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Abstract: Sago palm tree, known as Metroxylon Sagu Rottb, is one of the priority commodities in
Indonesia. Based on our previous research, the potential habitat of the plant has been decreasing.
On the other hand, while the use of remote sensing is now widely developed, it is rarely applied for
detection and classification purposes, specifically in Indonesia. Considering the potential use of the
plant, local farmers identify the harvest time by using human inspection, i.e., by identifying the bloom
of the flower. Therefore, this study aims to detect sago palms based on their physical morphology
from Unmanned Aerial Vehicle (UAV) RGB imagery. Specifically, this paper endeavors to apply
the transfer learning approach using three deep pre-trained networks in sago palm tree detection,
namely, SqueezeNet, AlexNet, and ResNet-50. The dataset was collected from nine different groups
of plants based on the dominant physical features, i.e., leaves, flowers, fruits, and trunks by using a
UAV. Typical classes of plants are randomly selected, like coconut and oil palm trees. As a result, the
experiment shows that the ResNet-50 model becomes a preferred base model for sago palm classifiers,
with a precision of 75%, 78%, and 83% for sago flowers (SF), sago leaves (SL), and sago trunk (ST),
respectively. Generally, all of the models perform well for coconut trees, but they still tend to perform
less effectively for sago palm and oil palm detection, which is explained by the similarity of the
physical appearance of these two palms. Therefore, based our findings, we recommend improving
the optimized parameters, thereby providing more varied sago datasets with the same substituted
layers designed in this study.

Keywords: classification; deep learning; models; sago

1. Introduction

Sago palm from the genus Metroxylon grows naturally in Asian countries such as
Indonesia, specifically in Papua or West Papua Province. This palm has become more
important recently since the Indonesian Government is concerned about the role of this
palm in various sectors, such as the food industry, as well as other uses [1,2]. Nevertheless,
the detection of sago palm trees tends to be challenging due to their comparable features
with other plants, for instance, coconut tree or oil palm tree, especially in natural sago
forests, where they commonly live together with other particular plants. Therefore, appro-
priate assessment should be based on their spatial need considerations [3,4]. Results of the
previous research regarding land cover changes in the Papua Province of Indonesia and
the impact on sago palm areas in the region confirmed that 12 of 20 districts of Merauke
Regency in Papua Province tended to lose their potential sago palm habitats. Therefore,
one of the recommendations is to attempt to detect and recognize the sago palm [5]. The
palm has made significant contributions to supporting local households, for instance, low
bioethanol, particularly waste from washing and purifying of sago processing, and food
security, specifically from the starches [4,6]. When the harvest time begins, as indicated
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by the flowers on the top center of the tree, local people will cut the tree and remove the
bark, followed by processing to extract the starch. Figure 1a describes the sago palm tree
that was captured by using a UAV from our fieldwork, whereas (b) and (c) represent the
traditional processes of local farmers at Mappi Regency of Papua Province in Indonesia.
The general activity consists of bark removal, pulping, washing, purifying, and subsequent
sieving. The visual interpretation will be more demanding as a consequence of the height
of the plant, which can be more than 15 m in swampy areas, along with swampy shrubs [7].
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as Google Earth Pro to detect the selected object [8,9]. The previous study developed ob-
ject-based image analysis (OBIA) and image processing using high-resolution satellite im-
agery for sago palm classification. Nevertheless, the study pointed out some challenges 
for sago palm classification, for instance, asymmetrical spatial shape due to the semi-wild 
stand palm, various clumps, and overlapped palm trees [3]. Remote sensing technology 
using satellite imagery or UAV has been combined with artificial intelligence algorithms 
or image analytics, supported by various methods, including a deep learning model. As 
established by [10], detecting the particular species in wetland areas using transfer learn-
ing in the stem density system for potatoes [11], or applying deep learning in UAV images 
to obtain the expected attributes from kiwi fruit, such as location and canopy chain [12], 
are possible. The deep learning and transfer learning environment have not only been 
applied in the agricultural sector, but have also been applied towards other objectives, for 
instance, discovering turbine blade damage [13], crime monitoring systems based on face 
recognition [14], or energy forecasting using transfer learning and particle swarm optimi-
zation (PSO) [15]. Deep learning is a sub-field of machine learning where the model is 
derived by an artificial neural network structure [16]. Recently, deep learning has been 
successfully applied in plant detection, for instance, tree crown detection, which generally 
could be performed by three approaches, i.e., Convolutional Neural Network (CNN), se-
mantic segmentation, and object detection using YOLO, etc. [17]. This current study uses 
deep learning based on a CNN, which consists of an input layer, convolution layers, pool-
ing layers, fully connected layers, and an output layer. This network’s detection system 
proved superior to other machine learning methods [18,19]. In an image classification task, 
the machine learning model takes different feature extraction of images, for instance, 
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Figure 1. (a) Sago palm tree in the fieldwork. (b) Traditional bark removal and pulping. (c) Washing,
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Conversely, the advancement of remote sensing technology is quite preferable for solv-
ing particular situations, such as detection or recognition. For example, using Unmanned
Aerial Vehicle (UAV) data to identify multiple land crops and then classifying these data
according to their area, or utilizing nonproprietary satellite imagery tools such as Google
Earth Pro to detect the selected object [8,9]. The previous study developed object-based
image analysis (OBIA) and image processing using high-resolution satellite imagery for
sago palm classification. Nevertheless, the study pointed out some challenges for sago
palm classification, for instance, asymmetrical spatial shape due to the semi-wild stand
palm, various clumps, and overlapped palm trees [3]. Remote sensing technology using
satellite imagery or UAV has been combined with artificial intelligence algorithms or image
analytics, supported by various methods, including a deep learning model. As established
by [10], detecting the particular species in wetland areas using transfer learning in the stem
density system for potatoes [11], or applying deep learning in UAV images to obtain the
expected attributes from kiwi fruit, such as location and canopy chain [12], are possible.
The deep learning and transfer learning environment have not only been applied in the
agricultural sector, but have also been applied towards other objectives, for instance, discov-
ering turbine blade damage [13], crime monitoring systems based on face recognition [14],
or energy forecasting using transfer learning and particle swarm optimization (PSO) [15].
Deep learning is a sub-field of machine learning where the model is derived by an artificial
neural network structure [16]. Recently, deep learning has been successfully applied in
plant detection, for instance, tree crown detection, which generally could be performed by
three approaches, i.e., Convolutional Neural Network (CNN), semantic segmentation, and
object detection using YOLO, etc. [17]. This current study uses deep learning based on a
CNN, which consists of an input layer, convolution layers, pooling layers, fully connected
layers, and an output layer. This network’s detection system proved superior to other
machine learning methods [18,19]. In an image classification task, the machine learning
model takes different feature extraction of images, for instance, shape, height, etc., then
moves to the classification step. Meanwhile, a medium or huge amount of dataset should be
available. In contrast, deep learning obtains the images without a manual feature extraction
step. Feature extraction and classification work through model layers; therefore, deep
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learning requires a large amount of data to achieve a good performance. It takes a long
time to train the model and less time to test it. Since machine learning and deep learning
need a more extensive dataset for training, they will require a higher hardware memory
capacity [20]. To overcome the lack of data and the time cost consumed during training,
transfer learning can be applied by using a deep learning model. Several earlier studies
defined transfer learning as a technique using a model that has been trained for one task,
which is then used as a baseline to train a model for another typical assignment; as long
as the target model is in the same domain [21]. There are three main strategies for doing
transfer learning on deep learning models, i.e., using pre-trained models, applying feature
extraction by discarding fully connected output layers, and fine-tuning the last layers on
pre-trained models [22–24].

