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Abstract: A cuboid is a geometric primitive characterized by six planes with spatial constraints, such
as orthogonality and parallelism. These characteristics uniquely define a cuboid. Therefore, previous
modeling schemes have used these characteristics as hard constraints, which narrowed the solution
space for estimating the parameters of a cuboid. However, under high noise and occlusion conditions,
a narrowed solution space may contain only false or no solutions, which is called an over-constraint.
In this paper, we propose a robust cuboid modeling method for point clouds under high noise
and occlusion conditions. The proposed method estimates the parameters of a cuboid using soft
constraints, which, unlike hard constraints, do not limit the solution space. For this purpose, a cuboid
is represented as a Gaussian mixture model (GMM). The point distribution of each cuboid surface
owing to noise is assumed to be a Gaussian model. Because each Gaussian model is a face of a
cuboid, the GMM shares the cuboid parameters and satisfies the spatial constraints, regardless of
the occlusion. To avoid an over-constraint in the optimization, only soft constraints are employed,
which is the expectation of the GMM. Subsequently, the soft constraints are maximized using ana-
lytic partial derivatives. The proposed method was evaluated using both synthetic and real data.
The synthetic data were hierarchically designed to test the performance under various noise and oc-
clusion conditions. Subsequently, we used real data, which are more dynamic than synthetic data and
may not follow the Gaussian assumption. The real data are acquired by light detection and ranging-
based simultaneous localization and mapping with actual boxes arbitrarily located in an indoor space.
The experimental results indicated that the proposed method outperforms a previous cuboid model-
ing method in terms of robustness.

Keywords: cuboid modeling; geometric primitive; point cloud; 3D modeling; object mesh; LiDAR

1. Introduction

Geometric primitive-based modeling is a widely used method for abstracting point
clouds for applications such as scene reconstruction [1–6], rendering [7–11], and shape
processing [12,13], as geometric primitives are lighter and easier to manipulate than raw
point clouds. Moreover, these characteristics can reduce the labor needed for inspection,
assessment, and management. Hence, Geometric primitive-based modeling is also useful
in the fields of extraction of bridge components [14–17] for inspection purposes. Among
geometric primitives, the cuboid model is the most practical for substituting point clouds
acquired by simultaneous localization and mapping (SLAM). A cuboid can substitute a
large portion of point clouds as it is frequently observable in man-made environments.
Moreover, a cuboid model is light and easy to manipulate because it renders six spatially
related planar patches simultaneously with nine parameters. However, most point clouds
generated by SLAM contain many defects, such as noise and occlusion. Therefore, a cuboid
modeling method must be robust to remain useful.

A traditional cuboid modeling method [4,10,18–20] consists of two processes: plane
detection and spatial constraint validation, which impose hard constraints to narrow the
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solution space, as shown in Figure 1a. In the plane detection process, first, planes are
sequentially detected from point clouds, and subsequently, cuboid candidates consisting
of at least two of the detected planes are searched. Specifically, plane detection extracts
planes from three-dimensional (3D) point clouds. This process bounds the solution space
by providing a set of planes that could form the face of a cuboid. Because the solution
space of the cuboid parameters is restricted to the set of planes, an error in the detected
planes propagates to the cuboid modeling results. Therefore, plane detection accuracy
is important.

(a)

(b)

Figure 1. Comparison of cuboid modeling procedures. (a) Previous cuboid modeling method. Each
hard constraint imposing process narrows solution space. (b) Proposed cuboid modeling method
with GMM. Initial guess is iteratively optimized through the soft constraint that assigns score to
solution space.

The most well-known approaches for plane detection are random sample consensus
(RANSAC) [21] and Hough transform [22]. Wu et al. [19] used an RANSAC-based plane
detection approach proposed by Li et al. [9], which considers global relations, such as
orientation, placement, and equality alignments, to enhance the plane detection accuracy.
Wei et al. [10] used the Hough transform to detect planes. In addition, they extracted
the Minimum Bounding Rectangle (MBR) from the detected planes because it closely
represented the actual face of a cuboid.

In the spatial constraint validation process, the detected planes are determined to be-
long to a cuboid candidate based on their satisfaction of spatial relations, such as proximity,
perpendicularity, and parallelism. To be more specific, because a cuboid is characterized
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by six planes that are orthogonal to adjacent planes, previous methods [4,10,18–20] have
used these characteristics as spatial constraints. Therefore, spatial constraints, such as
proximity and orthogonality, are used to narrow down the solution space by excluding
combinations of planes that violate the constraint. In addition, they added other spatial
constraints depending on the input or detected planes. Cuboid modeling methods with a
single RGB-D image as an input [4,18] utilize camera position to create constraints. Jiang
and Xiao [4] used a concept called solidness, which is the proportion of a cuboid behind a
3D scene surface. Mishima et al. [18] checked convexity with the center of mass and normal
of a point, which aligned with the viewpoint. Wei et al. [10] included the edges of an MBR
as constraints to check proximity and orthogonality.

Because the aforementioned two processes are hard constraints that bound the solution
space, the solution space of the cuboid parameters is narrowed down. However, narrowing
the solution space in this manner may lead to the exclusion of the true solution owing to
the following factors. First, the plane detection results could be inaccurate for use as hard
constraints because of sensor noise, motion noise, and incomplete measurements owing to
occlusion. In addition, because the parameters of a plane are optimized for the point clouds
associated with the plane, the absence of an appropriate data association between the point
clouds and faces of a cuboid also increases the error in the detected plane. Furthermore,
the high occlusion of a cuboid implies a few plane combinations that can satisfy the spatial
constraints. Consequently, applying the abovementioned hard constraints under high noise
and occlusion may lead to an over-constraint, which results in a false or no solution in the
solution space.

To address the aforementioned problems caused by hard constraints, we propose using
soft constraints for cuboid modeling by adopting a Gaussian mixture model (GMM) [23].
Unlike hard constraints, which cut and bound the solution space multiple times, the
proposed soft constraint strategy assigns a smoothly changing probability to the solution
space, as shown in Figure 1b. Specifically, a Gaussian model describes the point cloud data
(PCD) noise well, and a linear combination of such models (mixture of Gaussian models)
covers all possible cases of data association, even under severe occlusion. Therefore, our
strategy of conducting one-step optimization iteratively estimates the true solution while
preventing possible failures due to multiple optimization steps. Finally, the optimization
procedure is accurate and efficient owing to the use of an analytic gradient, which was
newly derived in this study. The contributions of this study are as follows:

• We introduced a GMM to estimate a cuboid model directly from point clouds to ensure
model robustness against noise and occlusion by simultaneously considering noise,
spatial constraints, and data association.

• We derived analytic partial derivatives of the expected values of GMM with respect to
cuboid parameters to achieve effective optimization.

