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Abstract: Accurately identifying the phenology of summer maize is crucial for both cultivar breeding
and fertilizer controlling in precision agriculture. In this study, daily RGB images covering the
entire growth of summer maize were collected using phenocams at sites in Shangqiu (2018, 2019 and
2020) and Nanpi (2020) in China. Four phenological dates, including six leaves, booting, heading
and maturity of summer maize, were pre-defined and extracted from the phenocam-based images.
The spectral indices, textural indices and integrated spectral and textural indices were calculated
using the improved adaptive feature-weighting method. The double logistic function, harmonic
analysis of time series, Savitzky–Golay and spline interpolation were applied to filter these indices
and pre-defined phenology was identified and compared with the ground observations. The results
show that the DLF achieved the highest accuracy, with the coefficient of determination (R2) and the
root-mean-square error (RMSE) being 0.86 and 9.32 days, respectively. The new index performed
better than the single usage of spectral and textural indices, of which the R2 and RMSE were 0.92 and
9.38 days, respectively. The phenological extraction using the new index and double logistic function
based on the PhenoCam data was effective and convenient, obtaining high accuracy. Therefore, it
is recommended the adoption of the new index by integrating the spectral and textural indices for
extracting maize phenology using PhenoCam data.

Keywords: spectral and textural indices; maize phenological extraction; filtering methods

1. Introduction

Human activities, climate change and extreme weather events have induced irregular
precipitation, elevated air temperature and aroused a potential global food crisis [1–5].
Global warming has advanced the spring vegetation phenology, leading to more uniformity
across different tree species and variations in geographic elevations [6–11].

Both ground observations and model simulations have indicated that major crops
such as maize and wheat have been negatively affected by climate change in the past
decades [12,13]. Summer maize is one of the dominate crops worldwide and its stable
production is crucial for guaranteeing regional and global food security [14–17]. There
is a need to increase maize production by timely monitoring its growth condition and
employing adaptive management to reduce the negative impacts of climate change [18–20].
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Generally, the phenology of summer maize can be divided into the vegetative growth stage
(from sowing to tasseling) and the reproductive growth stage (from tasseling to maturity).
Climate change- and management practice-induced variations in crop phenology have
changed the total length of the entire growing season (days from sowing to maturity),
altering the growing degree days (GDDs) [21–23]. Thus, phenology is believed to have
important impacts on maize production and it is also an important influencing indicator
that controls carbon allocation to organs during different growth stages [22,24]. Therefore,
timely and precise monitoring of maize phenology is crucial for reducing the negative
impacts of climate change, guaranteeing potential agricultural yields and reducing the food
crisis [14,25–27].

Field observation, crop models and remote sensing approaches are the three most ap-
plied methods for identifying the phenology of forests and crops [28,29]. Field observation
mainly consists of the manual recording of detailed phenological events, such as budburst,
flowering and leaf coloring, covering the entire growth stages of vegetation [9,30]. However,
field observation is time consuming and labor intensive and there is lack of recording of the
continuous phenological developments during the long-term growth cycle under a stan-
dard procedure [31]. Alternatively, a crop model such as CERES–maize can be conducted
to simulate the daily dynamic growth of crops with high accuracy, but most models relay
on highly resolved data, including daily precipitation, temperature, soil property, man-
agement practices and crop cultivars [32–36]. Besides, models can hardly handle extreme
events, as the in-built mechanisms have no consideration of those scenarios [37,38]. To date,
many previous studies have proved that time-saving and cost-effective remote sensing
techniques can be applied for phenological extraction with high accuracy [39–42]. Com-
bined with limited numbers of field observations, remote sensing can obtain high accuracy
of regressions and classifications [43–45]. Phenocams are digital cameras that can obtain
high temporal and spatial resolutions of images concerning ecosystem dynamics; then,
phenological events can be derived from these high-resolution datasets [46,47]. As a part of
a near-surface remote sensing approach, phenocams observed detailed information of the
growing period of vegetation on an hourly scale and massive data were generated [48]. To
date, many studies have reported phenological extractions using phenocams. Zhang et al.
(2018) retrieved six phenological events (green-up onset, mid-green-up phase, maturity
onset, senescence onset, mid-senescence phase and dormancy onset) of vegetation using
images from a phenocam network and the absolute difference in senescence onset was less
than a week when compared with the land surface phenology (LSP) product derived from a
moderate resolution imaging spectroradiometer (MODIS) [47]. Xie et al. (2018) obtained the
in situ phenological events of deciduous tree canopies at both individual and species levels
using a phenocam and compared them with the results derived from ground observations,
exploring the species-specific phenological responses to climatic variations [49]. Kloster-
man et al. (2014) extracted the phenophase transition dates at 13 temperate deciduous forest
sites throughout eastern North America using phenocams and the results showed that the
phenological dates derived from high-frequency phenocams had smaller uncertainties than
those derived from MODIS and Advanced Very-High-Resolution Radiometer (AVHRR)
sensors [50]. Richardson et al. (2007) investigated the potential ability of phenocams by
monitoring the trajectory of spring green-up in a deciduous northern hardwood forest and
found that the phenocam network could be deployed to record phenology at regional and
national scales [51]. Alberton et al. (2017) monitored leaf phenology using phenocams
in tropical vegetation and found that phenocams were potential tools for conservation
biology [52]. Liu et al. (2017) found that the normalized difference vegetation indices
(NDVIs) of Landsat, MODIS and VIIRS were strongly correlated with the NDVIs calculated
from phenocams and the phenological dates in the relatively homogeneous open grasslands
were consistent across different spatial resolutions [53]. These studies have contributed to
the application of phenocams for the extraction of vegetation (mainly forest) phenology;
however, crop phenological extraction has been little investigated. Therefore, there is a
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necessity to explore whether phenocams and the existing methods developed for extracting
forest phenology are still effective for crops.