Numerous deep learning networks based on CNN have been widely elaborated,
for instance, GoogLeNet and DenseNet. Nonetheless, as explained before, the existing
model can be modified for other purposes but has not yet been investigated for sago palm
detection. Furthermore, transfer learning is acceptable with fewer data and could reduce
training time and computer resources, as concluded by an earlier study. Therefore, the
current study will use a transfer learning strategy to predict the plants based on their
physical appearances, such as leaves, trunks, flowers, or fruits. In order to address this,
three different pre-trained networks based on CNN were customized for detection and
prediction; namely, SqueezeNet, AlexNet, and ResNet-50, were applied in this study. We
modified the last layer and discarded the fully connected output layer to achieve our
new task. The study’s dataset consists of data training and testing of three plants: sago
palm, coconut tree, and oil palm tree. Each class is categorized based on features such as
leaves, fruits or flowers, and trunks. The study aims (1) to obtain the prior model based on
classification performance, i.e., precision, F1-score, and sensitivity; and (2) to evaluate the
transfer learning task in sago palm detection based on leaves, flowers, and trunks.

2. Materials and Methods
2.1. Study Region

The study was performed in Merauke Regency (Figure 2), which is located in the
southern part of Papua Province of Indonesia (137◦38′52.9692′′E–141◦0′13.3233′′E and
6◦27′50.1456′′S–9◦10′1.2253′′S). In the last decade, the population growth in Papua Province
was around 18.28%, and approximately 1.20 million people there are economically active
in agriculture. Based on weather data, the annual minimum and maximum temperature
average deviates between 16–32 ◦C, while the average rainfall registered is 2900 mm with
high humidity from 62% to 95%.

Remote Sens. 2022, 14, 4932 3 of 23 
 

 

amount of dataset should be available. In contrast, deep learning obtains the images with-
out a manual feature extraction step. Feature extraction and classification work through 
model layers; therefore, deep learning requires a large amount of data to achieve a good 
performance. It takes a long time to train the model and less time to test it. Since machine 
learning and deep learning need a more extensive dataset for training, they will require a 
higher hardware memory capacity [20]. To overcome the lack of data and the time cost 
consumed during training, transfer learning can be applied by using a deep learning 
model. Several earlier studies defined transfer learning as a technique using a model that 
has been trained for one task, which is then used as a baseline to train a model for another 
typical assignment; as long as the target model is in the same domain [21]. There are three 
main strategies for doing transfer learning on deep learning models, i.e., using pre-trained 
models, applying feature extraction by discarding fully connected output layers, and fine-
tuning the last layers on pre-trained models [22–24].  

