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Abstract: Phenology provides important information for wheat growth management and the esti-
mation of wheat yield and quality. The relative threshold method has been widely used to retrieve
phenological metrics from remotely sensed data owing to its simplicity. However, the thresholds vary
substantially among phenological metrics and locations, hampering us from effectively detecting
spatial and temporal variations in winter wheat phenology. In this study, we developed a calibrated
relative threshold method based on ground phenological observations. Compared with the traditional
relative threshold method, our method can minimize the bias and uncertainty caused by unreasonable
thresholds in determining phenological dates. On this basis, seven key phenological dates and three
growth periods of winter wheat were estimated from long-term series (1981–2016) of the remotely
sensed Normalized Difference Vegetation Index for North China (106◦18′–122◦41′E, 28◦59′–39◦57′N).
Results show that the pre-wintering phenological dates of winter wheat (i.e., emergence and tillering)
occurred in December in the south and in mid- to late- October in the north, while the post-wintering
phenological dates (i.e., green-up onset, jointing, heading, milky stage, and maturity) exhibited the
opposite pattern, that is, January to May in the south and February to June in the north. Conse-
quently, the vegetative growth period increased from 49 days in the south to 77 in the north, and
the reproductive growth period decreased from 51 days to 29 days. At the regional scale, all winter
wheat phenological dates predominantly advanced, with the most pronounced advancement being
for green-up onset (–0.10 days/year, p > 0.1), emergence (–0.09 days/year, p > 0.1), and jointing
(–0.08 days/year, p > 0.1). The vegetative growth period and reproductive growth period at the
regional scale predominantly extended by 0.03 (p > 0.1) and 0.09 (p < 0.001) days/year, respectively.
In general, the later phenological events (i.e., heading, milky stage, and maturity) tended to advance
with higher temperature, while the earlier phenological events (i.e., emergence, tillering, green-up
onset, and jointing) showed a weak correlation with temperature, suggesting that the earlier events
might be mainly affected by management while later ones were more responsive to warming. These
findings provide a critical reference for improving winter wheat management under the ongoing
climate warming.

Keywords: climate change; phenology; threshold method; vegetation index; winter wheat

1. Introduction

Northern China accounts for 72.2% of the total area and 80.1% of wheat cultivation in
the country. Winter wheat production in this region is important for ensuring domestic
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food security and has a significant impact on the global wheat trade [1,2]. This region has
experienced substantial warming since the early 1980s, and the warming has accelerated
since the early 2010s [3]. The increasing temperature can modify the growth process of
crops and the phenological dates (or length of the growth period), which will affect the
yield and quality of crops [4–8] and have important implications for food security. In such
a context, information about the responses of winter wheat phenology to temperature
is important for understanding the response of winter wheat to climate change and for
adaptive planting and improved cultivation management practices [9].

Current studies on winter wheat phenology are mainly based on ground phenology
observation [10–13] and remote sensing extraction [2,14,15]. Ground-based observations
record different phenological dates of crops by manual observations at individual agro-
meteorological stations according to predefined criteria [16,17]. The advantage of the
ground observation method is that the observed phenology is more clearly defined, and can
better correspond to the different growth periods of winter wheat. It also has the advantages
of high accuracy and high frequency. However, it cannot provide temporally and spatially
continuous phenological information in a large area because of its time-consuming and
labor-intensive nature [18]. The large spatial variability of wheat phenology [19] and the
uneven spatial distribution of limited agro-meteorological stations lead to difficulty in
completely characterizing long-term wheat phenology across a continuous space [15,20,21].

Remote sensing provides an alternative tool to investigate the spatiotemporal dynam-
ics of phenology at a regional or global scale [22]. Currently, three types of methods have
been applied in detecting phenology from vegetation index (VI) time series, namely, the
curve fitting method, curve matching method, and relative threshold method [18]. The
curve fitting method first fits the VI time series with a predetermined mathematical function
(e.g., logistic function), and then it determines the phenological date by the feature points
on the fitted curve (e.g., maximum values of the derivative, minimum or maximum values
in the rate of change in curvature) [1,23,24]. The curve matching method first defines a
shape model or reference curve with given phenological dates, and then it matches the
target vegetation index curve to the predefined curve (i.e., shape model) by model fitting,
such as shape model fitting (SMF) [25] or cross-correlation [26]. The relative threshold
method defines a phenological date when the VI reaches a predetermined value (i.e., thresh-
old) [27]. The relative threshold method has been widely used because of its simplicity
and ease of implementation. Taking the green-up onset date, for example, the commonly
used relative thresholds are 10%, 20%, and 50% [25,28,29]. However, these thresholds are
mostly determined empirically and there is currently no suitable method to determine
the relative thresholds for different phenological dates. Even for the same phenological
date, the relative threshold could vary spatially over large areas, leading to uncertainty
and bias in extracting phenological dates with a fixed relative threshold. Therefore, there
is an urgent need to develop a method to determine the relative thresholds of multiple
phenological dates (including emergence, tillering, green-up onset, jointing, heading, milky
stage, and maturity) in different areas to improve the accuracy of phenology estimation.

Although a large number of studies have been conducted on the spatiotemporal
characteristics of wheat phenology and their drivers based on remotely sensed data, most
of these studies have been limited to a few specific phenological dates, such as the green-up
onset date or heading date because of the lack of methods to estimate multiple phenological
dates of winter wheat from satellite data [30]. However, the lack of methods hampers the
quantification of spatial variations and temporal changes of the other phenological dates
(i.e., emergence, tillering, jointing, milky stage, and maturity) and how these phenological
dates respond to climate warming. This further leads to a deficiency in the assessment of
the difference in the changes and temperature responses among various phenological dates
as well as the lengths of the vegetative and reproductive growth periods.