Textural information is really helpful for improving the accuracy of image classification,
image segmentation, change detection, yield prediction and pattern cognition [26,54–57].
Lu et al. (2005) found that the combination of spectral and textural variables can improve
the accuracy of ground biomass estimation using Landsat TM imagery [58]. Yang et al.
(2021) assessed the potential ability of combining textural and spectral information for
improving the estimation accuracy of the leaf area index (LAI) throughout the entire
growing season of rice [59]. Peña-Barragán et al. (2011) incorporated spectral, textural and
hierarchical features after segmentation of imagery and object-based image analysis (OBIA)
techniques with decision tree (DT) algorithms to assess crop types and field status [60].
To date, the potential ability of textural information for phenological extraction has been
little investigated and there is no report combing spectral and textural information for the
identification of crop phenology using phenocams.

In this study, detailed information of summer maize during the entire growing season
was recorded using phenocams and its phenology was extracted and compared with ground
observations. Spectral information was extracted using different spectral indices and
textural information was derived from the gray-level co-occurrence matrix (GLCM). Then,
the time series of independent spectral information, textural information and combined
spectral and textural information using the improved adaptive feature-weighting method
(IAFWM) were separately filtered using the double logistic function (DLF), the harmonic
analysis of time series (HANTS), the Savitzky–Golay (SG) and the spline interpolation (SI).
Maize phenology was extracted based on the filtered indices and the results were compared
with ground observations. The objectives of this paper are to (1) assess the performance of
different filtering models for extracting maize phenology, (2) explore whether the added
textural information is effective for phenological extraction and (3) generate a new index
using the IAFWM by integrating spectral and textural indices and evaluate its effectiveness
for phenological extraction.

2. Material and Methods
2.1. Study Area

Phenocams images were collected concerning summer maize at two sites, Nanpi
(Latitude, 38.00◦N; Longitude, 116.40◦E; Elevation, 34 m) and Shangqiu (Latitude, 34.51◦N;
Longitude, 115.59◦E; Elevation, 52 m) (Figure 1). Both sites are located in the North China
Plain (NCP), which is the main agricultural production area of summer maize and winter
wheat in China [61,62]. The two sites are well-managed key field scientific observation sites
and farmland research stations; they were built for investigating the impacts of climate
change, fertilizers and irrigations for crops. Generally, summer maize is grown in late
June and harvested in early October and winter wheat is sowed in early November and
harvested in early June. Summer maize was the dominate type in the NCP and maize was
used for all the next pages. The annual average temperature and precipitation for Nanpi
and Shangqiu are 12 and 13.9 °C and 500 and 708 mm, respectively.

