LILS,
were tested on both datasets. The first scenario combined Basic LILS, AT-Basic, ST-criterion,
and PPP. The second scenario combined Aggregated LILS, AT-Improved, ST-criterion,
and PPP.

For the performance evaluation of the proposed method, we compared the number of
inliers and the computational time for each algorithm with the corresponding values for
the MSAC algorithm. To compare the number of inliers, we used the following metrics: the
average number of inliers, the minimum number of inliers, maximum number of inliers,
and the RMSE of the number of inliers for each image pair. The RMSE was calculated by
taking the average RMSE from 100 runs. The relative time ratio to MSAC was reported
for the same image pairs. Similar to RMSE, we use the average from 100 runs for the
computational time. Tables 4 and 5 summarize the results for each image pairs in both
datasets. Figures 3 and 4 visualize the values reported in Table 4, and Figures 5 and 6
visualize the values reported in Table 5.

Table 4. The obtained results from all image pairs in the first dataset.

Books (a) Box (b) Kampa (c) Kyoto (d) Plant (e) Valbonne (f)

In
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er
s’
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er
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)

MSAC 80.0 ± 5.6
(67–93)

221.7 ± 9.8
(200–247)

70.1 ± 3.6
(61–79)

245.7 ± 10.1
(214–266)

52.1 ± 4.1
(41–63)

39.1 ± 2.3
(30–44)

Basic LILS 102.0 ± 6.0
(84–118)

278.7 ± 15.2
(234–303)

110.1 ± 8.8
(85–136)

338.5 ± 28.6
(257–392)

70.45 ± 5.4
(56–83)

51.7 ± 4.1
(39–61)

Aggregated LILS 90.0 ± 6.9
(71–98)

222.8 ± 15.6
(186–249)

65.3 ± 4.9
(53–79)

249.4 ± 12.7
(202–266)

51.7 ± 4.8
(41–64)

40.3 ± 3.5
(31–46)
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C Basic LILS 1.275 1.2571 1.5706 1.3776 1.3522 1.3222

Aggregated LILS 1.125 1.0049 0.9315 1.015 0.9923 1.0306
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Aggregated LILS 0.197 0.377 0.049 0.127 0.112 0.150
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Figure 3. Ratio of the computational time with respect to MSAC for the first dataset.
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Table 5. The obtained results from all image pairs (a and b, a and c, a and d, a and e, a and f, a and g,
a and h, and a and i).

a and b a and c a and d a and e a and f a and g a and h a and i

In
lie

rs
’a

ve
ra

ge
-

R
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(m
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)

MSAC 4516.5 ± 245.9
(4001–5128)

1374.3 ± 68.2
(1228–1566)

491.3 ± 20.1
(447–552)

119.2 ± 4.7
(104–131)

2416.1 ±
130.5

(2145–2699)
1243.3 ± 66.4
(1100–1383)

618.8 ± 30.0
(540–688)

248.6 ± 10.5
(227–274)

Basic LILS 5380.4 ± 51.4
(4935–5420)

1593.6 ± 35.8
(1511–1644)

556.1 ± 8.0
(531–570)

132.6 ± 2.5
(124–137)

2882.9 ± 14.4
(2828–2909)

1435.5 ± 14.3
(1384–1463)

722.1 ± 11.9
(681–743)

279.1 ± 7.0
(243–290)

Aggregated
LILS

5394.4 ± 19.8
(5301–5439)

1598.8 ± 34.7
(1456–1644)

559.1 ± 7.5
(538–571)

133.5 ± 2.7
(123–139)

2889.5 ± 13.2
(2844–2913)

1442.3 ± 16.7
(1380–1478)

720.2 ± 13.6
(680–746)

282.0 ± 7.4
(260–296)
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Figure 6. Ratio of inliers with respect to MSAC for the UAV dataset.