Therefore, we need to develop a unified method to detect various phenological dates
of winter wheat and their spatial and temporal changes. To address this, we first developed
a method to determine the relative thresholds of different phenological dates in different
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locations based on ground phenological observations to estimate multiple phenological
dates from normalized difference vegetation index (NDVI) time series, then systematically
studied the spatiotemporal characteristics of multiple winter wheat phenological dates
and the lengths of the vegetative and reproductive growth periods, and investigated
the relationship between each of the phenological dates (or lengths of growth periods)
and temperatures.

2. Materials and Methods
2.1. Study Area

The study area is the main winter wheat-producing area in China (Figure 1), including
the Huanghuai and the Jianghuai wheat-growing region (106◦18′–122◦41′E,
28◦59′–39◦57′N). This region covers eight provinces (Hebei, Henan, Shanxi, Shandong,
Shaanxi, Jiangsu, Hubei, and Anhui) and has the most favorable natural environment (e.g.,
warm climate and moderate rainfall) for wheat growth in China [31]. Winter wheat in this
region is usually sown in October and harvested around mid-June of the following year [32].
This region contributes significantly to China’s total winter wheat production [1,2].

Remote Sens. 2022, 14, 4930  3  of  22 
 

 

assessment of  the difference  in  the changes and  temperature responses among various 

phenological dates as well as the lengths of the vegetative and reproductive growth peri‐

ods. 

Therefore, we need to develop a unified method to detect various phenological dates 

of winter wheat and their spatial and temporal changes. To address this, we first devel‐

oped a method to determine the relative thresholds of different phenological dates in dif‐

ferent locations based on ground phenological observations to estimate multiple pheno‐

logical dates from normalized difference vegetation index (NDVI) time series, then sys‐

tematically studied the spatiotemporal characteristics of multiple winter wheat phenolog‐

ical dates and the lengths of the vegetative and reproductive growth periods, and inves‐

tigated the relationship between each of the phenological dates (or lengths of growth pe‐

riods) and temperatures. 

2. Materials and Methods 

2.1. Study Area 

The study area is the main winter wheat‐producing area in China (Figure 1), includ‐

ing  the Huanghuai and  the  Jianghuai wheat‐growing  region  (106°18′–122°41′E, 28°59′–

39°57′N). This region covers eight provinces (Hebei, Henan, Shanxi, Shandong, Shaanxi, 

Jiangsu, Hubei, and Anhui) and has the most favorable natural environment (e.g., warm 

climate and moderate rainfall) for wheat growth in China [31]. Winter wheat in this region 

is usually sown in October and harvested around mid‐June of the following year [32]. This 

region contributes significantly to China’s total winter wheat production [1,2]. 

 

Figure 1. Study area and locations of meteorological and agrometeorological stations. 

2.2. Datasets 

2.2.1. Remotely Sensed Data 

The winter wheat phenology from 1981 to 2016 was estimated from NDVI time series 

from the NASA Making Earth System Data Records for Use in Research Environments 

(MEaSUREs) Vegetation Index and Phenology (VIP) collection. The VIP collections pro‐

vide more than 30 years of a consistent global record for vegetation indices and landscape 

Figure 1. Study area and locations of meteorological and agrometeorological stations.

2.2. Datasets
2.2.1. Remotely Sensed Data

The winter wheat phenology from 1981 to 2016 was estimated from NDVI time series
from the NASA Making Earth System Data Records for Use in Research Environments (MEa-
SUREs) Vegetation Index and Phenology (VIP) collection. The VIP collections provide more
than 30 years of a consistent global record for vegetation indices and landscape phenology
based on Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution
Imaging Spectroradiometer (MODIS)/Terra MOD09 surface reflectance data. The 7-day
composite NDVI product with 0.05 degree spatial resolution in VIP collections (VIP07) was
downloaded from the LP DAAC website (https://lpdaac.usgs.gov/products/vip07v004/,
accessed on 1 October 2022). The NDVI as well as quality assurance/pixel reliability of the
VIP07 product were used to generate NDVI time series from early September to the end of
July of the following year, covering the complete wheat-growing cycle. To remove noise

https://lpdaac.usgs.gov/products/vip07v004/
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caused by cloud contamination and poor atmospheric conditions, NDVI time series were
smoothed by the Savitzky–Golay (SG) filter [33–36]. The smoothed NDVI time series were
then used for phenology extraction.

In addition, the Global Multi-resolution Terrain Elevation Data (GMTED2010) were
downloaded from the U.S. Geological Survey (USGS) website (https://earthexplorer.usgs.
gov/, accessed on 1 October 2022) to provide topographic data (i.e., altitude) of the study
area. Latitude, longitude, and altitude extracted from the topographic data were then used
to estimate the phenological date of each wheat pixel (more details follow in Section 2.3.1).

2.2.2. Wheat Classification Maps

It is unlikely that the winter wheat planting area remained the same for more than
30 years during the study period (1981–2016). Therefore, wheat classification maps for
each year were needed to identify wheat pixels. The annual wheat classification map was
extracted based on the Combining variations Before and After estimated Heading dates
(CBAH) algorithm [37]. This algorithm distinguishes wheat pixels by designing two indices
based on the differences and variable ranges of VI time series during the early and late
growth stages of winter wheat. Pixels with large values of these two indices are considered
to be the wheat pixels. Thresholds were set as 0.3 and 0.12, respectively, as suggested by
Qiu et al [37].

2.2.3. Ground Observation Data

The ground observations included daily meteorological data and ground-observed
phenology records. Daily meteorological data from 1981 to 2016 were collected from the
China Meteorological Administration (CMA), which were subjected to strict quality control
with a correct data rate of close to 100%. The ground-observed phenology records for
1993–2016 were obtained from the China Meteorological Data Sharing Service System
(http://data.cma.cn/, accessed on 6 May 2021). The key phenological metrics of winter
wheat in the agro-meteorological station, including the dates of sowing, emergence, tillering,
dormancy, green-up onset, jointing, heading, milky stage, and maturity, were recorded.
By linear regression against altitude, latitude, and longitude [37,38], each of these dates
was spatially interpolated to each wheat pixel in the study area, which was then used to
determine the optimal relative threshold for the phenological date.