Numerous deep learning networks based on CNN have been widely elaborated, for 
instance, GoogLeNet and DenseNet. Nonetheless, as explained before, the existing model 
can be modified for other purposes but has not yet been investigated for sago palm detec-
tion. Furthermore, transfer learning is acceptable with fewer data and could reduce train-
ing time and computer resources, as concluded by an earlier study. Therefore, the current 
study will use a transfer learning strategy to predict the plants based on their physical 
appearances, such as leaves, trunks, flowers, or fruits. In order to address this, three dif-
ferent pre-trained networks based on CNN were customized for detection and prediction; 
namely, SqueezeNet, AlexNet, and ResNet-50, were applied in this study. We modified 
the last layer and discarded the fully connected output layer to achieve our new task. The 
study’s dataset consists of data training and testing of three plants: sago palm, coconut 
tree, and oil palm tree. Each class is categorized based on features such as leaves, fruits or 
flowers, and trunks. The study aims (1) to obtain the prior model based on classification 
performance, i.e., precision, F1-score, and sensitivity; and (2) to evaluate the transfer learn-
ing task in sago palm detection based on leaves, flowers, and trunks.  

2. Materials and Methods 
2.1. Study Region 

The study was performed in Merauke Regency (Figure 2), which is located in the 
southern part of Papua Province of Indonesia (137°38′52.9692″E–141°0′13.3233″E and 
6°27′50.1456″S–9°10′1.2253″S). In the last decade, the population growth in Papua Prov-
ince was around 18.28%, and approximately 1.20 million people there are economically 
active in agriculture. Based on weather data, the annual minimum and maximum temper-
ature average deviates between 16–32 °C, while the average rainfall registered is 2900 mm 
with high humidity from 62% to 95%.  

 
Figure 2. Location of study area: Merauke Regency. Consisting of 20 districts that cover an area of 
46791.63 km2 with a population of 230,932 in 2020.  
Figure 2. Location of study area: Merauke Regency. Consisting of 20 districts that cover an area of
46,791.63 km2 with a population of 230,932 in 2020.
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2.2. UAV Imagery

Unmanned aerial imagery was captured in Tambat Village, located in Merauke Re-
gency, specifically, the Tanah Miring District. This fieldwork was performed at one of
the top sago forest producers in the Merauke Regency. The sago forest images, shown
in Figure 3, were captured at a height of 60 m and 100 m, longitude, and latitude of
140◦36′46.8498′′E–8◦21′21.2544′′S, respectively. The visible morphology of the sago palm as
detected by the UAV is presented in Figure 3b–d. Sago palm in this fieldwork is typically
natural sago forest or wild sago. It contains a palm trunk, which stores the starch. At
harvest time, the trunk will be cut off and the bark will be opened, followed by further
processing to extract the starch. The harvest time of these sago forest areas is commonly
identified by the bloom of the flowers, as introduced in Figures 1 and 3, followed by the
leaves. The dataset used in this research consists of high-resolution RGB images taken from
a UAV by an Autel Robotics multi-copter. Additionally, field survey data were obtained by
performing ground photography and a short interview with local sago farmers. Our study
focuses on the morphology of sago rather than sago palm health classification or automatic
counting; therefore, our dataset also shows other typical plants such as coconut tree and oil
palm, based on their leaves, fruits, and trunks.
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(a,b) Sago palm areas in the fieldwork, and other vegetations; (c) Sago flowers defined by white
flowers at the top center, between leaves; (d) Palm tree dominant features: trunk and leaves.

The methodology of this research was developed as presented in Figure 4. First, study
preparation is established throughout the field survey and ground photographs around
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the fieldwork. We used some tools such as Google Earth engine, and a handheld global
positioning system to ensure the location of the fieldwork. Then, we created the mission
plan for the UAV. In the next stage, the UAV Red Green Blue (RGB) band images were
downloaded and labeled. Next, the region of interest (ROI) was chosen based on each label
category and class. The dataset in this study was divided into two types: (1) data trained
and (2) data tested. The data trained were categorized into nine classes, namely coconut
tree trunks, leaves, and fruits, as well as oil palm trunks, leaves, and fruits. The remaining
classes are sago trunks, leaves, and flowers. Considering the classification process and pre-
diction model, we applied deep learning model approaches, namely SqueezeNet, AlexNet,
and ResNet-50. Hence, this dataset also involves various sizes of the imagery, blurred and
yellowish images with different angles.
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three major features of each plant.

The classification and prediction process began after the data collection and training
data were developed. Subsequently, the deep learning models were applied, including
parameter optimization for instance mini batch size, initial learning rate or epoch. The
earlier study has successfully combined the parameter optimization to obtain the higher
performance in classification task, for example, learning rate was set up to 0.0001 with
ten number of epochs [23,25]. Further, it was trained and tested using a dataset utilized from
the previous stage. The accuracy of the sago palm dataset was evaluated by comparing the
results of drone imagery with actual data derived from the visual interpretation, and was
based on the ground survey and photographs. All of the training and testing procedures
were implemented using MATLAB R2021 and deep learning scripts.