• We verified and evaluated the advantages of the proposed approach over a previous
cuboid modeling method by conducting extensive experiments using synthetic and
real data.

The remainder of this paper is organized as follows: The formulation of soft constraints
to estimate cuboid parameters, optimization of the soft constraints, and implementation
details arepresented in Section 2. Section 3 shows configurations and results of experiment.
Subsequently, Section 4 discusses the validation of the robustness of the proposed method
based on experiments. Finally, Section 5 concludes that the proposed method robustly
models a cuboid from point clouds.
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2. Matetials and Methods

In this section, we describe a cuboid model as a GMM based on a noise model of
measured point clouds and describe the derivation of an expectation of the GMM, which is
a soft constraint.

2.1. Gaussian Assumption of Point Distribution

We assumed that the point clouds from a planar object follow a Gaussian distribution.
The ideal measurement of a planar object involves subsampled points on the same plane.
However, real point clouds acquired by SLAM are randomly distributed around a measured
planar surface owing to the sensor and motion noise, as shown in Figure 2a. Therefore, we
used the Gaussian model, as shown in Figure 2b, for the point distribution after evaluating
planar object’s point distribution along the plane’s normal vector.

(a) (b)

Figure 2. Point clouds noise models and point clouds distribution assumption. Green-filled dots
are reconstructed point clouds. Black-empty dots represent ideal measurements. (a) Two types of
noise models. The upper example shows the noise model with sensor error. Point clouds acquired
by LiDAR sensor are not aligned owing to sensor error. The lower example shows the noise model
with motion error. Point clouds acquired from true position of LiDAR sensor (gray) are shifted owing
to the position of LiDAR sensor with motion error (thick circle). (b) Gaussian assumption of point
clouds distribution generated by noise model shown in (a).

We performed quantitative and qualitative evaluations to verify the Gaussian distribu-
tion assumption. First of all, we segmented the point clouds of a wall from the results of
the SLAM algorithm [6] that was used in the real data experiment. Then, we calculated
the distance of each point from the wall. Subsequently, we visualized the distances using
a Quantile–Quantile plot and histogram to qualitatively prove that it follows a Gaussian
distribution as shown in Figure 3. The Quantile–Quantile plot shows distances are plotted
in a straight line that represents a Gaussian distribution. In addition, the histogram has the
shape of a Gaussian distribution.

For quantitative proof, we conducted normality tests [24] that consisted of a
Kolmogorov–Smirnov test Limiting form (KS-Lim), Stephens Method (KS-S), Marsaglia
Method (KS-M), Lilliefors test (KS-L)), Anderson–Darling (AD) test, Cramer–von Mises
(CvM) test, Shapiro–Wilk (SW) test, Shapiro–Francia (SF) test, Jarque–Bera (JB) test, and
D’Agostino and Pearson (DAP) test. As this code is not meant for large size of data, we
subsampled the point clouds and performed the test for 10,000 iterations. As a result, the
point clouds of a wall from the result of a SLAM [6] passed the test for all methods at the
rate of more than 90%.
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Figure 3. Quantile–Quantile Plot (Left) and Histogram (Right) of distances between points and
measured plane.

According to these validations, we assumed that the point clouds from a planar object
follow a Gaussian model.

The Gaussian model can be expressed as follows:

f (X; n, p) =
1√

2πσ2
e−

(n>(X−p))2

2σ2 (1)

where n is the normal vector of the measured plane, X is the acquired point, and p is an
arbitrary point on the plane. This is the probability of point generation from the measured
planar object. Because the faces of a cuboid are planar patches, Equation (1) is adopted for
each face of a cuboid with cuboid parameters.

2.2. Cuboid as GMM

We assume that point clouds from planar objects follow a Gaussian distribution, as
mentioned in Section 2.1. This assumption can be applied to point clouds generated from
each face of a cuboid. Therefore, we can deduce that point clouds generated from a cuboid
follow a GMM that consists of six Gaussian models that represent each face of a cuboid.

The log-likelihood function of a GMM is derived from Equation (1), and the basic
notation used in Equation (2) is as follows:

• Latent variables (zj, j = 1, 2, . . . , 6): τ1, τ2, . . . , τ6
(Probability that a point is generated from the j-th Gaussian model.)

• Size of a cuboid (width, depth, and height): µ1 = µ4, µ2 = µ5, µ3 = µ6(w, d, h)
• Center of a cuboid: XC (3× 1)

• Euler angle of a cuboid orientation: θ
(
θx θy θz

)>
• X, Y, Z axes of the cuboid coordinate system:

u1 = u4 =

1
0
0

, u2 = u5 =

0
1
0

, u3 = u6 =

0
0
1


• N Observations (Points): X i
• Parameters (K): (τ1, . . . , τ6, µ1, µ2, µ3, XC, θ)

Here, j represents the Gaussian model of the corresponding face of the cuboid. If j
is 1–3, the corresponding face is located in the positive direction in the cuboid coordinate
system, and each j indicates a face perpendicular to the x-, y-, and z-axes, respectively.
Additionally, the jth face is parallel to the (j + 3)th face. Therefore, the size of a cuboid and
the X, Y, and Z axes of the cuboid coordinate system values used in 4–6th Gaussian model
(µ4–6 and u4–6) are the same as those used in 1st–3rd Gaussian model(µ1–3 and u1–3).
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The plane parameters of the face of a cuboid can be represented as cuboid parameters
such as size(µj), center(XC), and orientation(θ). Here, the center and orientation of a cuboid
are represented as x, y, and z coordinates and the Euler angle based on the reference
coordinate system, respectively. Consequently, the Gaussian model of each face of a cuboid
can be represented based on Equation (1) by substituting n, p as cuboid parameters with
the notation listed above.

f (X i; µj, XC, θ) =
1√

2πσ2
e−

((C(θ)uj)
>(Xi−XC)±

µj
2 )2

2σ2 (2)

(± depends on j value. - when j < 4, else +)

Here, n is replaced with (C(θ)uj)
> because the normal vector of a face is the same as the

axis of the cuboid orientation. The point where the center of the cuboid is projected onto
the face is used as p, which is an arbitrary point on the plane.