2.3. Methods

We first developed the Calibrated Relative Threshold Method (CRTM) based on
ground phenology observations and applied it to the estimation of the winter wheat
phenological dates, including emergence, tillering, green-up onset, jointing, heading, milky
stage, and maturity. On this basis, the lengths of different growth periods were calculated,
including the Vegetative Growth Period (VGP), Reproductive Growth Period (RGP), and
the total length of these two growth periods (Vegetative and Reproductive Growth Period,
VRGP). According to recent studies, VGP is defined as the period from green-up onset to
heading [20], RGP is defined as the period from heading to maturity [7,15], and VRGP is
defined as the growth period from green-up onset to the maturity of winter wheat. Finally,
linear regression was used to calculate the temporal trends of the seven phenological
dates and three growth periods. The relationship between each of the phenological dates
and the mean preseason temperature (defined in Section 2.3.3) and relationships between
each growth period length and temperature were investigated by simple linear correlation
analysis. We did not include precipitation in the correlation analysis because there was an
effective irrigation system in this region.

2.3.1. The Calibrated Relative Threshold Method

We developed the calibrated relative threshold method (CRTM), which uses the
ground-observed phenological date to calibrate the relative threshold of the corresponding
phenological date (Figure 2). The core of the method is to determine the relative thresholds

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
http://data.cma.cn/
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of phenological dates from the multiyear average NDVI time series using ground-based
phenological observations. More specifically, for each agro-meteorological station, the
multiyear average phenological date was calculated from its ground phenological records
of more than 20 years (i.e., 1993–2016). Due to the relatively sparse distribution of the
agrometeorological stations, the ground-based observations could not cover the entire
spatial extent of the study area. A recent study has shown that the key winter wheat phe-
nological date is mainly controlled by the cumulative temperature, which is well correlated
with latitude, longitude, and elevation [37–39]. Therefore, the phenological date of each
wheat pixel was estimated by regressing the multiyear average phenological date of all
stations across the study area (i.e., 378 stations) against the station’s latitude, longitude,
and elevation (Table 1) based on topographic data (i.e., GMTED2010). By applying the
multiyear average phenological date to the multiyear average cumulative NDVI curve, the
relative threshold for the phenological date of the specific wheat pixel was calculated.
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Table 1. Regression coefficients between phenological date and elevation, longitude, and latitude.

Phenological
Date

Coefficients
R-Squared p-Value

Intercept Altitude Latitude Longitude

Emergence 404.092 −0.012 −4.233 0.364 0.734 p < 0.001
Tillering 473.800 −0.011 −6.079 0.535 0.700 p < 0.001

Green-up onset −114.400 0.012 2.215 0.767 0.546 p < 0.001
Jointing −156.800 0.019 4.833 0.640 0.862 p < 0.001
Heading −137.200 0.020 3.301 1.148 0.911 p < 0.001

Milky stage −69.454 0.018 2.338 1.094 0.794 p < 0.001
Maturity −57.935 0.019 2.450 1.083 0.855 p < 0.001
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As illustrated in Figure 3a, gray curves are annual NDVI time series for a specific wheat
pixel. They were smoothed by the Savitzky–Golay (SG) filter [33] and were then averaged
to generate a more stable multiyear average NDVI curve (green curve in Figure 3a). To
remove outliers, only values between upper and lower quartiles were used for the multiyear
average calculation [35,40]. The average NDVI curve was then accumulated to obtain the
cumulative NDVI curve (black curve in Figure 3b) because previous studies have indicated
that the cumulative NDVI curve performs better than the original NDVI curve in phenology
extraction [41–43].
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Figure 3. Schema to determine the relative threshold based on ground phenological observations.
(a) represents annual NDVI curves for a specific wheat pixel, (b) illustrates how the relative threshold
is determined based on ground phenological observations and cumulative NDVI curve.

The threshold for each phenological date was then determined using the cumula-
tive NDVI curve based on the regression-estimated multiyear average phenological date
(Figure 3b). The black thickened vertical line in Figure 3b represents a specific pheno-
logical date (e.g., green-up onset) of the wheat pixel. Table 1 shows the regression coeffi-
cients between different phenological dates of winter wheat and the elevation, longitude,
and latitude.

According to the coefficients listed in Table 1, the multiyear average phenological date
for each pixel of winter wheat was calculated from the altitude, latitude, and longitude
(Equation (1)). In Equation (1), Phepixel is the multiyear average phenological date of a
wheat pixel. Altitude, Latitude, and Longitude are the altitude, latitude, and longitude at
which the wheat pixel is located, respectively. a1, a2, and a3 are regression coefficients, and
a0 is the intercept of the regression (Table 1):

Phepixel = a0 + a1·Altitude + a2·Latitude + a3·Longitude (1)

The cumulative NDVI value corresponding to Phepixel is expressed by CNDVIphepixel
;

and the relative threshold for the phenological date of the specific wheat pixel can be
obtained by Equation (2):

RThrcal =
CNDVIphepixel

− CNDVImin

CNDVImax − CNDVImin
(2)

where RThrcal is the relative threshold for the target phenological date calibrated based on
ground phenological observations, and CNDVImin and CNDVImax are cumulative NDVI
values of the respective start and end dates of the wheat growth cycle. The start and end
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dates of the wheat growth cycle can be obtained from the original NDVI curve and are set
as the minimum value of NDVI before the winter season (vertical dashed line on the left in
Figure 3a,b) and the minimum value of NDVI after the heading date (vertical dashed line
on the right in Figure 3a,b).