2.3. Deep Learning and Transfer Learning Models

Deep Learning (DL) models were defined throughout the pre-trained networks of
several common architectures already provided in MATLAB packages for DL, such as
AlexNet [26], GoogLeNet [27], ResNet-50 [28], and Inception v3 [29]. This study focused on
three networks based on CNN, namely SqueezeNet, AlexNet, and ResNet-50. SqueezeNet
consumes small bandwidth to export new models to the cloud or upload them directly
to devices. This network is also able to deploy on embedded system or other hardware
devices that have low memory [30], while AlexNet shows higher accuracy compared to
other different DL, such as GoogleNet or ResNet152, in image classification on the ImageNet
dataset [31], however ResNet as the backbone network shows good performance for the
segmentation dataset [32]. The transfer learning (TL) strategy used in this study requires
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two stages: the base model, which is constructed on pre-training CNN models, and the
target model [33], which is tailored to a new, specific task (Figure 5). Three pre-trained
networks were used, namely SqueezeNet, ResNet, and AlexNet for the base model, and
then we reconstructed the base model to our target model, with nine probability classes.
These three models are trained in various datasets, such as the ImageNet Dataset, and are
able to classify images into 1000 object categories or 1000 classes [34,35], such as keyboard,
mouse, coffee mug, pencil. Nevertheless, TL allows a small dataset, reuse, and extraction
of transfer features, and improves the training time of models [21,23,25].
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AlexNet network involves 5 convolutional layers (conv1–conv5), 3 fully connected
layers (fc6, fc7, fc_new) within the ReLu layer are established after every convolution layer
(Table 1). Further, the dropout layer (0.5 or 50%) avoids overfitting problems. According to
the tools used in this study, the input size is 227 × 227 × 3 or 154,587 values [36], and all
layers must be connected.

Table 1. AlexNet designed in this study.

Layer Layer Name Layer Type Layer Details

1 Data Image input 227 × 227 × 3 images with zero center normalization

2 Conv1 Convolution 96 11 × 11 × 3 convolutions with stride [4 4] and padding [0 0 0 0]

3 Relu1 ReLU ReLU

4 Norm1 Cross channel normalization Cross channel normalization with 5 channels per elemen

5 Pool1 Max pooling 3 × 3 max pooling with stride [2 2] and padding [0 0 0 0]

6 Conv2 Grouped convolution 2 groups of 128 5× 5 × 48 conv with stride [1 1] and padding [2 2 2 2]

7 Relu2 ReLU ReLU

8 Norm2 Cross channel normalization Cross channels normalization with 5 channels per element

9 Pool2 Max pooling 3 × 3 max pooling with stride [2 2] and padding [0 0 0 0]

10 Conv3 Convolution 384 3 × 3 × 256 convolutions with stride [1 1] and padding [1 1 1 1]

11 Relu ReLU ReLU

12 Conv4 Grouped convolution 2 groups of 192 3 × 3 × 192 convolutions with stride [1 1]
and padding [1 1 1 1]

13 Relu4 ReLU ReLU

14 Conv5 Grouped convolution 2 groups of 128 3 × 3 × 192 convoutions with stride [1 1]
and padding [1 1 1 1]

15 Relu5 ReLU ReLU

16 Pool5 Max pooling 3 × 3 max pooling with stride [2 2] and padding [0 0 0 0]

17 Fc6 Fully connected 4096 fully connected layer
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Table 1. Cont.

Layer Layer Name Layer Type Layer Details

18 Relu6 ReLU ReLU

19 Drop6 Dropout 50% dropout

20 Fc7 Fully connected 4096 fully connected layer

21 Relu7 ReLU ReLU

22 Drop7 Dropout 50% dropout

23 Fc_new Fully connected 9 fully connected layer

24 Prob Softmax

25 Classoutput Classification output

SqueezeNet starts the network with an individual convolution layer (conv1), then a
rectified linear unit (ReLU), which is a type of activation function, then the max pooling
layer (Figure 6). When added to a model, max pooling reduces the dimensionality of
images by decreasing the number of pixels in the output from the previous layer. Thus, the
Conv+Relu layer is then extended to 8 fire modules, from fire 2 to fire 9, with a filter size
combination of 1 × 1 and 3 × 3 [30]. Convolution and ReLU layer can be computationally
defined as follows:

Fl(I) = Pi−1(G)× f (1)

where Fl describes an output feature map and l represents the lth convolution layer, while
f is defined by filter size or kernel, and then Pi−1 shows the previous layer output, and I
denotes the original data image. Thus, ReLU is denoted through an equation:

ReLU(I) = max(x, 0) (2)

x is the input of activation on the lth layer, I denotes a ReLU activation output of the feature
maps [37].