If each point is labeled with the face of a cuboid where the point is measured, it would
be the complete data. However, we acquired only point clouds without information on
the face of the cuboid where the point originated. Therefore, we used the incomplete data
log-likelihood function of a cuboid with Equation (2) as follows:

log L(K; X, Z) =
N

∏
i=1

Σ6
j=1[τj f (X i; µj, XC, θ)]

= ΣN
i=1Σ6

j=1

[
log τj −

1
2

log 2πσ2 −
((C(θ)uj)

>(Xi − XC)±
µj
2 )

2

2σ2

]
(3)

2.3. Expectation of GMM

The expectation of the GMM is calculated as the product of the conditional distribution
and log-likelihood. The conditional distribution of Zi based on the current (t) estimation
(T(t)

j,i ) is as follows:

T(t)
j,i := P(Zi = j|X i = xi; K(t))

=
τ
(t)
j f (X i; zj, µ

(t)
j , X(t)

C , θ(t))

Σ6
j=1 f (X i; zj, µ

(t)
j , X(t)

C , θ(t))
(4)

Thus, the expectation of the log-likelihood function Q can be expressed as follows:

Q(K|K(t)) = EZ|X,K(t) [log L(K; X, Z)]

= ΣN
i=1Σ6

j=1P(Zi = j|X i = xi; K(t)) log L(K j; X i, zi)

= ΣN
i=1Σ6

j=1T(t)
j,i

[
log τj −

1
2

log 2πσ2 −
((C(θ)uj)

>(Xi − XC)±
µj
2 )

2

2σ2

]
(5)

2.4. Optimization

The generally used optimization method for a GMM is the expectation-maximization
method [25]. We maximized the expectation, derived in Section 2.3, using the gradient-
ascending approach. The analytic partial derivatives of the expectation with respect to
the cuboid parameters were used to calculate the gradient and determine the step size.
Furthermore, the backtracking line search method was implemented to adjust the step size
while updating the parameters.
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2.4.1. Gradient Ascending

First, we update the latent variables. Before calculating the partial derivatives of
Equation (5), the terms related to the latent variables are clustered as follows for brevity:

τ(t+1) = argmax
τ

Q(K|K(t))

= argmax
τ

[
Σ6

j=1
{
(ΣN

i=1T(t)
j,i ) log τj

}]
(6)

Equation (6) has the same form as the maximum likelihood estimation for a multinomial.
Hence, we can optimize Equation (6) by substituting the result of the maximum likelihood
estimation for a multinomial.

τ
(t+1)
j =

ΣN
i=1T(t)

j,i

N
(7)

After collecting the terms related to the size, similar to the case of latent variables, the
size parameter is updated as follows:

∂Q(K|K(t))

∂µj
=

∂ΣN
i

(
T(t)

j,i (−
((C(θ)uj)

>(Xi−XC)−
µj
2 )2

2σ2 ) + T(t)
j+3,i(−

((C(θ)uj)
>(Xi−XC)+

µj
2 )2

2σ2 )

)
∂µj

=
1

2σ2 ΣN
i

(
T(t)

j,i ((C(θ)uj)
>(Xi − XC)−

µj

2
)− T(t)

j+3,i((C(θ)uj)
>(Xi − XC) +

µj

2
)

)

µ
(t+1)
j =

2ΣN
i

(
(T(t)

j,i − T(t)
j+3,i)(C(θ)uj)

>(Xi − XC)

)
ΣN

i (T(t)
j,i + T(t)

j+3,i)
(8)

The center parameter is similarly updated.

∂Q(K|K(t))

∂XC
=

∂ΣN
i Σ6

j T(t)
j,i (−

(C(θ)uj)
>(Xi−XC)±

µj
2 )2

2σ2 )

∂XC

=
1
σ2 ΣN

i ((T(t)
1,i + T(t)

4,i )(C(θ)u1)
>(X i − XC)(C(θ)u1)− (T(t)

1,i − T(t)
4,i )

µ1

2
(C(θ)u1)

+ (T(t)
2,i + T(t)

5,i )(C(θ)u2)
>(X i − XC)(C(θ)u2)− (T(t)

2,i − T(t)
5,i )

µ2

2
(C(θ)u2)

+ (T(t)
3,i + T(t)

6,i )(C(θ)u3)
>(X i − XC)(C(θ)u3)− (T(t)

3,i − T(t)
6,i )

µ3

2
(C(θ)u3)) (9)

Here, the product of (C(θ)uj)
>︸ ︷︷ ︸

1×3

and (Xi − XC)︸ ︷︷ ︸
3×1

is a scalar. Therefore, it can be multiplied to

either side of a matrix. Thus, the expression is modified as follows:

((C(θ)uj)
>(Xi − XC))(C(θ)uj) = (C(θ)uj)((C(θ)uj)

>(Xi − XC))

= (C(θ) uj)(u>j︸ ︷︷ ︸
3×3

matrix

1 Only at (j, j)
0 Otherwise

C(θ)>)(Xi − XC) (10)

Consequently, substituting Equation (10) into Equation (9) yields
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∂Q(K|K(t))

∂XC
=

1
σ2 ΣN

i

(
C(θ)


(T(t)

1,i + T(t)
4,i ) 0 0

0 (T(t)
2,i + T(t)

5,i ) 0

0 0 (T(t)
3,i + T(t)

6,i )

C(θ)>(X i − XC)−
C(θ)

2


(T(t)

1,i − T(t)
4,i )µ1

(T(t)
2,i − T(t)

5,i )µ2

(T(t)
3,i − T(t)

6,i )µ3


)

= 0 (11)

Thus, we obtain X(t+1)
C by passing the term related to XC to the right-hand side.

X(t+1)
C = C(θ)


1

ΣN
i (T (t)

1,i +T (t)
4,i )

0 0

0 1
ΣN

i (T (t)
2,i +T (t)

5,i )
0

0 0 1
ΣN

i (T (t)
3,i +T (t)

6,i )

×
ΣN

i


(T(t)

1,i + T(t)
4,i ) 0 0

0 (T(t)
2,i + T(t)

5,i ) 0

0 0 (T(t)
3,i + T(t)

6,i )

C(θ)>X i −


µ1
2 ΣN

i (T(t)
1,i − T(t)

4,i )
µ2
2 ΣN

i (T(t)
2,i − T(t)

5,i )
µ3
2 ΣN

i (T(t)
3,i − T(t)

6,i )


 (12)

Finally, the same procedure is repeated for the orientation parameter. The rotation
matrix of the Euler angle is a non-linear equation. Thus, the result of the linearized rotation
matrix in Equation (A4), which is derived in Appendix A, is applied to Q(K|K(t)).