As the results suggest, both algorithms (Aggregated and Basic-LILS) find more inliers
for all the image pairs than the MSAC, at least 10% more inliers. According to [37,58], the
number of required samples (related to the inlier ratios) and the number of data points for
the hypothesis evaluation are the main factors that affect the speed of the convergence in
RANSAC-based methods. It means that decreasing the inlier ratios, as well as increasing
the number of data points, will increase the computational time. Tables 4 and 5 demonstrate
the Basic and Aggregated-LILS loops improve the convergence rate, as well as the stability
and the number of inliers.

Tables 4 and 5 show that, for the proposed algorithm, the number of data points
has the strongest effect on increasing the computational time. It means that, by increas-
ing the total number of data points (e.g., a and e), the computational time will increase.
Additionally, for both scenarios and datasets, the computational time for all the image
pairs is less than the MSAC, except for the UAV dataset’s first image pair (a and b) of the
UAV dataset. The potential reason could be the huge number of inliers with respect to the
MSAC, approximately 25% more. Further, it is observed that the computational time of
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the Aggregated-LILS with AT-Improved criteria is less than the computational time for the
Basic-LILS with AT-Basic criteria.

It can be observed that all the proposed scenarios behave approximately in a similar
manner in terms of the standard deviation of the inliers. In conclusion, the standard
deviation of the inliers for all the proposed scenarios is significantly lower than MSAC,
which shows both Basic and Aggregated-LILS find approximately similar results in different
implementations, disregarding the number of outliers/inliers and type of baselines.

3.3. Point Cloud and DSM Comparison

In order to compare the point cloud and the DSM, we use Aggregated-LILS, as it
performs slightly better than Basic-LILS. We chose three different overlapping image pairs
over dense, semi-dense, and sparse forestry areas to assess the proposed method. Figure 7
shows the three selected UAV image pairs. To perform the point cloud and DSM compar-
ison, we used commercial Agisoft. The purpose of this study was relative comparison;
therefore, the generated products aligned with each other before each assessment using
CloudCompare software (Électricité de France, Paris, France).
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Figure 8 shows the sparse point clouds generated by our proposed method and
commercial Agisoft for the selected image pairs. Additionally, Table 6 summarizes the
number of inliers in the sparse point clouds generated by each method.

Table 6. The number of inliers.

Method
Number of Points in the Generated Sparse Point Clouds

First Dataset (a) Second Dataset (b) Third Dataset (c)

The proposed procedure 4870 5755 11,292

Agisoft software 3306 4225 7418
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Figure 8. The generated sparse point cloud by the proposed procedure (a–c) and Agisoft (d–f) from
the first, second, and third datasets, respectively.

As is shown in Figure 8 and Table 6, the proposed method generates a denser sparse
point cloud compared to Agisoft. This was expected, as our method detects more inliers in
all the image pairs.

The results after densification are also shown in Figure 9. These point clouds are
cropped around the edges to avoid the effect of perspective distortions on the edges
of images. The densification of the point clouds based on the proposed procedure is
implemented in MATLAB. Due to the memory limitations of MATLAB, our generated
dense point clouds have fewer points compared to the dense point clouds of Agisoft.
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Figure 9. The generated dense point clouds based on the proposed procedure (a–c) and Agisoft
(d–f) from the first, second, and third datasets.

For a better visualization of the difference between the generated dense point clouds,
we subtracted the corresponding point clouds using CloudCompare v2.9.alpha (64-bit)
software (Électricité de France, Paris, France) based on the Iterative Closest Point (ICP)
method. This comparison could also be used to show the elevation differences between
two point clouds. Since both dense point clouds are generated using the same images,
this difference is used to highlight the areas that are modeled based on the proposed
method but not with Agisoft. In Figure 10, similar areas are demonstrated in blue. The
visual comparison of both point clouds shows that they match with high percentages in
most areas (blue dots in Figure 10). The most significant difference between the two point
clouds can be observed in forestry areas, where some single trees were detected in the
proposed method but not in the Agisoft point cloud (shown in green, yellow, and red dots
in Figure 10).
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Figure 10. The differences between the generated point clouds by Agisoft and the proposed method
from (a) the first, (b) second, and (c) third datasets.