According to the abovementioned process, the relative thresholds for different pheno-
logical dates of different wheat pixels can be calculated. The corresponding phenological
dates can then be estimated from the annual cumulative NDVI time series of wheat pixels
according to the relative threshold method (Equation (3)):

Phedate = f irstdaywhen(CNDVI ≥ (CNDVImax − CNDVImin)·RThrcal) (3)

After estimation of the seven key phenological dates, the lengths of the three growth
periods (i.e., VGP, RGP, and VRGP) can be calculated according to Equations (4)–(6):

LVGP = Headingdate − Greenupdate (4)

LRGP = Maturitydate − Headingdate (5)

LVRGP = Maturitydate − Greenupdate (6)

where LVGP is the length of the vegetative growth period, LRGP is the length of the repro-
ductive growth period, and LVRGP is the total length of the vegetative and reproductive
growth period. Greenupdate, Headingdate, and Maturitydate represent the green-up onset
date, heading date, and maturity date of winter wheat, respectively.

2.3.2. Calculation of Temporal Trends

Based on the estimated winter wheat phenological dates and growth period lengths
for each year, the temporal trend of each phenological date (or growth period length) was
determined as the coefficient using linear regression between the date and year.

2.3.3. Relationship between Phenology and Temperature

Correlation analysis was implemented to explore the relationship between the pheno-
logical date (or growth period) and its preseason temperature (or intraseasonal temperature)
at each agrometeorological station. The preseason temperature for a specific phenological
date is defined as the average temperature during the period from the current phenolog-
ical date to its previous phenological date. For the first studied phenological date (i.e.,
emergence), the preseason temperature is defined as the average temperature between it
and the previous month. The intraseasonal temperature for a specific growth period is
defined as the average temperature during this growth period [7,44,45]. The phenological
date (or growth period length) at each meteorological station was calculated as the average
phenological date (or growth period length) of the wheat pixels contained in the Thiessen
polygon of the corresponding meteorological station. The phenological date of wheat pixels
used above was extracted by the CRTM method based on remotely sensed data [35,40].
The regression coefficient (r) is calculated as

r(X, Y) =
Cov(X, Y)√

Var[X]·Var[Y]
(7)

where X and Y correspond to the phenological date and preseason temperature, or the
growth period length and intraseasonal temperature; Cov(X, Y) is the covariance of X and
Y; and Var[X] and Var[Y] represent the variance of X and Y, respectively.

3. Results
3.1. Performance of CRTM in Extracting Wheat Phenology

The phenological dates estimated by CRTM were statistically significantly correlated
(p < 0.001) with ground-based phenological observations (Figure 4a,b,d–g). The correlation
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coefficient was highest for the jointing date (R = 0.73), followed in descending order by the
heading date (R = 0.72), maturity date (R = 0.70), milky stage date (R = 0.60), tillering date
(R = 0.58), emergence date (R = 0.57), and green-up onset date (R = 0.23).

Figure 4. Comparison between CRTM-extracted phenological dates (Y-axis) and ground-based
phenological observations (X-axis). (a) represents scatter plot for emergence, (b) represents scatter
plot for tillering, (c) represents scatter plot for green-up onset, (d) represents scatter plot for jointing,
(e) represents scatter plot for heading, (f) represents scatter plot for milky stage, and (g) represents
scatter plot for maturity, respectively.

3.2. Spatial Patterns and Temporal Trends of Phenological Dates

Figure 5 shows the spatial patterns of the multiyear average phenological dates in
the study area. Overall, these phenological dates showed a clear spatial pattern from the
south to the north. Specifically, the emergence and tillering dates were earlier in the north
and later in the south. The latest dates of these two phenological dates occurred in the
southeastern and southwestern parts of the study area, respectively. By contrast, the other
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five phenological dates (i.e., green-up onset, jointing, heading, milky stage, and maturity)
were earlier in the southwestern part of the study area and gradually occurred later in the
northeastern direction. The spatial variation of all of the wheat phenological dates was
generally between 1 and 2 months in the study area.
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Figure 5. Spatial distribution of multiyear average phenology of winter wheat extracted from VIP
data. DOY represents day of year. (a) illustrates spatial distribution of multiyear average phenol-
ogy for emergence, (b) illustrates spatial distribution of multiyear average phenology for tillering,
(c) illustrates spatial distribution of multiyear average phenology for green-up onset, (d) illustrates
spatial distribution of multiyear average phenology for jointing, (e) illustrates spatial distribution
of multiyear average phenology for heading, (f) illustrates spatial distribution of multiyear average
phenology for milky stage, and (g) illustrates spatial distribution of multiyear average phenology for
maturity, respectively.
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Figure 6 shows the temporal trend and statistical significance of wheat phenological
dates (e.g., Figure 6a,b). In general, the advanced or delayed trend of phenological dates
had relatively similar spatial patterns, i.e., a significantly advanced trend in the south-
central part of the study area and an insignificantly delayed trend in the eastern and
northern parts (Figure 6). All phenological dates of winter wheat in the study area were
dominantly advanced, with the greatest proportion of statistically significant advancement
in the milky stage date and emergence date, accounting for 48.31% and 44.94%, respectively
(Table 2). The significantly advanced proportion of the green-up onset and tillering date
was the lowest, accounting for 38.83% and 40.17%, respectively. For the entire study area,
the green-up onset, emergence, jointing, and heading dates had relatively large advances,
with average values of 0.10, 0.09, 0.08, and 0.07 days per year, respectively (p > 0.10). The
tillering and milky stage dates had relatively less advance, with average values of 0.05
and 0.03 days per year, respectively (p > 0.10). By contrast, there was a slight delay in the
maturity date, with an average delay of 0.02 days per year (p > 0.10). In summary, the
advance trend of phenological dates in the vegetative growth period was more pronounced
than that in the reproductive growth period.
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Figure 6. Phenological trends from 1981–1982 to 2015–2016. Negative slopes represent advanced
phenological dates, and positive slopes, delayed dates. Wheat pixels with statistically significant
trends (p < 0.05) are indicated in blue, and pixels without statistically significant trends are indicated
in gray (p > 0.05). (a,b) represents trend and statistical significance of emergence, (c,d) represents
trend and statistical significance of tillering, (e,f) represents trend and statistical significance of
green-up onset, (g,h) represents trend and statistical significance of jointing, (i,j) represents trend and
statistical significance of heading, (k,l) represents trend and statistical significance of milky stage, and
(m,n) represents trend and statistical significance of maturity, respectively.
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Table 2. Proportion of advance and delay of different phenological dates.