∂Q(K|K(t))

∂δφ
≈

∂ΣN
i Σ6

j T(t)
j,i (−

((1+δφ×)C(θ(t))uj)
>(Xi−XC)±

µj
2 )2

2σ2 )

∂δφ

= − 1
σ2 ΣN

i Σ6
j T(t)

j,i (u
>
j C(θ(t))>(X i − XC) + u>j C(θ(t))>(X i − XC)

×δφ±
µj

2
)(−(X i − XC)

×)C(θ(t))uj (13)

Here, T(t)
j,i (u

>
j C(θ(t))>(X i − XC) + u>j C(θ(t))>(X i − XC)

×δφ± µj
2 ) has a 1 × 1 dimension,

i.e., it is a scalar and can be multiplied to either side of a matrix. However, ∆X×i must be
multiplied to the right-hand side of ∆Xi to match the dimensions and apply the distributive
law. Therefore, Equation (13) can be written as follows:

∂Q(K|K(t))

∂δφ
=

1
σ2 ΣN

i

(
(X i − XC)

×C(θ(t))


(T(t)

1,i + T(t)
4,i ) 0 0

0 (T(t)
2,i + T(t)

5,i ) 0

0 0 (T(t)
3,i + T(t)

6,i )

C(θ(t))>(X i − XC)

+ (X i − XC)
×C(θ(t))


(T(t)

1,i + T(t)
4,i ) 0 0

0 (T(t)
2,i + T(t)

5,i ) 0

0 0 (T(t)
3,i + T(t)

6,i )

C(θ(t))>(X i − XC)
×δφ

− (X i − XC)
×C(θ(t))


µ1
2 (T(t)

1,i − T(t)
4,i )

µ2
2 (T(t)

2,i − T(t)
5,i )

µ3
2 (T(t)

3,i − T(t)
6,i )


)

= 0 (14)

By arranging Equation (14) in the same manner as Equation (11), δφ is obtained as follows:
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δφ =

(
ΣN

i

(
(X i − XC)

×C(θ(t))


(T(t)

1,i + T(t)
4,i ) 0 0

0 (T(t)
2,i + T(t)

5,i ) 0

0 0 (T(t)
3,i + T(t)

6,i )


︸ ︷︷ ︸

Di

((X i − XC)
×C(θ(t)))>

))−1

× ΣN
i

(
(X i − XC)

×C(θ(t))


(T(t)

1,i + T(t)
4,i ) 0 0

0 (T(t)
2,i + T(t)

5,i ) 0

0 0 (T(t)
3,i + T(t)

6,i )

C(θ(t))>(X i − XC)

− (X i − XC)
×C(θ(t))


µ1
2 (T(t)

1,i − T(t)
4,i )

µ2
2 (T(t)

2,i − T(t)
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) (15)

Before multiplying the inverse of the coefficient of δφ on both sides, we must check
whether it is invertible. According to Van den Bos [26], a real symmetric matrix is positive
definite if and only if its eigenvalues are positive. Di is a diagonal real matrix with elements
that represent membership probabilities. Therefore, Di is positive definite. Furthermore,
C(θ(t))DiC(θ(t))> is positive definite because the rotation matrix is nonsingular. However,
a skew-symmetric matrix is singular; therefore, the coefficient of δφ is the summation of
many positive semi-definite matrices. Despite the limitation of positive semi-definition,
the number of points is sufficiently large to make the coefficient positive definite, which is
invertible. Eventually, we obtain δφ and update the rotation matrix from Equation (A4),
which is convertible to the Euler angle.

2.4.2. Backtracking Line Search

Although we updated the parameters with analytic derivatives, there is a possibility of
oscillation during iterations because we computed the step size using the Newton method,
in which the derivative becomes zero. Therefore, we implemented a backtracking line
search method.

Backtracking line search is a strategy for parameter updating. It first moves the
parameters to the maximum step size and subsequently moves them again by reducing
the step size at a certain ratio if the updated value is not sufficiently enhanced. The
implemented backtracking line search procedure is shown in Figure 4. First, the parameters
are updated with the maximum step size, as colored in red. In this study, the derived result
presented in Section 2.4.1 is the maximum number of steps. Subsequently, the method
compares the updated soft constraint values with the previous ones. If the updated soft
constraint values are lower than the previous ones, the step size is reduced by half, as shown
in blue. This procedure is repeated until the updated values exceed the previous values.

(a) (b) (c)

Figure 4. Backtracking line search implementation. (a) The first step size of parameter update is
colored in red. When the soft constraint values of the updated parameters are smaller than previous
ones, (b) step size is reduced by half. Modified step size is colored in blue. When the soft constraint
values of the updated parameters are greater than previous ones, (c), parameters are updated.
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2.5. Implementation Details

In this section, the implementation details of the proposed cuboid modeling method
are described in Algorithm 1.

Algorithm 1: Cuboid Modeling

Bounding Box← X{ segmented pcd } ;
K← Bounding Box ;
Z{ latent variable } ;
Q← EZ|X,K[log L(K; X, Z)] ;
update← true;
while count ≤ maxIter do

if update then

Z+ ← ∂Q
∂Z = 0;

K+ ← ∂Q
∂K = 0;

end
Q+ ← EZ+ |X,K+ [log L(K+; X, Z+)] ;
if |Q+ −Q| ≤ Threshold or |K+ − K| ≤ Threshold then

Break ;
else

if Q+ ≤ Q then

K+ = K+
+K
2 ;

Z+ = Z+
+Z
2 ;

update← false ;
else

Z ← Z+;
K ← K+;
Q← Q+ ;
update← true ;

end
end

end

The inputs of Algorithm 1 are segmented point clouds with only location information
comprising a single cuboid. Subsequently, the initial guesses of the cuboid parameters are
acquired from the results of the minimum bounding box [27] of the input point clouds.
Moreover, we set the initial values of the latent variables equal. In short, latent variables
are set to 1

6 because the total probability is equally divided into six. Finally, we calculate
the expectation of the GMM based on the initial parameters.

After the initialization step, we iteratively update the parameters from the calculations
presented in Section 2.4.1 and compare the updated expectation with the previous expecta-
tion. Based on the comparison results, we choose to update the parameters or perform a
backtracking line search method to adjust the step size, as described in Section 2.4.2. This
optimization process is repeated until the parameters or expectation converge, or the count
reaches the maximum iteration number. Specifically, we consider convergence when two
norm of the step size or the change in expectation is less than the current two norm of
parameters or expectation multiplied by e−8. In addition, the maximum iteration number
is set to 100.

We developed Algorithm 1 in MATLAB environment. The operation of our code
is confirmed in MATLAB 2020b and 2021b on Windows 7 and 10. In addition, many
toolboxes were used in this code, such as ‘Computer Vision Toolbox 9.3’, ‘LiDAR Toolbox
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1.0’, ‘Navigation Toolbox 1.2’, ‘Robotics system Toolbox 3.2’, ‘ROS Toolbox 1.2’, and ‘UAV
Toolbox 1.0’.

As Algorithm 1 is implemented with optimization process, we conducted algorithm
complexity analysis, WHICH is one of the important aspect of optimization. The com-
putational complexity of the proposed algorithm is O(Np × log Np). Here, Np stands for
the number of points. Specifically, the computing expectation and updating the parame-
ters have O(Np) as there is only one nested for loop. However, the minimum bounding
box [27] code used in initial guess performs a convex hull extraction that has computational
complexity of O(Np × log Np).