The generated dense point clouds are then used to produce the DSM using ArcGIS 10.5.
The results are demonstrated in Figures 11–13. In these figures, the trees that are detected by
our method, but not with Agisoft, are highlighted with red circles. Additionally, the DSM
differences, as well as the profile graphs, are demonstrated. These results show the impact
of detecting more inliers in achieving a more detailed point cloud and, consequently, a better
DSM in the forestry areas. As can be seen in Figure 11b,c, Figure 12b,c and Figure 13b,c,
several trees are detected by our method but not by Agisoft.
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Figure 11. The image captured at the desired area (a), the generated DSM by Agisoft (b), as well as 

the proposed method, (c) are also shown from the first dataset. The subtraction of two DSMs, in 

addition to the profile graph, is also demonstrated (d). 

Figure 11. The image captured at the desired area (a), the generated DSM by Agisoft (b), as well
as the proposed method, (c) are also shown from the first dataset. The subtraction of two DSMs, in
addition to the profile graph, is also demonstrated (d).
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Figure 12. The image captured at the desired area (a), the generated DSM by Agisoft (b), as well as
the proposed method, (c) are also shown from the second dataset. The subtraction of two DSMs, in
addition to the profile graph, is also demonstrated (d).
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Figure 13. The image captured at the desired area (a), the generated DSM by Agisoft (b), as well as
the proposed method, (c) are also shown from the third dataset. The subtraction of two DSMs, in
addition to the profile graph, is also demonstrated (d).

The visual comparison of both surfaces (i.e., DSMs) generated from the two methods
shows that the proposed procedure is able to detect a more detailed DSM. This comparison
shows that some trees are absent from the DSM that is generated by Agisoft. However,
the generated DSM based on the proposed method is smoother than that generated using
Agisoft. It is because of the lower density of the generated dense point cloud based on the
proposed method. As mentioned earlier, this is due to the memory limitations of MATLAB.
Therefore, the generated DSM based on the proposed procedure is smoother than those
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generated by Agisoft. This issue could be fixed by improving the densification procedure
in future studies. Generally, it can be said that the proposed procedure performs better in
forestry areas by detecting more single trees in comparison to Agisoft.

4. Conclusions

In this paper, we presented a new variant of the RANSAC-based method that improves
the performance of RANSAC in terms of increasing the stability, accuracy, the number of
inliers, and the convergence rate. Our proposed method, called ELISAC, is based on the
combination of three main modifications in the MSAC algorithm; a local iterative least
squares-based (LILS) loop to increase the stability and the number of inliers, a similarity
termination (ST) criterion to decrease the computational time, and a final post-processing
procedure (PPP) to increase the reliability of the results. For this purpose, two scenarios
based on different variants of the LILS algorithm (Basic and Aggregated) were tested. The
comparative evaluation was done on two computer vision and UAV image pairs with
different rotations, scales, and baselines. The results demonstrated that the proposed
methods could find more inliers with a faster computational time with respect to the
MSAC algorithm. We showed that the proposed method can find and extract more well-
distributed inliers and, consequently, generate better point clouds and DSM on UAV image
pairs. Moreover, our methods were able to detect and extract more single trees than Agisoft,
which could be a direct result of finding more inliers. The proposed modifications are
important steps in improving inlier detection and, consequently, generating improved 3D
photogrammetric products of UAV data with applications in many areas, including forest
3D mapping. As we tested the ELISAC on a forest area and computer vision dataset, for
future works, the ELISAC can test and evaluate other areas, such as urban areas.

Author Contributions: Conceptualization, B.S.; Data curation, B.S.; Formal analysis, S.J.; Project
administration, B.S.; Software, S.J.; Supervision, B.S.; Writing—original draft, B.S.; Writing—review &
editing, S.J. and A.S. All authors have read and agreed to the published version of the manuscript.