PD
Advanced (%)

Total (%)
Delayed (%)

Total (%)
Average Trend

(Day/Year)S NS S NS

EMD 44.94 21.79 66.73 27.31 5.96 33.27 –0.09
TID 40.17 12.29 52.45 37.86 9.68 47.55 –0.05

GUD 38.83 24.16 62.99 28.59 8.42 37.01 –0.10
JTD 40.62 30.21 70.83 23.59 5.58 29.17 –0.08
HD 42.52 31.12 73.64 21.58 4.78 26.36 –0.07

MKD 48.31 19.57 67.88 26.93 5.20 32.12 –0.03
MTD 43.56 10.70 54.26 37.83 7.91 45.74 0.02

Note. PD represents phenological dates; EMD, TID, GUD, JTD, HD, MKD, and MTD represent dates of emergence,
tillering, green-up onset, jointing, heading, milky stage, and maturity, respectively. S represents statistically
significant, and NS represents not statistically significant.

3.3. Spatial Patterns and Temporal Trends of Wheat Growth Periods

Figure 7 shows the spatial patterns of multiyear averages for different growth periods
(i.e., VGP, RGP, and VRGP) in the study area. It can be seen that the reproductive growth
period (RGP) was most clearly characterized by a gradual change from south to north
(Figure 7b), followed by the vegetative growth period (VGP, Figure 7a), while the total
length of these two growth periods (vegetative and reproductive growth period, VRGP)
did not show a clear spatial pattern (Figure 7c). Specifically, the VGP was relatively longer
in the north and shorter in the south, while the RGP was relatively longer in the south and
shorter in the north. Since VGP and RGP had opposite trends in the north–south direction,
the total length of the two growth periods (VRGP) did not show a clear north–south trend
(Figure 7c). Differences in the length of the growth periods reached 1 month throughout
the study area.

Remote Sens. 2022, 14, 4930  11  of  22 
 

 

3.3. Spatial Patterns and Temporal Trends of Wheat Growth Periods 

Figure 7 shows the spatial patterns of multiyear averages for different growth peri‐

ods (i.e., VGP, RGP, and VRGP)  in the study area. It can be seen that the reproductive 

growth period (RGP) was most clearly characterized by a gradual change from south to 

north (Figure 7b), followed by the vegetative growth period (VGP, Figure 7a), while the 

total  length of  these  two growth periods  (vegetative and  reproductive growth period, 

VRGP) did not show a clear spatial pattern (Figure 7c). Specifically, the VGP was relatively 

longer in the north and shorter in the south, while the RGP was relatively longer in the 

south and shorter  in  the north. Since VGP and RGP had opposite  trends  in  the north–

south direction, the total length of the two growth periods (VRGP) did not show a clear 

north–south trend (Figure 7c). Differences in the length of the growth periods reached 1 

month throughout the study area. 

 

Figure 7. Spatial distribution of multiyear averages of different growth periods extracted from VIP 

data. VGP represents the vegetative growth period, RGP represents the reproductive growth period, 

and VRGP represents the vegetative and reproductive growth periods combined. (a) represents spa‐

tial patterns of multiyear averages for VGP, (b) represents spatial patterns of multiyear averages for 

RGP, and (c) represents spatial patterns of multiyear averages for VRGP, respectively. 

Figure 8 shows the temporal trend and statistical significance of the length of differ‐

ent growth periods  (i.e., LVGP, LRGP, and LVRGP). Overall, most wheat pixels  in  the 

study area were dominated by an extending trend in the three growth periods, mostly the 

LRGP (length of the reproductive growth period), followed by the LVRGP (length of the 

vegetative and reproductive growth periods combined) and LVGP (length of the vegeta‐

tive growth period). The reproductive growth period had the largest statistically signifi‐

cant extending proportion, accounting for about 43.63%, while the vegetative growth pe‐

riod had the least statistically significant extending proportion, accounting for 39.11% (Ta‐

ble 3). Although  the proportion of  the extended vegetative growth period was greater 

than that of shortening, the difference was not significant, indicating that nearly half of 

the winter wheat in the study area still showed a shortened trend of the vegetative growth 

period. Pixels with  a  shortened  vegetative  growth period were mainly  located  in  the 

southeastern part of the study area (Figure 8a). Averaged over the entire study area, the 

LVGP extended by an average of 0.03 days per year (P > 0.10), the LRGP by an average of 

0.09 days per year (P < 0.001), and the LVRGP by an average of 0.12 days per year (P > 

0.01). 

Figure 7. Spatial distribution of multiyear averages of different growth periods extracted from VIP
data. VGP represents the vegetative growth period, RGP represents the reproductive growth period,
and VRGP represents the vegetative and reproductive growth periods combined. (a) represents
spatial patterns of multiyear averages for VGP, (b) represents spatial patterns of multiyear averages
for RGP, and (c) represents spatial patterns of multiyear averages for VRGP, respectively.