3. Results

We set up experiments to validate the robustness of the proposed method compared
with that of the traditional method, which is based on accumulated hard constraints. We
used 500 synthetic data points of various sizes and shapes, and 354 real data points for
verification. Synthetic data were designed to evaluate the robustness of the proposed
method by computing the error between the results and ground truth. The real data
acquired by the SLAM algorithm are considered to have higher noise and occlusion than
the synthetic data. Therefore, we tested whether the proposed method is sufficiently robust
to model a cuboid using real data. Because the real data do not contain the ground truth,
we used the distance between a point cloud and the model as a metric to evaluate the
results. The details of this metric are described in Section 3.3.

3.1. Comparison Implementation

We used the method of Wei et al. [10] for comparison because of its following features:
First, the Hough transform is implemented for plane detection. The Hough transform is an
extensively used approach because it addresses with missing data and is robust to noise.
Secondly, the accuracy of the detected plane was increased by fitting the MBR. Finally, the
plane fitting error and supporting point clouds of the detected planes are considered to
improve the orientation and size parameters of the cuboid model. Because these features
increase the robustness of the traditional method, the robustness of the proposed method
can be verified by comparing it with the method proposed by Wei et al. [10]. Here, the
method of Wei et al. [10] was implemented using the source code provided by the author,
and the parameters of the code were unchanged from those in the given source.

Wei et al. [10] modeled multiple cuboids from point clouds that may consist of several
cuboids. However, in some cases, they unintentionally modeled multiple cuboids from
the point clouds of a single cuboid during the experiments (Figure 5). Modeling multiple
cuboids from point clouds consisting of one cuboid can be considered incorrect. However,
to exclude the effect of prior information on the number of cuboids, the cuboid with the
best performance is selected and compared with multiple cuboids. The specifics of the
cuboid selection are described in Sections 3.2 and 3.3.

3.2. Synthetic Data

For synthetic data generation, we considered the characteristics of real data such as
noise and occlusion. Specifically, we generated all synthetic data to have noise that follows
the Gaussian assumption introduced in Section 2.1. In addition, occlusion was introduced
by excluding the point clouds of the occluded planes from the point clouds of the cuboid.
In addition to noise and occlusion, the density of point clouds was considered because it
varies with the SLAM algorithm and the sensor used.

Synthetic data were hierarchically generated, as shown in Figure 6a. First, 500 cuboid
data are divided equally into five cases depending on the number of generated faces,
because there are no point clouds on the occluded faces. Second, 100 cuboid data of each
case are also divided into five types depending on the characteristics related to noise,
such as the standard deviation and noise ratio. Here, the standard deviation and noise
ratio were arbitrarily taken within ranges of 0.02–0.04 m and 50–100%, respectively. The
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standard deviation is a parameter of the Gaussian model, and the noise ratio represents the
proportion of point clouds following the Gaussian model among all the point clouds of the
cuboid. Each cuboid has unique parameters and point density.

(a) (b) (c)

(d) (e) (f)

Figure 5. Types of multiple cuboid modeling from point clouds of a single cuboid by Wei et al. [10].
(a–c) Arbitrarily chosen synthetic data with which multiple cuboids are generated and
(d–f) corresponding modeling results. (a,d) Case in which multiple cuboids of slightly different
sizes are overlapped. (b,e) Case in which one plane is modeled as a cuboid and the remainder point
clouds are modeled as another cuboid. (c,f) Case in which each plane is modeled as a cuboid.

To thoroughly evaluate the proposed algorithm, cuboids with 2–6 faces, i.e., the
minimum to the maximum number of faces, were created to model a cuboid, even though
the measured point clouds generally have a maximum of five faces. Moreover, we included
two spatial combinations of reconstructed faces when generating cuboids with 2–4 faces, as
shown in Figure 6b.

When Wei et al. [10] generated multiple cuboids, the cost of each cuboid was calculated
using the following equation, and the cuboid with the lowest cost was selected.

Cost = ∆Angle× L2-norm([∆Size; ∆Center]) (16)

Here, ∆Angle(1× 1), ∆Size(3× 1), and ∆Center(1× 1) represent the orientation, size, and
center error, respectively. Specifically, size error is the absolute difference between the
corresponding edges of ground truth. The center error is a two-norm distance between the
modeling result and the ground truth. The orientation error is computed as the minimum
angle required to transform the obtained orientation to the ground truth orientation.

Robustness is evaluated by the number of correctly modeled cuboids and narrowness
of the error range. We counted correctly modeled cuboids by defining an incorrect cuboid
model consisting of false and no solutions. The case in which the cuboid parameter
estimation fails is determined as no solution, and that in which the estimated parameters
have large differences from the ground truth is considered as a false solution. A cuboid
model is considered a false solution if any error in the cuboid parameters of size, angle,
and center exceeds the threshold. Among the cuboid parameters, we evaluated the size
results as the volume, which is the product of each size. This is because it is difficult to
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achieve consistency in the individual size error results because the error in each size varies
depending on the occlusion of the plane of the corresponding axis.

(a) (b)

Figure 6. Synthetic data generation (a) Hierarchy of synthetic data. Total 500 synthetic cuboid point
clouds are hierarchically generated as above. This figure illustrates the configuration of synthetic
cuboid data containing two faces. Synthetic cuboid data with the same number of faces are composed
of five types of cuboids. Each type of cuboid consists of 20 cuboids with same point deviations
and point noise ratio that is randomly selected. Cuboids with different number of faces have same
configurations. (b) Two types of cuboid models with same number of occluded faces. There are
two combinations of cuboids with (top row) two faces, (middle row) three faces, and (bottom row)
four faces, depending on their spatial relations. The dark face represents the surface where point
clouds are reconstructed.

Table 1 reports the cuboid modeling results based on the number of false and no
solutions. The threshold was calculated based on the interquartile range of the entire
cuboid error generated using the proposed method and that of Wei et al. [10] from the
synthetic data. The volume, center, and angle error thresholds were set at 1.5, 1.5, and
5 interquartile ranges, respectively. The units and calculated threshold values are listed
in the second row of the table. According to Table 1, in most cases, the proposed method
is more robust than the method of Wei et al. [10]. First, there is no case in which the
proposed method fails to obtain the cuboid parameters, whereas the method proposed
by Wei et al. [10] cannot estimate the cuboid parameters for 50 data in two faces case, which
reflects severe occlusion. Second, both the methods accurately estimate the angle of the
cuboid; however, the proposed method outperformed the method of Wei et al. [10] in
estimating the volume and center for all faces.

The average error between the result parameters and the ground truth, and the number
of false and no solutions are listed in Table 2. The average error was calculated using the
results of the correctly modeled cuboid. The center and orientation errors were calculated
in a manner similar to the selection of the cuboid from multiple results. The volume error
was calculated as a percentage, which is the volume of the results divided by the volume of
the ground truth. In addition, the units of error are represented in parentheses. The values
in bold font indicate better performance, and the hyphen indicates that there is no correctly
modeled cuboid.
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Table 1. Number of false and no solutions for synthetic data.