Funding: This project was funded through USDA National Institute of Food and Agriculture (NIFA),
McIntire -Stennis grant awarded to the first author.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Gruen, A. Development and Status of Image Matching in Photogrammetry. Photogramm. Rec. 2012, 27, 36–57. [CrossRef]
2. Cramer, M. On the Use of Direct Georeferencing in Airborne Photogrammetry; Citeseer: Princeton, NJ, USA, 2001.
3. Mostafa, M.M.; Hutton, J. Direct Positioning and Orientation Systems: How Do They Work? What Is the Attainable Accuracy. In

Proceedings of the Proceedings, The American Society of Photogrammetry and Remote Sensing Annual Meeting, St. Louis, MO,
USA, 24–27 April 2001; Citeseer: Princeton, NJ, USA, 2001; pp. 23–27.

4. Mostafa, M.M.; Schwarz, K.-P. Digital Image Georeferencing from a Multiple Camera System by GPS/INS. ISPRS J. Photogramm.
Remote Sens. 2001, 56, 1–12. [CrossRef]

5. Poli, D. Indirect Georeferencing of Airborne Multi-Line Array Sensors: A Simulated Case Study. Int. Arch. Photogramm. Remote
Sens. Spat. Inf. Sci. 2002, 34, 246–251.

6. Ip, A.W.L. Analysis of Integrated Sensor Orientation for Aerial Mapping; Geomatics Department, University of Calgary: Calgary, AB,
Canada, 2005.

7. Ip, A.; El-Sheimy, N.; Mostafa, M. Performance Analysis of Integrated Sensor Orientation. Photogramm. Eng. Remote Sens. 2007,
73, 89–97. [CrossRef]

8. Reshetyuk, Y. Self-Calibration and Direct Georeferencing in Terrestrial Laser Scanning. Ph.D. Thesis, KTH, Stockholm, Sweden, 2009.
9. Kadhim, I.; Abed, F.M. The Potential of LiDAR and UAV-Photogrammetric Data Analysis to Interpret Archaeological Sites: A

Case Study of Chun Castle in South-West England. ISPRS Int. J. Geo Inf. 2021, 10, 41. [CrossRef]

http://doi.org/10.1111/j.1477-9730.2011.00671.x
http://doi.org/10.1016/S0924-2716(01)00030-2
http://doi.org/10.14358/PERS.73.1.89
http://doi.org/10.3390/ijgi10010041


Remote Sens. 2022, 14, 4917 23 of 24

10. Li, X.; Xiong, B.; Yuan, Z.; He, K.; Liu, X.; Liu, Z.; Shen, Z. Evaluating the Potentiality of Using Control-Free Images from a Mini
Unmanned Aerial Vehicle (UAV) and Structure-from-Motion (SfM) Photogrammetry to Measure Paleoseismic Offsets. Int. J.
Remote Sens. 2021, 42, 2417–2439. [CrossRef]

11. Zhang, Y.; Xiong, J.; Hao, L. Photogrammetric Processing of Low-Altitude Images Acquired by Unpiloted Aerial Vehicles.
Photogramm. Rec. 2011, 26, 190–211. [CrossRef]

12. Serati, G.; Sedaghat, A.; Mohammadi, N.; Li, J. Digital Surface Model Generation from High-Resolution Satellite Stereo Imagery
Based on Structural Similarity. Geocarto Int. 2022, 1–30. [CrossRef]

13. Mohammed, H.M.; El-Sheimy, N. A Descriptor-Less Well-Distributed Feature Matching Method Using Geometrical Constraints
and Template Matching. Remote Sens. 2018, 10, 747. [CrossRef]

14. Yao, G.; Yilmaz, A.; Meng, F.; Zhang, L. Review of Wide-Baseline Stereo Image Matching Based on Deep Learning. Remote Sens.
2021, 13, 3247. [CrossRef]

15. Choi, S.; Kim, T.; Yu, W. Performance Evaluation of RANSAC Family. J. Comput. Vis. 1997, 24, 271–300.
16. Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and