Figure 8 shows the temporal trend and statistical significance of the length of different
growth periods (i.e., LVGP, LRGP, and LVRGP). Overall, most wheat pixels in the study
area were dominated by an extending trend in the three growth periods, mostly the
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LRGP (length of the reproductive growth period), followed by the LVRGP (length of
the vegetative and reproductive growth periods combined) and LVGP (length of the
vegetative growth period). The reproductive growth period had the largest statistically
significant extending proportion, accounting for about 43.63%, while the vegetative growth
period had the least statistically significant extending proportion, accounting for 39.11%
(Table 3). Although the proportion of the extended vegetative growth period was greater
than that of shortening, the difference was not significant, indicating that nearly half of
the winter wheat in the study area still showed a shortened trend of the vegetative growth
period. Pixels with a shortened vegetative growth period were mainly located in the
southeastern part of the study area (Figure 8a). Averaged over the entire study area, the
LVGP extended by an average of 0.03 days per year (p > 0.10), the LRGP by an average
of 0.09 days per year (p < 0.001), and the LVRGP by an average of 0.12 days per year
(p > 0.01).
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Figure 8. Trends of the growth period length (first column) calculated from 1981–1982 to 2015–2016
and its statistical significance (second column). The red color represents a shortened or decreasing
trend, while the green color represents an extended or increasing trend. Negative slopes represent
shortened trends, while positive slopes represent extended trends. Wheat pixels with statistically
significant trends (p < 0.05) are indicated in blue, and pixels without statistical significance are
indicated in gray (p > 0.05). (a,b) represents trend and statistical significance for LVGP, (c,d) represents
trend and statistical significance for LRGP, and (e,f) represents trend and statistical significance for
LVRGP, respectively.
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Table 3. Proportion of shortened and extended lengths for different growth periods.

Growth
Periods

Shortened (%)
Total (%)

Extended (%)
Total (%)

Average Trend
(Day/Year)S NS S NS

VGP 32.50 11.06 43.56 39.11 17.33 56.44 0.03
RGP 18.24 2.20 20.44 43.63 35.93 79.56 0.09

VGRP 27.73 7.57 35.30 40.92 23.77 64.70 0.12

Note. S represents statistically significant, and NS represents not statistically significant.

3.4. Relationships between Phenological Metrics and Temperature
3.4.1. Relationships between Phenological Dates and Preseason Temperatures

The relationships between the phenological dates and the corresponding preseason
temperature are shown in Figure 9. Overall, the phenological dates and corresponding
preseason temperatures were mainly negatively correlated, except for the green-up onset
date. The highest proportion of sites with statistically significant negative correlations
(p < 0.05) with temperature was at the milky stage (36.05%), followed by maturity (35.89%),
heading (33.01%), tillering (17.69%), jointing (16.34%), emergence (7.48%), and green-
up onset (3.23%). The sites with statistically significant negative correlations (p < 0.05)
at the milky stage were mainly located in the central and northern parts of the study
area (Figure 9f), while those with negative correlations at maturity and heading were
mainly located in the south-central part of the study area (Figure 9g,e). For the other
phenological dates (i.e., emergence, tillering, green-up onset, and jointing), sites with
statistically significant negative correlations (p < 0.05) were sparsely distributed in different
parts of the study area (Figure 9a–d).

Remote Sens. 2022, 14, 4930  14  of  22 
 

 

 

Figure 9. Correlation between phenological dates and corresponding preseason temperature from 

1981 to 2016. Red circles represent negative correlations, and green circles represent positive corre‐

lations. Hollow circles indicate statistically insignificant correlations (P > 0.05), while solid circles 

indicate statistically significant correlations (P < 0.05). (a) represents correlation for emergence, (b) 

represents correlation for tillering, (c) represents correlation for green‐up onset, (d) represents cor‐

relation for jointing, (e) represents correlation for heading, (f) represents correlation for milky stage, 

and (g) represents correlation for maturity, respectively. 

Figure 9. Cont.



Remote Sens. 2022, 14, 4930 14 of 21

Remote Sens. 2022, 14, 4930  14  of  22 
 

 

 

Figure 9. Correlation between phenological dates and corresponding preseason temperature from 

1981 to 2016. Red circles represent negative correlations, and green circles represent positive corre‐

lations. Hollow circles indicate statistically insignificant correlations (P > 0.05), while solid circles 

indicate statistically significant correlations (P < 0.05). (a) represents correlation for emergence, (b) 

represents correlation for tillering, (c) represents correlation for green‐up onset, (d) represents cor‐

relation for jointing, (e) represents correlation for heading, (f) represents correlation for milky stage, 

and (g) represents correlation for maturity, respectively. 

Figure 9. Correlation between phenological dates and corresponding preseason temperature from
1981 to 2016. Red circles represent negative correlations, and green circles represent positive corre-
lations. Hollow circles indicate statistically insignificant correlations (p > 0.05), while solid circles
indicate statistically significant correlations (p < 0.05). (a) represents correlation for emergence, (b)
represents correlation for tillering, (c) represents correlation for green-up onset, (d) represents correla-
tion for jointing, (e) represents correlation for heading, (f) represents correlation for milky stage, and
(g) represents correlation for maturity, respectively.

3.4.2. Relationships between the Growth Period Length and Intraseasonal Temperatures

The correlations between different growth period lengths and intraseasonal tempera-
tures are shown in Figure 10. In general, the length of the vegetative growth period (VGP)
was mainly negatively correlated with intraseasonal temperatures, while the length of
the reproductive growth period (RGP) and the length of the vegetative and reproductive
growth period (VRGP) were mainly positively correlated. The highest proportion of sites
showed a statistically significant negative correlation (p < 0.05) between the intraseasonal
temperature and the vegetative growth period (VGP, 21.17%), followed by the vegetative
and reproductive growth period (VRGP, 10.40%). They were mainly distributed in the
southeastern part of the study area (Figure 10a,c). For the reproductive growth period,
the proportion of sites with a statistically significant positive correlation (p < 0.05) with
intraseasonal temperatures was 17.94%, and they were mainly distributed in the northern
and central parts of the study area (Figure 10b).
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Figure 10. Correlations between different growth periods and intraseasonal temperatures from 1981
to 2016. Red circles represent negative correlations, and green circles represent positive correlations.
Solid and hollow circles indicate statistically significant (p < 0.05) and insignificant (p > 0.05) corre-
lations, respectively. (a) represents correlation for VGP, (b) represents correlation for RGP, and (c)
represents correlation for VRGP, respectively.