No Solution (#) False Solution (#) Total (#)

Threshold - - Angle (◦) 1.6959 Volume (%) 0.2707 Center (m) 0.0545 - -
Method Wei et al. Proposed Wei et al. Proposed Wei et al. Proposed Wei et al. Proposed Wei et al. Proposed

2 faces 50 0 1 1 49 26 49 7 99 26
3 faces 1 0 1 0 26 14 30 0 36 14
4 faces 0 0 0 0 4 1 8 0 12 1
5 faces 1 0 1 0 5 0 9 0 14 0
6 faces 0 0 0 0 4 0 4 0 5 0

Table 2. Performance comparison depending on noise and occlusion condition.

2 faces Type 1 Type 2 Type 3 Type 4 Type 5
Noise ratio (%) 57.7682 69.1235 52.0047 95.2211 77.8355

Standard deviation (m) 0.0345 0.0300 0.0254 0.0234 0.0226
Methods Wei et al. Proposed Wei et al. Proposed Wei et al. Proposed Wei et al. Proposed Wei et al. Proposed

Angle (◦) - 0.1510 0.3117 0.1800 - 0.1207 - 0.1083 - 0.2585
Volume (%) - 12.3106 8.1916 11.3878 - 10.3600 - 8.0948 - 7.0110
Center (m) - 0.0239 0.0159 0.0177 - 0.0133 - 0.0160 - 0.0121

No solution (#) 8 0 10 0 11 0 9 0 12 0
False solution (#) 12 6 9 9 9 3 11 4 8 4

3 faces Type 1 Type 2 Type 3 Type 4 Type 5
Noise ratio (%) 74.4527 78.2890 68.1002 75.9664 52.8059

Standard deviation (m) 0.0270 0.0395 0.0301 0.0296 0.0258
Methods Wei et al. Proposed Wei et al. Proposed Wei et al. Proposed Wei et al. Proposed Wei et al. Proposed

Angle (◦) 0.4237 0.1658 0.4316 0.1587 0.3297 0.1856 0.2714 0.0675 0.2842 0.1065
Volume (%) 12.3168 12.1011 14.8920 10.9064 6.9875 8.9226 7.9783 8.6473 10.2818 8.5232
Center (m) 0.0215 0.0140 0.0318 0.0248 0.0363 0.0165 0.0333 0.0191 0.0189 0.0111

No solution (#) 1 0 0 0 0 0 0 0 0 0
False solution (#) 2 6 16 1 7 2 8 3 2 2

4 faces Type 1 Type 2 Type 3 Type 4 Type 5
Noise ratio (%) 86.6996 79.0972 88.4985 57.3732 68.4000

Standard deviation (m) 0.0212 0.0247 0.0233 0.0223 0.0390
Methods Wei et al. Proposed Wei et al. Proposed Wei et al. Proposed Wei et al. Proposed Wei et al. Proposed

Angle (◦) 0.2514 0.0691 0.2942 0.0754 0.2734 0.0435 0.1377 0.0479 0.4077 0.1068
Volume (%) 5.3674 5.0826 6.9858 6.1936 6.1756 5.2580 5.5300 4.9170 9.4658 6.3098
Center (m) 0.0221 0.0122 0.0274 0.0115 0.0223 0.0149 0.0184 0.0120 0.0322 0.0169

No solution (#) 0 0 0 0 0 0 0 0 0 0
False solution (#) 0 0 1 1 0 0 0 0 11 0

5 faces Type 1 Type 2 Type 3 Type 4 Type 5
Noise ratio (%) 71.9658 54.1036 88.2604 90.6294 50.4478

Standard deviation (m) 0.0282 0.0260 0.0329 0.0207 0.0394
Methods Wei et al. Proposed Wei et al. Proposed Wei et al. Proposed Wei et al. Proposed Wei et al. Proposed

Angle (◦) 0.1609 0.1124 0.1291 0.0465 0.1687 0.0453 0.2014 0.0458 0.2424 0.0393
Volume (%) 5.9736 3.4493 4.1928 2.6833 6.8393 1.8585 4.3038 1.7682 5.4678 2.5914
Center (m) 0.0198 0.0085 0.0199 0.0068 0.0286 0.0130 0.0173 0.0086 0.0339 0.0123

No solution (#) 1 0 0 0 0 0 0 0 0 0
False solution (#) 1 0 0 0 9 0 0 0 3 0

6 faces Type 1 Type 2 Type 3 Type 4 Type 5
Noise ratio (%) 95.2056 90.6593 57.5372 97.8511 80.7944

Standard deviation (m) 0.0207 0.0383 0.0390 0.0216 0.0316
Methods Wei et al. Proposed Wei et al. Proposed Wei et al. Proposed Wei et al. Proposed Wei et al. Proposed

Angle (◦) 0.1819 0.0576 0.2741 0.1072 0.1575 0.0844 0.2271 0.0530 0.1770 0.0687
Volume (%) 2.8148 1.4583 3.9445 1.8364 2.4620 1.3033 2.9298 1.4658 3.4836 1.2712
Center (m) 0.0087 0.0003 0.0089 0.0006 0.0075 0.0004 0.0054 0.0002 0.0078 0.0003

No solution (#) 0 0 0 0 0 0 0 0 0 0
False solution (#) 0 0 2 0 1 0 1 0 1 0

The proposed method outperformed the method of Wei et al. [10] under most condi-
tions, as shown in Table 2. This suggests that the proposed method can model a cuboid
under various noise and occlusion conditions with a lower average error. In some cases, the
method of Wei et al. [10] shows better performance than the proposed method, for example,
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the volume and center error for type 2 in two faces and volume error for type 3 in three
faces. However, the proposed method estimates 10 and 5 more cuboids correctly for
type 2 in two faces and type 3 in three faces, respectively, compared to the method of
Wei et al. [10]. Therefore, it is necessary to match the data used to calculate the average
error to accurately compare the error range.

To accurately evaluate the robustness from the perspective of the error range, the
average error and standard deviation of the data obtained using both methods are listed
in Table 3. In the case of two faces, the data are insufficient to calculate the average and
standard deviation because Wei et al. [10] succeeded with only one cuboid. Therefore, the
results for the cases of 3–6 faces are provided. The number of cuboids correctly modeled by
each method is reported in the used data row.

Table 3. Error mean and standard deviation with same data.