Automated Cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]
17. Cosgriff, C.V.; Celi, L.A. Deep Learning for Risk Assessment: All about Automatic Feature Extraction. Br. J. Anaesth. 2020, 124,

131–133. [CrossRef] [PubMed]
18. Maggipinto, M.; Beghi, A.; McLoone, S.; Susto, G.A. DeepVM: A Deep Learning-Based Approach with Automatic Feature

Extraction for 2D Input Data Virtual Metrology. J. Process Control 2019, 84, 24–34. [CrossRef]
19. Sun, Y.; Yen, G.G.; Yi, Z. Evolving Unsupervised Deep Neural Networks for Learning Meaningful Representations. IEEE Trans.

Evol. Comput. 2019, 23, 89–103. [CrossRef]
20. Jin, Y.; Mishkin, D.; Mishchuk, A.; Matas, J.; Fua, P.; Yi, K.M.; Trulls, E. Image Matching across Wide Baselines: From Paper to

Practice. Int. J. Comput. Vis. 2021, 129, 517–547. [CrossRef]
21. Ranftl, R.; Koltun, V. Deep Fundamental Matrix Estimation. In Proceedings of the European Conference on Computer Vision

(ECCV), Munich, Germany, 17–24 May 2018; pp. 284–299.
22. Sun, W.; Jiang, W.; Trulls, E.; Tagliasacchi, A.; Yi, K.M. Acne: Attentive Context Normalization for Robust Permutation-Equivariant

Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
13–19 June 2020; pp. 11286–11295.

23. Zhang, J.; Sun, D.; Luo, Z.; Yao, A.; Zhou, L.; Shen, T.; Chen, Y.; Quan, L.; Liao, H. Learning Two-View Correspondences and
Geometry Using Order-Aware Network. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul,
Korea, 27 October–2 November 2019; pp. 5845–5854.

24. Zhao, C.; Cao, Z.; Li, C.; Li, X.; Yang, J. Nm-Net: Mining Reliable Neighbors for Robust Feature Correspondences. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 215–224.

25. Liu, J.; Wang, S.; Hou, X.; Song, W. A Deep Residual Learning Serial Segmentation Network for Extracting Buildings from Remote
Sensing Imagery. Int. J. Remote Sens. 2020, 41, 5573–5587. [CrossRef]

26. Zhu, Y.; Zhou Sr, Z.; Liao Sr, G.; Yuan, K. New Loss Functions for Medical Image Registration Based on Voxelmorph. In
Proceedings of the Medical Imaging 2020: Image Processing, SPIE, Houston, TX, USA, 15–20 February 2020; Volume 11313, pp.
596–603.

27. Cao, Y.; Wang, Y.; Peng, J.; Zhang, L.; Xu, L.; Yan, K.; Li, L. DML-GANR: Deep Metric Learning with Generative Adversarial
Network Regularization for High Spatial Resolution Remote Sensing Image Retrieval. IEEE Trans. Geosci. Remote Sens. 2020, 58,
8888–8904. [CrossRef]

28. Yang, Y.; Li, C. Quantitative Analysis of the Generalization Ability of Deep Feedforward Neural Networks. J. Intell. Fuzzy Syst.
2021, 40, 4867–4876. [CrossRef]

29. Wang, L.; Qian, Y.; Kong, X. Line and Point Matching Based on the Maximum Number of Consecutive Matching Edge Segment
Pairs for Large Viewpoint Changing Images. Signal Image Video Process. 2022, 16, 11–18. [CrossRef]

30. Zheng, B.; Qi, S.; Luo, G.; Liu, F.; Huang, X.; Guo, S. Characterization of Discontinuity Surface Morphology Based on 3D Fractal
Dimension by Integrating Laser Scanning with ArcGIS. Bull. Eng. Geol. Environ. 2021, 80, 2261–2281. [CrossRef]

31. Zhang, X.; Zhu, X. Efficient and De-Shadowing Approach for Multiple Vehicle Tracking in Aerial Video via Image Segmentation
and Local Region Matching. J. Appl. Remote Sens. 2020, 14, 014503. [CrossRef]

32. Xiuxiao, Y.; Wei, Y.; Shu, X.U.; Yanhua, J.I. Research Developments and Prospects on Dense Image Matching in Photogrammetry.
Acta Geod. Cartogr. Sin. 2019, 48, 1542.