2.2. Phenocam and Image Collection

Phenocams were applied to collect RGB images concerning maize covering the entire
growing season. The phenocam was preset before the growing season to collect RGB
images in Nanpi (2020) and Shangqiu (from 2018 to 2020). For Shangqiu, the phenocam was
set in the same location in the years 2018 and 2019, then the camera was moved to a new
location 400 m away from its original location on 14 May 2020 (https://phenocam.sr.unh.
edu/webcam/sites/shangqiu/). For the data sampling at Shangqiu in 2018, the phenocam
was set to capture one image every 15 min from 9:15 to 16:40, with a total of 30 images, for
recording the growth of maize for a single day. For data collection in Shangqiu in 2019 and
2020, the phenocam was set to capture one image every 60 min from 8:00 to 17:00, with a
sum of 10 images of maize for a single day. For the data collection in Nanpi in 2020, the

https://phenocam.sr.unh.edu/webcam/sites/shangqiu/
https://phenocam.sr.unh.edu/webcam/sites/shangqiu/
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phenocam was set to capture three images every 120 min from 8:00 to 14:00 and, totally,
12 images of maize for each day were obtained. Maize phenology included six leaves,
booting, heading and maturity. The definition of the phenological events according to the
phenological signals are shown in Figure 2.
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Figure 1. The geographic location of the experimental site and the region of interest (ROI) selection
for data analysis. (a) Geographic location of the experimental sites; light-blue shaded area represents
the North China Plain (NCP). (b) View of the phenocam for Nanpi in 2020. (c,d) View of the
phenocam for Shangqiu in 2018 and 2019, and 2020, respectively. Note: the red, blue and yellow
boxes in (b–d) indicate the ROI for the calculation of the indices.
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Figure 2. The definition of maize phenology according to the temporal dynamic of the vegetation
index. Note: The curves of the original and filtered GCC by DLF for the site Shangqiu in 2018 are
the orange and blues solid lines in (a). The green, purple, red and yellow dash lines in (a) are in
accordance with (b–e), representing different maize phenological aspects, respectively.
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2.3. Treatment and Ground Observations

Maize was treated with abundant fertilizers, including nitrogen (N), phosphorus (P)
and potassium (K), and pest control was strictly conducted by professional workers under a
strict procedure. The observed phenological aspects, including six leaves, booting, heading
and maturity, of maize in Nanpi (2020) and Shangqiu (from 2018 to 2020) were recorded
and provided in day-of-year (DOY) format (Table 1). These dates were confirmed when
phenological events happened to 50% of the maize plants in the imaging area.

Table 1. Observed maize phenology in day-of-year (DOY) format at the sites in Nanpi and
Shangqiu, respectively.

Sites Year Seeding Six Leaves Booting Heading Maturity

Shangqiu 2018 164 177 188 207 255
Shangqiu 2019 167 180 191 210 258
Shangqiu 2020 169 182 193 212 260

Nanpi 2020 175 188 199 218 266

2.4. Spectral and Textural Indices

For the entire growing season of maize, at each site, in a single year, the RGB images
were subtracted using the same ROI (Figure 1). The original digital numbers (DNs) were
normalized (0–1) by dividing the sum of the r, g and b bands [63]. To avoid disturbances,
the images were firstly classed into vegetation (maize) and non-vegetation (background,
including soil and other disturbances) [26,64]. Four high-performing spectral indices were
applied for their excellent performance reported in previous reports (Table 2). The average
values of all percentiles, the average values between the 25th and 75th percentiles and the
average values of the 90th percentile of the spectral indices in each day were calculated
and compared [49,65].

Table 2. Definition of spectral indices used in this study.

Spectral Indices Formulation Reference

Green chromatic coordinate (GCC) GCC = G/(R + G + B) [66,67]
Red chromatic coordinate (RCC) RCC = R/(R + G + B) [68]

Red–green ratio index (RGRI) RGRI = R/G [69]
Red–green–blue vegetation index (RGBVI) RGBVI = (G × G − B × R)/(G × G + B × R) [70]

Textural indices are important indicators in the object detection, image classification
and image-processing domains [60,71–74]. The most commonly applied textural indices,
such as contrast, correlation, energy and homogeneity, can be extracted from the gray-level
co-occurrence matrix (GLCM) based on statistical approaches [75–78]. The textural indices
applied in this study was shown in Table 3.

Table 3. Definition of textural indices used in this study.