3 Faces 4 Faces 5 Faces 6 Faces
Methods Wei et al. Proposed Wei et al. Proposed Wei et al. Proposed Wei et al. Proposed

Angle Mean 0.2965 0.1177 0.2564 0.0612 0.1800 0.0403 0.2025 0.0653
(◦) Standard deviation 0.1766 0.1825 0.1989 0.0662 0.1385 0.0450 0.1634 0.0782

Volume Mean 0.0920 0.0974 0.0625 0.0553 0.0518 0.0228 0.0312 0.0127
(%) Standard deviation 0.0565 0.0504 0.0502 0.0348 0.0499 0.0183 0.0526 0.0111

Center Mean 0.0283 0.0150 0.0234 0.0131 0.0231 0.0099 0.0077 0.0003
(m) Standard deviation 0.0120 0.0061 0.0112 0.0057 0.0109 0.0056 0.0071 0.0002

Used data (#) 54 87 86 95

Table 3 lists the mean and standard deviation values of the angle, volume, and center
errors for both methods. Based on Table 3, the proposed method achieves smaller mean
error and standard deviation for all parameters of the cuboid in most cases. Specifically, the
proposed method is more robust than the previously studied method because it achieves a
lower and more consistent error for various cases. These results are shown as boxplots in
Figure 7 for an easy comparison. Here, the proposed method whose results are colored in
green outperforms the previous method whose results are colored in red.
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Figure 7. Cont.
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Figure 7. Boxplot of results reported in Table 3. Symbols representing method of Wei et al. [10] and
proposed method are colored in red and green, respectively. Mean errors of two methods are denoted
as blue lines with circle markers, respectively, to visualize results reported in Table 3.

3.3. Real Data

We verified that the proposed method is robust under various noise and occlusion
conditions, as discussed in Section 3.2 by comparing its modeling results with the ground
truth. Although synthetic data are designed to cover various cases of point clouds, condi-
tions for real data are more difficult. Point clouds measured by the SLAM algorithm are
more dynamic than synthetic data. Therefore, real data offers more challenging conditions
for the proposed method.

We designed an environment and sensor system for data acquisition. The method
of Lee et al. [6] was implemented for the SLAM algorithm to scan the environment, and
the sensor system shown in Figure 8a was used to measure the surroundings. We set up
a space in which 78 boxes are arbitrarily located, as shown in Figure 8b. The space was
scanned five times, and all boxes were randomly rearranged for each scan.

Robustness was evaluated by the number of correctly modeled cuboids and the error
range in the synthetic data. However, because there is no ground truth for real data, we
used metrics such as P, R, and F, which were used by Wei et al. [10], to evaluate the results
instead of the error range. Here, P denotes the number of uniformly sampled point clouds
of the cuboid model within a certain distance from the measured point clouds. R represents
the number of measured point clouds within a certain distance from the uniformly sampled
point clouds of the cuboid model. F represents the harmonic mean of P and R. However,
these metrics may be unsuitable for comparing the performance of the cuboid model
because the point clouds measured in this study were highly occluded. A practical example
of this phenomenon is shown in Figure 9.
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(a) (b)

Figure 8. Real data acquisition setting. (a) Sensor system configuration. Sensor system used to
acquire point clouds is consisting of two Velodyne VLP-16 channels and Microstrain 3DX-GX3-45
model. (b) Environment in which SLAM is executed to obtain real point cloud data of cuboid.

Figure 9. P, R, and F scores of the cuboid model obtained by Wei et al. [10] and proposed method.
Although the results of Wei et al. [10], colored in red cuboid, do not cover most point clouds, higher
scores are obtained in P and F metrics, and the proposed method yields higher score only in the
R metric.

Therefore, we developed a metric based on the concept of R score, and the distance
between the measured point clouds and uniformly sampled point clouds of the cuboid
model. The concept of the R score focuses on the ratio of the number of points located at a
certain distance to the total number of points. By contrast, our metric focuses on the distance
that makes a certain ratio of points inliers. Specifically, we uniformly sampled points from
the cuboid model using an open-source software [28]. Subsequently, we determined the
closest distance from the measured point to the sampled point for each measured point.
Then, the closest distances were sorted in ascending order. According to this order, k% of
points are located near the surface of cuboid modeling results under the k-th percentile
distance. Therefore, we obtained the 75th, 80th, and 85th percentile distances to obtain
the threshold distances in that 75%, 80%, and 85% of points are located near the surface of
the cuboid.

Moreover, we also tested the performance of the proposed method without the Back-
tracking Line Search on real data to validate the benefits of this step. We noted the perfor-
mance of the proposed method without the Backtracking Line Search as ‘w/o BTLS’ on
Tables 4 and 5 and Figure 10 to see the enhancement of the robustness.

The robustness was compared based on the number of correctly modeled cuboids
and the mean and standard deviation of the results, which were in a manner similar to the
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synthetic data. The results of the false and no solutions are listed in Table 4. The method of
Wei et al. [10] fails to model the correct cuboids for 218 of the total 354 real data, which is
approximately 61% of the total cuboid. This percentage is in the middle of the failure rates
of the two and three-face cases of the synthetic data, which are 99% and 36%, respectively.
Therefore, the condition of real data is difficult. Moreover, this interpretation is supported
by the fact that the proposed method yielded two no-solution results for the first time
in the experiments. The proposed method without the backtracking line search failed to
model the correct cuboids for 47 of the 354 real data. On the other hand, The proposed
method with the backtracking line search failed to model the correct cuboids for only 6 of
the 354 real data. These real data results show not only a significant improvement over
those of the previous method but also the benefit of the backtracking line search. Therefore,
it can be concluded that the proposed method is the most robust among other methods
under high noise and occlusion conditions.

Table 4. Number of false and no solutions for real data.

No Solution (#) False Solution (#) Total (#)
Threshold - 75th (m) 0.0454 80th (m) 0.0509 85th (m) 0.0578 -

Wei et al. 154 46 50 64 218
w/o BTLS 29 18 18 15 47
Proposed 2 4 4 2 6

Table 5. Performance comparison based on distance metric.

Results with Succeeded Data by Each Method

percentiles 75th 80th 85th Used data
mean (m) std (m) mean (m) std (m) mean (m) std (m) (#)

Wei et al. 0.0198 0.0076 0.0224 0.0084 0.0259 0.0102 136
w/o BTLS 0.0211 0.0073 0.0231 0.0079 0.0256 0.0085 307
Proposed 0.0205 0.0071 0.0226 0.0076 0.0250 0.0082 348

Results with Succeeded Data by Both Methods

percentiles 75th 80th 85th Used data
mean (m) std (m) mean (m) std (m) mean (m) std (m) (#)

Wei et al. 0.0201 0.0078 0.0227 0.0086 0.0261 0.0104
121w/o BTLS 0.0163 0.0043 0.0181 0.0048 0.0204 0.0056

Proposed 0.0160 0.0041 0.0178 0.0045 0.0200 0.0051

75th 80th 85th
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Figure 10. Boxplots of results with succeeded data using triple methods summarized in Table 5.
The method of Wei et al. [10], the proposed method without Backtracking Line Search step, and the
proposed method are colored in red, blue, and green, respectively. Mean distances of triple methods
are denoted as blue lines and circle markers, respectively, to visualize the results of Table 5.
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A robustness evaluation based on the distance metric is summarized in Table 5. This
table shows that 75, 80, and 85% of the points are distributed at distances within the
corresponding values in the table from the surface of the cuboid model. Therefore, we
consider that a result with a lower value indicates better performance because the points
are located closer to the surface of the cuboid model. Consequently, based on Table 5, the
proposed method outperforms other methods in most cases. Specifically, the points are
closer to the model surface of the proposed method on average. Moreover, the proposed
method achieved consistent results with a lower standard deviation than previous methods.
These results are also visualized as boxplots in Figure 10 for easy comparison. Here, the
proposed method whose results are colored in green shows an improved performance
compared to the previous method whose results are colored in red.