33. Bellavia, F.; Colombo, C.; Morelli, L.; Remondino, F. Challenges in Image Matching for Cultural Heritage: An Overview and
Perspective. In Proceedings of the FAPER 2022, Springer LNCS, Lecce, Italy, 23–24 May 2022.

34. Salehi, B.; Jarahizadeh, S. Improving the uav-derived dsm by introducing a modified ransac algorithm. Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. 2022, 43, 147–152. [CrossRef]

35. Torr, P.H.; Zisserman, A. MLESAC: A New Robust Estimator with Application to Estimating Image Geometry. Comput. Vis. Image
Underst. 2000, 78, 138–156. [CrossRef]

36. Chum, O.; Matas, J.; Kittler, J. Locally Optimized RANSAC. In Proceedings of the Joint Pattern Recognition Symposium, Madison,
WI, USA, 16–22 June 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 236–243.

http://doi.org/10.1080/01431161.2020.1862434
http://doi.org/10.1111/j.1477-9730.2011.00641.x
http://doi.org/10.1080/10106049.2022.2057594
http://doi.org/10.3390/rs10050747
http://doi.org/10.3390/rs13163247
http://doi.org/10.1145/358669.358692
http://doi.org/10.1016/j.bja.2019.10.017
http://www.ncbi.nlm.nih.gov/pubmed/31813571
http://doi.org/10.1016/j.jprocont.2019.08.006
http://doi.org/10.1109/TEVC.2018.2808689
http://doi.org/10.1007/s11263-020-01385-0
http://doi.org/10.1080/01431161.2020.1734251
http://doi.org/10.1109/TGRS.2020.2991545
http://doi.org/10.3233/JIFS-201679
http://doi.org/10.1007/s11760-021-01959-6
http://doi.org/10.1007/s10064-020-02011-6
http://doi.org/10.1117/1.JRS.14.014503
http://doi.org/10.5194/isprs-archives-XLIII-B2-2022-147-2022
http://doi.org/10.1006/cviu.1999.0832


Remote Sens. 2022, 14, 4917 24 of 24

37. Chum, O.; Matas, J. Matching with PROSAC-Progressive Sample Consensus. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; IEEE: Piscataway, NJ,
USA, 2005; Volume 1, pp. 220–226.

38. Frahm, J.-M.; Pollefeys, M. RANSAC for (Quasi-) Degenerate Data (QDEGSAC). In Proceedings of the 2006 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006;
IEEE: Piscataway, NJ, USA, 2006; Volume 1, pp. 453–460.

39. Hast, A.; Nysjö, J.; Marchetti, A. Optimal Ransac-towards a Repeatable Algorithm for Finding the Optimal Set. J. WSCG 2013, 21,
21–30.

40. Raguram, R.; Chum, O.; Pollefeys, M.; Matas, J.; Frahm, J.-M. USAC: A Universal Framework for Random Sample Consensus.
IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 2022–2038. [CrossRef]

41. Barath, D.; Matas, J.; Noskova, J. MAGSAC: Marginalizing Sample Consensus. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10197–10205.

42. Korman, S.; Litman, R. Latent Ransac. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018; pp. 6693–6702.

43. Chum, O.; Werner, T.; Matas, J. Two-View Geometry Estimation Unaffected by a Dominant Plane. In Proceedings of the 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005;
IEEE: Piscataway, NJ, USA, 2005; Volume 1, pp. 772–779.