4. Discussion
4.1. Advantages of CRTM and Its Limitations

When using the relative threshold method to extract phenological dates, the choice
of thresholds in existing studies is usually empirical, and the same empirical threshold is
used throughout the study area. This method of determining the threshold is relatively
simple, but an empirical threshold (e.g., 10%, 20%, or 50%) may not be optimal [25,28,29]
because the threshold is spatially variable. Figure 11 shows the spatial distribution of
the calibrated relative threshold (CRT) for each phenological date determined based on
ground-based phenological observations. The relative thresholds of all phenological dates
had large spatial variations across the study area.

Figure 12 shows the histogram of relative thresholds (CRT) for different phenological
dates. As the histogram of the relative thresholds at emergence was narrow (red curve in
Figure 12) and fluctuated between 0.02 and 0.05 (Figure 11a), a fixed relative threshold (i.e.,
taking the average of 0.02 and 0.05) was used throughout the study area when extracting the
emergence date using the relative threshold method. For the other phenological dates (i.e.,
tillering, green-up onset, jointing, heading, milky stage, and maturity), our result showed
there was no globally fixed threshold for extracting the phenological date across the study
area due to the wide spatial variation of the relative thresholds (Figure 11). Therefore,
using a fixed empirically based relative threshold (e.g., 10%, 20%, or 50%) to extract the
phenological date would introduce large bias and uncertainty, especially over large areas.
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Figure 11. Spatial distribution of the calibrated relative threshold (CRT) for different phenological
dates based on ground-based phenological observations. (a) illustrates spatial distribution of CRT for
emergence, (b) illustrates spatial distribution of CRT for tillering, (c) illustrates spatial distribution
of CRT for green-up onset, (d) illustrates spatial distribution of CRT for jointing, (e) illustrates
spatial distribution of CRT for heading, (f) illustrates spatial distribution of CRT for milky stage, and
(g) illustrates spatial distribution of CRT for maturity, respectively.
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By contrast, the newly proposed CRTM in this study can minimize the bias and
uncertainty caused by unreasonable threshold settings when extracting phenological dates.
Comparisons with ground-based phenological observations (Figure 4) suggest that the
newly proposed CRTM can effectively extract the key phenological dates of winter wheat
from the remotely sensed NDVI time series. Although there were absolute quantitative
differences between the phenological dates extracted by CRTM and ground phenological
observations, the consistency of the relative change trends can be guaranteed, which
indicates that phenological dates estimated by CRTM are appropriate for further exploring
the long-term spatial–temporal patterns.

Furthermore, it has been shown that cumulative NDVI curves can better overcome the
interference of natural variability in phenology extraction [41–43]. Therefore, the original
NDVI curves were replaced with cumulative NDVI curves when using the calibrated
relative threshold method. This also had the significant advantage that when determining
the relative thresholds for different phenological dates from the original NDVI curves,
it was necessary to first identify the monotonically increasing or decreasing segments of
NDVI curves where different phenological dates occurred. Such segments are the rising
segment of NDVI before winter, the falling segment of NDVI during overwintering, the
rising segment of NDVI in spring, and the falling segment of NDVI in post-heading stages.
As NDVI curves of winter wheat have complex bimodal characteristics and are susceptible
to various noises (e.g., cloud contamination), it significantly increases the complexity and
computational effort of searching feature points in the original NDVI curves. In addition,
the different ascending and descending segments where different phenological dates are
located further increase the complexity and computational effort of extracting the pheno-
logical dates from the original NDVI curves. By contrast, the cumulative NDVI curve is
a monotonically increasing curve with very simple morphological characteristics, so the
relative threshold method can be easily implemented based on the same rising segment of
the cumulative NDVI curve, and only the start and end dates of the winter wheat growth
period need to be determined from the original NDVI curve, which greatly reduces the com-
plexity and computational effort of extracting different phenological dates. Furthermore,
the monotonically increasing characteristics of the cumulative NDVI curve are not affected
by the morphology of the original NDVI curve and can therefore be directly applied to the
phenology extraction for different crop types and different phenological dates.

The newly proposed CRTM also has some limitations because it first requires ground-
based phenological observations when determining the relative thresholds for different
phenological dates in different locations. Although this can improve the accuracy of phe-
nology extraction, it is a challenge for areas lacking phenological observations. Moreover,
if winter wheat encounters catastrophic events (e.g., spring frost, dry-hot wind, pest in-
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festation) that cause a significant decrease in NDVI, it will impose an adverse impact on
the calculation of the cumulative NDVI curves, thus bringing some uncertainty to the
phenology extraction. For example, the occurrence of frost in early spring poses a threat
to winter wheat and brings large fluctuations in NDVI curves (Figure 3a) [35], which
may be responsible for the relatively low coefficients between the CRTM-estimated and
ground-observed green-up onset date (Figure 4b). Therefore, the effects of catastrophic
events on winter wheat phenology and how such effects are reflected in the changes in the
original and cumulative NDVI curves should be further investigated in future studies.