Another network included in this study is the Residual network (ResNet-50), the
variant of the ResNet model, which has a 50-layer deep convolutional network. It contains
one convolution kernel size of 7 × 7 at the beginning and ends with an average pool, a
fully connected layer, and a SoftMax layer in one layer. Between these layers, there are
48 convolutional layers consisting of different kernel sizes [38]. Here, the fully connected
layer’s purpose is to integrate all of the inputs from one layer connecting to every activation
unit of the next layer. Thus, the residual block on the ResNet equation is as follows, where
O is the output layer, I is the input layer, and F(Ii W) is the residual map function [39].

O = F(Ii Wi + I) (3)

The characteristics of each model are shown in Table 2, as follows.

Table 2. Model comparison 1.

Network Name Depth Image Input Size Parameters
(Millions)

Total Memory
(MB)

SqueezeNet 18 227 × 227 × 3 1.24 5.20
ResNet-50 50 224 × 224 × 3 25.6 96
AlexNet 8 227 × 227 × 3 61 227

1 Based on tool used in this study, ie., MATLAB.
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we can analyze the chosen model and optimize the parameters. If there are no errors in 
the model, then all of the training data can be imported as data trained (Figure 7). 

Figure 6. SqueezeNet used in this study: all layers are connected.

Once the data preparation is ready and the deep learning model has been designed,
we can analyze the chosen model and optimize the parameters. If there are no errors in the
model, then all of the training data can be imported as data trained (Figure 7).
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2.4. Performance Evaluation 
Four metrics are typically evaluated in DL and TL model evaluation, namely true 

positive (TP), true negative (TN), false positive (FP), and false negative (FN). In this study, 
TP and TN describe the correct identification of class, while FP and FN correspond to false 
identification of class [40]. The evaluation was investigated using an image from the vali-
dation set and their specific labels, which were not used for training. The detection ability 
is assessed based on the precision and the sensitivity criteria, as shown in Table 3, while 
the optimized parameters applied in this study are presented in Table 4. 

Figure 7. Simulated data train: CF, CL, CT, OPF, OPL, OPT, SF, SL, ST, respectively.

As a result, validation accuracy appears, including the training time (elapsed time)
and training cycle, such as the epoch number. Optimized parameters from deep pre-trained
networks are transferred to a simulated dataset and then will be trained. These models
are compared using the same number of epochs, learning rate, and batch size. At the final
stage, 227 × 227 and 224 × 244 image input in the data test will be resized, then a single
image as an output will be predicted and categorized (Figure 8).
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2.4. Performance Evaluation

Four metrics are typically evaluated in DL and TL model evaluation, namely true
positive (TP), true negative (TN), false positive (FP), and false negative (FN). In this study,
TP and TN describe the correct identification of class, while FP and FN correspond to
false identification of class [40]. The evaluation was investigated using an image from the
validation set and their specific labels, which were not used for training. The detection
ability is assessed based on the precision and the sensitivity criteria, as shown in Table 3,
while the optimized parameters applied in this study are presented in Table 4.
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Table 3. Evaluation criteria.

Metric Formula Criteria

F1-score 2×(Recall × Precision)
Recall + Precision Denotes a high value, which validates the model.

Precision TP
TP + FP Examines the ability of the model to predict positive label.

Sensitivity (Recall) TP
TP + FN Defines the ability of the model to detect instances of certain classes well.

Specificity TN
FP + TN Defines the true negatives that are correctly identified by the model.

Accuracy TP + TN
TP + FP + TN + FN Examines the accurately in identifying the images to the classes.

Table 4. Optimized parameters in this study.

Parameter Name Value

Epochs 10
Initial learning rate 0.0001
Validation frequency 9
Learning rate weight coefficient 10
Learning rate bias coefficient 10
Learning rate schedule Constant
Momentum 0.9
L2 Regulation 0.0001
Min batch size 10

Multi-class detection can be explained as follows, for instance, in sago flowers:

1. TP, the number of actual images that are displaying sago flowers (true) and are
classified as sago flowers (predicted).

2. FP, the number of actual images that are not displaying sago flowers (not true) and
are classified as sago flowers (predicted).

3. FN, the number of actual images that are displaying sago flowers (true) and are
classified as a different class (predicted).

4. TN, the number of actual images that are not displaying sago flowers (not true) and
are classified as a different class (predicted).

Hyperparameters set in the training model of TL (Table 4) were determined from
the earlier studies [22,23] by epochs, batch size, and learning rate. A very high learning
rate will trigger the loss function to go up, and as a result, the accuracy of classification
can be reduced. Conversely, if it is too low, it will reduce the network training speed,
the correction of weight parameter correction will be slow, and it will fail to obtain a
proper model accuracy. Batch size is also vital to the accuracy of models and the training
process performance. Using a larger batch size will require higher GPU memory to store
all of the variables (e.g., momentum), and the weights of the network also may cause
overfitting; however, using a minimum batch size may lead to slow convergence of the
learning algorithm. Another technique to overcome the GPU memory limitation and run
large batch sizes is to split the batch into mini-batch sizes. The number of epochs defines
the learning algorithm will complete passes through the entire training dataset.