44. Barath, D.; Matas, J. Graph-Cut RANSAC. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018; pp. 6733–6741.

45. Zhang, D.; Zhu, J.; Wang, F.; Hu, X.; Ye, X. GMS-RANSAC: A Fast Algorithm for Removing Mismatches Based on ORB-SLAM2.
Symmetry 2022, 14, 849. [CrossRef]

46. Le, V.-H.; Vu, H.; Nguyen, T.T.; Le, T.-L.; Tran, T.-H. Acquiring Qualified Samples for RANSAC Using Geometrical Constraints.
Pattern Recognit. Lett. 2018, 102, 58–66. [CrossRef]

47. Raguram, R.; Frahm, J.-M.; Pollefeys, M. A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time
Random Sample Consensus. In Proceedings of the European Conference on Computer Vision, Marseille, France, 12–18 October
2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 500–513.

48. AgiSoft PhotoScan Pro; Agisoft LLC: Saint Petersburg, Russia, 2021.
49. Han, J.-Y.; Guo, J.; Chou, J.-Y. A Direct Determination of the Orientation Parameters in the Collinearity Equations. IEEE Geosci.

Remote Sens. Lett. 2011, 8, 313–316. [CrossRef]
50. Szeliski, R. Structure from Motion and SLAM. In Computer Vision; Springer: Berlin/Heidelberg, Germany, 2022; pp. 543–594.
51. Elnima, E.E. A Solution for Exterior and Relative Orientation in Photogrammetry, a Genetic Evolution Approach. J. King Saud

Univ. Eng. Sci. 2015, 27, 108–113. [CrossRef]
52. Adjidjonu, D.; Burgett, J. Assessing the Accuracy of Unmanned Aerial Vehicles Photogrammetric Survey. Int. J. Constr. Educ. Res.

2021, 17, 85–96. [CrossRef]
53. Rais, M.; Facciolo, G.; Meinhardt-Llopis, E.; Morel, J.-M.; Buades, A.; Coll, B. Accurate Motion Estimation through Random

Sample Aggregated Consensus. arXiv 2017, arXiv:1701.05268.
54. Lindeberg, T. Scale Invariant Feature Transform. Comput. Sci. 2012, 7, 10491. [CrossRef]
55. Hartley, R.I. In Defense of the Eight-Point Algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 580–593. [CrossRef]
56. Zhang, H.; Ye, C. Sampson Distance: A New Approach to Improving Visual-Inertial Odometry’s Accuracy. In Proceedings of the

2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1
October 2021; pp. 9184–9189.

57. Lebeda, K.; Matas, J.; Chum, O. Fixing the Locally Optimized Ransac–Full Experimental Evaluation. In Proceedings of the British
Machine Vision Conference, Surrey, UK, 3–7 September 2012; Citeseer: Princeton, NJ, USA, 2012; Volume 2.

58. Chum, O.; Matas, J. Optimal Randomized RANSAC. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1472–1482. [CrossRef]
[PubMed]

http://doi.org/10.1109/TPAMI.2012.257
http://doi.org/10.3390/sym14050849
http://doi.org/10.1016/j.patrec.2017.12.012
http://doi.org/10.1109/LGRS.2010.2066955
http://doi.org/10.1016/j.jksues.2013.05.004
http://doi.org/10.1080/15578771.2020.1717683
http://doi.org/10.4249/scholarpedia.10491
http://doi.org/10.1109/34.601246
http://doi.org/10.1109/TPAMI.2007.70787
http://www.ncbi.nlm.nih.gov/pubmed/18566499

	Introduction 
	Methods 
	An Overview of the RANSAC-Based Methods 
	ELISAC: Empowered Locally Iterative SAmple Consensus 
	Locally Iterative Least Squares (LILS) Loop 
	Basic LILS 
	Aggregated LILS 

	The Similarity Termination (ST) Criterion 
	Post-Processing Procedure 

	Experiments and Results 
	Dataset 
	Performance Evaluation 
	Point Cloud and DSM Comparison 

	Conclusions 
	References