4.2. Comparisons with Existing Studies

Liu and Wang [20] investigated the trends of the green-up onset date, heading date,
and the length between the green-up onset date and heading date (defined as STAGE)
in North China from 1982 to 2015 based on GIMMS data. Their results showed that the
average advancement of green-up onset and of the heading date in the study area was
1.8 days/decade and 1.3 days/decade, respectively. The green-up date advanced faster
than the heading date, resulting in a lengthened STAGE by 1 day/decade. A similar pat-
tern was found in our study, i.e., the green-up onset date was advanced by an average of
1.0 days/decade, and the heading date was advanced by an average of 0.7 days/decade.
The green-up onset date advanced faster than the heading date, resulting in an aver-
age extension of the vegetative growth period (i.e., STAGE in Liu and Wang’s study) by
0.3 days/decade. In addition, our study found that the advanced trend of the green-up
onset date was the most pronounced (1.0 days/decade) among seven studied phenological
dates; the proportion of wheat pixels with significantly advanced green-up onset date was
only 38.83%, which was lower than the proportion of wheat pixels with significantly ad-
vanced jointing and heading stages (i.e., 40.62% and 42.52%, respectively). Wang et al [13]
showed that the reproductive growth period of winter wheat on the North China Plain was
prolonged during the period 1981–2012. A prolonged trend was observed in 87% of the
sites with an average of 0.6 days/decade. Our study found that nearly 43.63% of winter
wheat in the study area exhibited a significantly extended reproductive growth period,
averaging 0.9 days/decade across the study area, which is longer than that in the study
conducted by Wang et al. [13] based on site observations.

Existing studies on winter wheat phenology have always differed in the selection
of phenological dates, the period studied, the data sources used, and the phenology
extraction methods [7,13,15], making the results vary from study to study and making it
difficult to completely describe the spatial and temporal variation of each phenological
date. Compared with existing studies that targeted a single or few phenological dates (or
growth periods), this study systematically investigated the spatial and temporal variation
of seven phenological dates and three growth periods using a unified data source and
phenology extraction method, which is more conducive to determining the spatiotemporal
characteristics of winter wheat phenology as a whole. For example, this study found that
the pre-wintering phenological dates of winter wheat (i.e., emergence and tillering) showed
the spatial distribution of late in the south and early in the north, while the post-wintering
phenological dates (i.e., green-up onset, jointing, heading, and maturity) showed the spatial
distribution of early in the south and late in the north. Similarly, the vegetative growth
period of winter wheat showed the spatial distribution of short in the south and long in the
north, while the reproductive growth period showed the spatial distribution of long in the
south and short in the north.

In terms of temporal trends, our study found that the advanced or delayed trend
of each phenological date had similar spatial patterns. For example, wheat phenological
dates in the central part of the study area mostly showed a more significantly advanced
trend, while phenological dates in the eastern and northern parts of the study area mostly
showed a non-significant delayed trend. This co-movement effect (simultaneous advance
or delay) between different phenological dates is likely to be related to the interaction
between different phenological dates. For example, Wu et al. (2019) [46] suggested that
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winter wheat exhibited a positive correlation between green-up and the heading date as
well as between heading and the maturity date, where 1 day earlier green-up date may lead
to a 0.57-day earlier heading date, and 1 day earlier heading date may lead to a 0.60-day
earlier maturity date. These patterns were difficult to find in previous studies that focused
only on a single or a few phenological dates.

By contrast, with respect to the relationship between wheat phenology and temper-
ature, existing studies have shown that increasing temperature accelerates the growth
process of winter wheat, resulting in an advanced trend of most phenological dates, as
well as a shortened vegetative growth period and prolonged reproductive growth pe-
riod [7,12,13]. Our study found that the tillering, jointing, heading, milky stage, and
maturity of winter wheat were negatively correlated with the preseason temperature, and
the length of the reproductive growth period was positively correlated with the intrasea-
sonal mean temperature, which is consistent with existing studies. Although emergence,
green-up onset, and jointing were predominantly negatively correlated with pre-season
mean temperature, there were still a number of sites that showed a non-significant positive
correlation, suggesting that the conclusion that warmer temperatures accelerate the wheat
growth process may not be applicable for all phenological dates. Our study also found that
the relationship between the vegetative growth period and the corresponding intraseasonal
temperature was not spatially stable, i.e., the increase in the intraseasonal temperature in
the southern part of the study area shortened the length of the vegetative growth period,
while the increase in the intraseasonal temperature in the north-central part prolonged the
vegetative growth period. From the relationship between the phenological dates and the
corresponding preseason temperature, it can be seen that this was mainly caused by the
different trends and extent of changes in the green-up onset and heading date of winter
wheat in different regions under the background of climate warming.

5. Conclusions

In this study, we propose a calibrated relative threshold method that can fully use
the ground-based phenology observations from previous years to extract winter wheat
phenology. This method can determine the relative thresholds for different phenological
dates in different locations based on the ground phenological observations and can thus
minimize the bias and uncertainty caused by unreasonable threshold settings when extract-
ing phenology by the relative threshold method. Based on this method, we found that the
pre-wintering phenological dates of winter wheat (i.e., emergence and tillering) showed
the spatial distribution of late in the south and early in the north, while the post-wintering
phenological dates (i.e., green-up, jointing, heading, milky stage, and maturity) showed
the spatial distribution of early in the south and late in the north. Winter wheat in the
northern part of the study area has a longer vegetative growth period and a shorter repro-
ductive growth period than winter wheat in the south. In terms of temporal trends, all
seven studied phenological dates were predominantly advanced, with the most significant
advancement in the green-up, emergence, jointing, and heading stages. The vegetative
growth period of winter wheat was mainly shortened in the southeastern part of the study
area and prolonged in the north-central part of the study area. The reproductive growth
period of winter wheat was predominantly prolonged throughout the study area. As far as
the relationship with temperature is concerned, the winter wheat phenological dates mainly
advanced when the pre-season mean temperature increased. When the intraseasonal mean
temperature increased, the vegetative growth period tended to shorten in the south-central
part of the study area and extended in the northern part of the study area, while the repro-
ductive growth period tended to extend throughout the study area. These results provide a
reference for improving the management of winter wheat and crop production.
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