An ANOVA test was employed to compare means between the accuracy (true positive)
values of three models in correctly identifying the target trees’ morphology. A p value
less than 0.05 was designed for a statistically significant difference in all data analyses. A
receiver–operating characteristics curve (ROC curve) was employed to identify the sensi-
tivity and 1-specificity (false positive) of the three algorithms in identifying sago (flowers,
leaves, and trunks) over coconut and oil palm. All data analyses were performed using
the IBM SPSS version 27 (IBM Corp., Armonk, NY, USA). Additionally, an approximate
cost of software measurement was estimated using function point (FP) analysis [41], which
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is described the functionality points through complexity adjustment factor (CAF), and
unadjusted functional point (UFP), as follows [42]:

CAF = 0.65 + (0.01 x
14

∑
k=1

Fi x rating) (4)

FP = UFP× CAF (5)

3. Results
3.1. Dataset Development

In our fieldwork, the Autel UAV flew at various altitudes of 60 m up to 100 m, as
well as with different forward and sideways overlapping, during the mornings and mid-
days of July 2019, August 2021, and July 2022. This stage aims to obtain various shapes
as well as to enrich the dataset images, instead of counting the plants. Next, the data
collection of sago palm was downloaded and cropped, then allocated according to the
labels in Figure 7. The experiments were processed with an Intel Core i7 processor, with
the dataset defined in RGB space being categorized in 9 classes. The data train and data
test were divided separately, as presented in Figure 4, stage 2; around 70% was allocated
for data training, and 30% were used for data testing and validation. This study comprised
231 total images; 68 images for testing and the rest for data training. The same dataset
was used to train and test, based on the deep learning networks used. All images were
pre-processed based on the three pre-trained networks, as compared in Table 2. Three
pre-trained networks of deep learning were examined and then modified. Then, they were
transferred to the target as transfer learning, of which the modified version is shown in
Figure 5. Regarding the new task via transfer learning, as well as to obtain the aims of
this study, the last layers of each model were reformed as follows: the fully connected
layer, fc1000 changes to fc_new, then SoftMax layer for converting values into probabilities,
and subsequently, the classification layer predictions for 1000 output size were replaced
to class_output for categorizing into nine classes. Convolution1000 layer is also restored
to the conv2d layer with nine num-filters. Then, the weight learning factor and bias learn
rate coefficients, as presented in Table 4. Furthermore, all images were pre-assessed using
resizing and normalization, for instance, rescaling, rotation, and augmentation. In addition,
the datasets were all evaluated by inspecting the UAV images, visual interpretation, and
ground surveys, such as photographing plants.

3.2. Training and Testing Data Performance

Considering the TL process as presented as the workflow in Figure 5, all datasets were
imported into a specified workplace through MATLAB and followed by other processing,
namely, training data in the modified deep learning pre-trained network. As a result,
training accuracy and validation lost over ten epochs and ten min batch sizes are introduced
in Figure 9. The smoothness of the accuracy and the loss of training process are described
by the blue colour and orange colour, respectively. While light blue coloured dots and light
orange coloured dots represent the training progress. Additionally, the validation of data
trained and the loss are explained by black line coloured dots. The training progress of
the three models was not quite as smooth, with accuracies of 76.60%, 76.60%, and 82.98%.
However, the ResNet-50 model is more dominant when compared to the others, with the
highest accuracy of 82.98%. The training loss values decreased sharply on these models
in epoch 5, while the training progress increased. Subsequently, the validation accuracy
and loss curves were more eased, especially in ResNet-50 and AlexNet, where the data
training loss decreased during the rest of the process. Although SqueezeNet and AlexNet
fluctuated after 5 epochs, AlexNet network validation was improved, while the training
loss was smaller. This result demonstrates the ability of the three classifiers in recognizing
the dataset.
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After the training process shown in Figure 9, all models were tested using the same
data test, which was prepared and placed differently than the trained data. To support this
testing process, we used various types of syntax that were accommodated in MATLAB2021,
such as imresize, imshow, prediction, probability, and confusion matrix. The uses of imre-
size and imshow are basically appropriate preparation for the input test, according to the
features of each model in Table 2, while the probability and categorization were generated
from each model, specifically in layer name: prob, within SoftMax type (Figure 6). Next,
the confusion matrix was calculated for each classification model, and the performance was
visualized using the values on the confusion matrix. The confusion matrix in this study
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was used to describe each model’s performance, consisting of the true class and the class
predicted by the model. Then, the metric was calculated based on the formula shown in
Table 3.

All models were able to predict the plants with 100% accuracy, such as SqueezeNet
(Figure 10) for recognizing the coconut trunk (CT), AlexNet for coconut fruit (CF), coconut
trunk (CT), and sago flowers (SF), while ResNet-50 recognized oil palm trunk (OPT).
In the case of sago palm classification, the convolution matrix of AlexNet and ResNet-
50 were superior to SqueezeNet. Despite the fact that the models were trained with a
self-contained dataset and smaller datasets compared to pre-trained deep learning when
utilizing 1000 images, the training accuracy rose to 82%. Meanwhile, the models obtained
the expected results in the recognition of the plant’s physical morphology.
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3.3. Model Performance Evaluation

In terms of precision and detection of the sago palm based on leaves (SL), flowers
(SF), and trunks (ST), the best performances are highlighted in bold (Table 5). Even though
the AlexNet model is 100% able to detect sago flowers (SF), the sensitivity of this model
or valid positive rate is only around 29%. Conversely, the ResNet-50 model is quite good
as a classifier in SL and ST, with the precision value for SL and ST being 0.78 and 0.83,
respectively. Precision and sensitivity should preferably be 1, which is the highest value, or
close to 100% if expressed in percentage. Nevertheless, the F1 score turns out to be ideally
1 when both precision and sensitivity are increased or equal to 1. Therefore, this study
examines the precision, as well as the recall or sensitivity to evaluate the performance of
each model as a good classifier.