4. Discussion

We verified the robustness of the proposed method through experiments designed
to include various tough conditions using synthetic and real data. This was realized
from the perspectives of the number of correctly modeled cuboids and the error range.
The error range was represented by the mean and standard deviation of the error metric.
The difference between the results and the ground truth was used as the error metric for
synthetic data, and the distance between the surface of the cuboid model and the point
clouds was used as the error metric for real data. The experimental results validated that
the proposed method is more robust than a previous method from both perspectives.

In spite of improving the robustness of the proposed method, the limitations of the
proposed method are also clear due to the design of the proposed method. Specifically, the
proposed method is designed to model a cuboid one by one. Therefore, an appropriate
point cloud segment process might be needed to utilize the proposed method as a module
of another framework.

5. Conclusions

In this study, we established a robust cuboid modeling method for 3D point clouds
with high noise and occlusion. We introduced the GMM concept to directly formulate
soft constraints from the point clouds. Specifically, a soft constraint was formulated as
an expectation of the GMM. Subsequently, we estimated cuboid parameters using the
expectation-maximization scheme, which maximizes the soft constraints. In addition, for
accuracy and efficiency, we derived analytic partial derivatives of the soft constraints to
calculate the step size during optimization. Thereafter, the parameters of the cuboid model
were updated using the backtracking line search method. Lastly, we verified the robustness
of the proposed method through experiments designed to include various tough conditions
using synthetic and real data.

On the other hand, the limitations of the proposed method still exist as discussed in
Section 4. Therefore, to overcome the limitations, there are two future works to consider
to enhance the applicability of the proposed method. The first future work is extending
the single cuboid modeling to multiple cuboid modeling. If the extension of the proposed
method to multiple cuboids is possible, then the proposed method will be more useful in
the field of Geometric primitive-based modeling.

The second future work is finding alternative noise model, such as symmetric alpha
stable distribution that is the extension of GMM. If another noise model is validated to
be suitable for the proposed model, then the proposed method will be utilized with the
appropriate model depending on the SLAM algorithm or the sensor system.
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Appendix A. Linearized Rotation Matrix

In this Appendix, we derive the linearized rotation matrix introduced by Barfoot et al. [29]
according to robotics field expressions. This is because the quaternion operations (left-hand
and right-hand compounds) used by Barfoot et al. [29] are dissimilar to those in the robotics
field, which this study follows. The linearized rotation matrix substitutes the rotation
matrix in Equation (13) to update the orientation parameters of the cuboid, as discussed in
Section 2.4.1.

The notation and operations of the quaternion are rewritten as follows.

• Quaternion: q =

[
ε
η

]
=

[
sin ϕ

2 ×~a
cos ϕ

2

]
• Inverse of q: q−1 =

[
−ε
η

]
• LH Compound: q+ =

[
η1 + ε× ε

−ε> η

]
• RH Compound: q⊕ =

[
η1− ε×ε

−ε> η

]
• To rotate v: q+v+q−1 = q+q−1⊕v =

[
C 0
0> 1

]
v

The rotation matrix, C, and its derivative are restated as follows by replacing the
corresponding notation and operations of Barfoot et al. [29].

The rotation matrix that rotates ϕ about the reference axis,~a, is as follows.

C(~a, ϕ) = (η1 + ε×)× (η1− (−ε)×) + ε(−(−ε)T)

= cos
ϕ

2

2
1 + 2 cos

ϕ

2
sin

ϕ

2
~a× + sin

ϕ

2

2
( ~a×~a×︸ ︷︷ ︸
(−1+~a~aT

)

+~a~aT)

= cos ϕ1 + (1− cos ϕ)~a~a> + sin ϕ~a× (A1)

Differentiating Equation (A1) with respect to ϕ yields the following equation.

∂C(~a, ϕ)

∂ϕ
= − sin ϕ + sin ϕ~a~aT + cos ϕ~a×

= sin ϕ(−1 +~a~aT︸ ︷︷ ︸
~a×~a×

) + cos ϕ~a×

= sin ϕ~a×~a× + (1− cos ϕ)~a×~a︸︷︷︸
0

~aT + cos ϕ~a×

= ~a× (cos ϕ1 + (1− cos ϕ)~a~a> + sin ϕ~a×)︸ ︷︷ ︸
C(~a,ϕ)

(A2)

Therefore, the derivatives of the rotation matrix with respect to the Euler angle of the ZYX
sequence according to Equation (A2) become
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∂C(θ)v
∂θZ

= 1×Z C(θZ)C(θY)C(θX)v

= −(C(θ)v)×1Z

∂C(θ)v
∂θY

= C(θZ)1×Y C(θY)C(θX)v

= −(C(θ)v)×C(θZ)1Y

∂C(θ)v
∂θX

= C(θZ)C(θY)1×X C(θX)v

= −(C(θ)v)×C(θZ)C(θY)1X

∂C(θ)v
∂θ

=

[
∂C(θ)v

∂θZ

∂C(θ)v
∂θY

∂C(θ)v
∂θX

]
= −(C(θ)v)×

[
C(θZ)C(θY)1X C(θZ)1Y 1Z

]︸ ︷︷ ︸
S(θ)

(A3)

Therefore, the first-order Tayler-series expansion of the rotation matrix is as follows:

C(θ̄+ δθ)v ≈ C(θ̄)v +
∂C(θ)v

∂θ

∣∣∣∣
θ̄

δθ

= (1 + (S(θ̄)δθ)×)︸ ︷︷ ︸
δφ

(C(θ̄)v)

= (1 + δφ×)C(θ̄) (A4)

Before applying the derived results, we verify Equation (A4), similar to the method
proposed by Barfoot et al. [29].

C(θ̄+ δθ)C(θ̄+ δθ)> ≈ (1 + δφ×)C(θ̄)((1 + δφ×)C(θ̄))>

= 1− δφ×δφ× (A5)

A rotation matrix multiplied by its own transpose produces a 3 × 3 identity matrix and
second-order term, which is negated by linearization. This proves that the rotation matrix
derived in the robot coordinate system is reasonably linearized. Consequently, we substitute
Equation (A4) into Equation (13) to optimize the orientation parameters of a cuboid.
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