Table 5. Classification results of three networks.

Model Training
Accuracy (%) Training Time Image Input Size Class Recall

(Sensitivity) Precision F1 Score

SqueezeNet 76.60 3 min 39 s 227 × 227

CF
CL
CT

OPF
OPL
OPT
SF
SL
ST

1.00
0.83
0.71
0.71
0.57
0.71
0.29
0.70
0.25

0.80
0.83
1.00
0.71
0.33
0.63
0.67
0.54
0.67

0.89
0.83
0.84
0.71
0.42
0.67
0.41
0.61
0.36

AlexNet 76.60 5 min 8 s 227 × 227

CF
CL
CT

OPF
OPL
OPT
SF
SL
ST

0.88
0.86
0.57
0.43
0.14
0.71
0.29
0.80
0.25

1.00
0.38
1.00
0.75
0.17
0.39
1.00
0.62
0.67

0.94
0.53
0.73
0.55
0.48
0.51
0.45
0.70
0.36
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Table 5. Cont.

Model Training
Accuracy (%) Training Time Image Input Size Class Recall

(Sensitivity) Precision F1 Score

ResNet-50 82.98 18 min 29 s 224 × 224

CF
CL
CT

OPF
OPL
OPT
SF
SL
ST

0.88
0.71
0.57
0.57
0.71
0.57
0.43
0.70
0.63

0.88
0.46
0.80
0.67
0.39
1.00
0.75
0.78
0.83

0.88
0.56
0.67
0.62
0.50
0.73
0.55
0.74
0.72

SqueezeNet performed significantly better in identifying the leaves of oil palm (OPL)
than AlexNet (p = 0.046); meanwhile, no statistical significance difference was found
between the tree models in accurately recognizing the target tress based on fruits, leaves,
and trunks. Based on the accuracy values, the AlexNet had a more surprising performance
in the detection of sago flower (SF) than the other models (Figure 11), while ResNet-50
can recognize the sago trunk (ST) and sago leaves (SL) better than other models. These
results indicate that the models can distinguish sago palms from other plants used in this
study. Based on this evaluation, the AlexNet and ResNet-50 can promote the preliminary
detection of the sago palm.
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Figure 11. Performance of sago palm classifier in percentage (%).

ROC curves compared all experimented models on the sago palm dataset, the results
showed that all algorithms were able to correctly identify sago (flowers and leaves) over
coconut and oil palm (Figure 12a–c), of which ResNet50 presented the best model for
predicting sago trees. SqueezeNet and ResNet 50 could also distinguish between the sago
trunks over that of the coconut and palm oil, however, AlexNet was less likely to identify it
(as depicted by the line under the reference values) (Figure 12a).

The cost analysis of model implementation according to FP was estimated with the
result of CAF and FP, i.e., 1.21 and 1057.54 FP, respectively. Comparable other costs revealed
similar expenses for the further deployment of the model. The only difference between
them was found in the performance of three models, as presented above (Figures 11 and 12).
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4. Discussion

The implementation of deep learning can be performed with two methods: (a) a
self-designed deep learning model, and (b) transfer learning approaches. In this study,
transfer learning based on three models, namely, SqueezeNet, AlexNet, and ResNet-50 were
used as transfer objects to categorize and predict the three plants based on their physical
morphology. Generally, the three models can detect the morphology of coconut trees well,
specifically SqueezeNet, as shown by the higher precision in CF, CL, and CT—80%, 83%,
100%, respectively, when compared to sago palm or oil palm. This happens because the
shape of palm oil and sago are similar, as shown in Figures 1 and 3, especially when
captured by using a drone or other remote sensing technology at a specific altitude [3].
As investigated by [43], tree classification using UAV imagery and deep learning has
confirmed that deep learning and transfer learning can apply to the classification of UAV
imagery, however, more tree species and various study areas will improve the accuracy
of the classifiers. Concerning the performance of sago classifiers, as shown in Figure 11,
AlexNet can predict sago flowers (SF) at 100%, while ResNet-50 forecasts sago leaves (SL)
and sago trunk (ST) at 78% and 83%, respectively. A different study of wood structure
found that the testing performance of ResNet-50 as a transfer object was about 82% from
4200 images of the dataset [44,45]. Additionally, for carrot crop detection, which included
1115 standard-quality carrots and 1330 imperfect carrots using ResNet-50, it was proven
that this transfer method is superior compared to the others. Even though TL can predict
the class with fewer datasets, it can provide a variety of sago palm datasets that will
improve the learning performances [46]. Therefore, providing more datasets with different
types, angles, and shapes of the sago is recommended for further work.

Considering the availability of datasets from UAV imagery, findings have been pro-
vided by several studies, as mentioned in [40,47], for instance, weed map dataset, VOAI
dataset, or other resources, such as ImageNet [48,49]; we found that these do not follow
the requirements of this study, especially the dataset provided, for example, a dataset of
ImageNet supports the recognition of various images such as vehicles, birds, carnivores,
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mammals, furniture, etc., but it is obviously not yet purposed for a sago palm dataset. How-
ever, previous studies explained how a proper dataset helps enhance learning performance;
therefore, we applied transfer learning as a strategy to overtake the insufficient data, since
it could train network models with a small dataset [40]. For the dataset, our study provided
its own dataset captured from UAV images and labeled according to each class. The original
dataset for nine classes contained 144 images, while the augmentation process obtained
19 images. The augmentation process consists of rotation, scale (Appendix B), and then
68 test images. In total, the dataset used in this study contains 231 images. Nevertheless,
the existing data, for instance, UW RGB-D object dataset, provides 300 general objects in
2.5 datasets [32]. At the testing stage, the RGB images were resized based on the model
(Table 2), which was also done by the earlier studies [49,50]. Transfer learning-based CNN
models using UAV imagery generate one label for one image patch rather than making
a class prediction for every pixel [51]. On the one hand, the presence of overlapping
plants, for example, wild sago palm (e.g., lives with other vegetation, irregular shape),
could be more challenging in pixel-based classification, for instance, semantic segmenta-
tion [40,47,51]. Nevertheless, providing a DL-based segmentation dataset of overlap sago
combined with other models is essential for different purposes [32]. At the same time, the
selected models used in this study performed detection and recognition successfully, as
assessed by earlier studies [23,52]. According to the result of the metric evaluation, the
ResNet-50 model outperforms, at around 90%, compared to other networks, which was
also depicted by its ROC curve (Figure 12c). Nonetheless, the effects of hyperparameters of
each model, such as learning rate, epochs, and minibatch sizes require consideration [53].
Consequently, fine-tuning the parameters of each model should be more noticeable, which
is also described in the limitations of this current study.

Since the sago palm has become important in Indonesia, and considering that the
potential area for sago in Papua province tends to be declining [5], designing a relevant
application using reliable methods or algorithms needs to be considered. In the case of sago
palm in our study area, the harvesting time is examined by its morphological appearance,
as mentioned earlier, through the flowers. Sago palm forests commonly live together with
other undistinguishable plants, but unfortunately, due to the height of the sago and the
limitation of visible inspection by human or satellite images, especially in the sago area
of Papua that are part of the overall ecology, sago palms are difficult to identify. After
investigating other areas in Indonesia, such as South Sulawesi, which is also typically a
sago or semi-cultivated forest, [3] found that the complexity of morphologic appearances,
such as the similarity of typical plants, affects the results. Therefore, the result of this
current study can help the local community, as well as the stakeholders to recognize the
harvest time and the species properly, whether it is sago or other plants. To support this,
the deployment of this current study by using appropriate fine-tuning or integrating with
other frameworks to address a variety of target problems, as mentioned previously, must
be considered in our further research.

5. Conclusions

This study compared the capabilities of three models for sago palm recognition based
on their dominant appearances, such as leaves fruits, flowers, and trunks. Each model is
transferred from pre-trained deep learning networks by substituted base layers. Likewise,
the fully connected layer becomes an fc_new, SoftMax layer, and output layer; to obtain
our target model, which is nine labels from nine classes, and the probabilities as well. The
experiment’s result, as shown in Figures 11, 12 and Table 5, ResNet-50 model was taken as
a prior model for flowers, leaves, and trunks for sago palm detection. In further research,
this baseline model designed is the first in its field and is expected to obtain a high accuracy,
including training validation accuracy up to 90%, with less elapsed time and an improved
number of epochs, which also provides more datasets of sago palms. Moreover, since the
similarity of sago morphology is influenced by the current result, further work must be
integrated with different environments and various sago palm datasets.
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Appendix A

UAV and dataset information
Table A1, Figures A1–A3.

Table A1. Technical data of UAV used.

Index Specification

Dimensions 42.4 × 35.4 × 11 cm
Battery (life and weight) Li-Ion 7100 mAh 82 Wh; 40 min; 360 g

Video resolution 6K (5472 × 3076)

ISO range Video-ISO 100-3200 Cr/100-6400 Manual,
Photo-ISO100-3200 Car/100-12800 Manual

Camera resolution 20 Mpx; camera chip: 1′ CMOS IMX383 Sony
Maximum flight time 40 min (single charge)

Field of view 82◦

Gesture control, Wi-Fi, GPS, controller control,
Mobile App, homecoming, anti-collision sensors,

automatic propeller stop
Provided

Speeds 72 km/h to 5 km; winds of 62–74 km/h at up to
7000 m above sea level
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