Textural Indices Formula Value

Contrast ∑
i,j
|i− j|2 p(i, j) Ranging from 0 to the square of the gray level minus one

Correlation Correlation = ∑
i,j

(i−µi)(j−µj) p(i,j)
σiσj

Ranging from −1 to 1

Energy ∑
i,j

p(i, j)2 Ranging from 0 to 1

Homogeneity ∑
i,j

p(i,j)
1+|i−j| Ranging from 0 to 1

Note: i and j are the length and width of the image; p is the number of gray-level co-occurrence matrices in GLCM.
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The impacts of the distance d were assessed by altering the size (length and width) of
the calculation windows, 10 × 10, 20 × 20, 30 × 30, . . . , 100 × 100 pixels, and the optimal
window size was confirmed by the advantages of time saving and higher accuracy. The
values merely changed from 10 × 10 to 30 × 30 and they gradually decreased with the
increase in window size from 30 × 30 to 100 × 100. Therefore, the window size of 30 × 30
was selected with the consideration of accuracy and computational efficiency. Similar to
the spectral indices, the average values of all percentiles, the average values between the
25th and 75th percentiles and the average of the 90th percentile of the textural indices for
each day were obtained and compared with each other.

The improved adaptive feature-weighting method (IAFWM) can measure the weights
between spectral and textural information [25,26]. The new index was formed by consider-
ing the weights and the same processing procedure was also applied.

2.5. Extraction of Phenology of Maize

The Savitzky–Golay (SG), double logistic function (DLF), spline interpolation (SI) and
HANTS method (HM) were independently applied to extract the maize phenology at the
two sites each year [42,79,80]. The Gaussian method was applied to remove abnormal
values of indices; then, the SG, DLF, SI and HM were applied for filtering the indices.
For phenological extraction, the first derivative (FD) of the filtered indices was calculated
and the DOY corresponding to the FD equaling 0.012 was defined as the six leaves’ date;
the DOY corresponding to the maximum value of FD was defined as the booting date;
the DOY corresponding to the maximum value of the filtered indices was defined as the
heading date; and the minimum value of the first derivative was defined as the maturity
date. These extracted phenological dates were compared with the ground observations and
the effectiveness of the phenological extraction methods were evaluated by applying the
coefficient of determination (R2) and the root-mean-square error (RMSE).

3. Results
3.1. The Variations in Spectral and Textural Indices during the Growth Period of Maize

The daily images were processed using the method introduced in Section 2.2. Since
maize is an annual crop, the average values of all percentiles, average values between
the 25th and 75th percentiles and average values of the 90th percentile of the spectral
and textural indices of maize were obtained for each day during each annual growth
cycle (Figure 3). It can be easily observed that the difference between spectral indices and
textural indices of different percentiles was not obvious and this influence can be ignored.
Thus, the average values of the spectral and textural indices for each day were selected
for phenological extraction. The selected spectral indices (Figure 3a–d) represented well
the dynamic growth condition of maize. The correlation (Figure 3f) also represented the
dynamic growth condition of maize, while the indices contrast, energy and homogeneity
failed to match the dynamic growth stages of maize. Thus, all the spectral indices and the
correlation were selected for phenological extraction, as they performed well in describing
the growth condition of maize.

3.2. The Forming of New Index and Filtering of All Indices

The IAFWM was conducted and the ratios between spectral indices and textural
indices were 0.590, 0.905 and 0.959 for Shangqiu in 2018, 2019 and 2020, respectively.
Similarly, the ratio was 0.779 for Nanpi in 2020. The new index was generated for each site
for each year. Then, the new index was normalized by dividing the maximum values to
make it consistent with the original spectral and textural indices. All the selected spectral
and textural indices and the new index obtained by integrating the spectral and textural
indices were independently filtered using the DLF, HANTS, SG and SI (Figure 4). It could
be observed that the curves of the filtered indices were totally different when different
filtering methods were applied.
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3.3. Phenological Extraction Using Different Filtering Methods

The filtered indices were applied to extract phenological aspects, including six leaves,
booting, heading and maturity, of maize for each site in each year. To better show the
difference of phenological extraction using different filtering methods, the extracted pheno-
logical aspects (six leaves, booting, heading and maturity) were compared with observed
phenology for all sites and all years (Figure 5). It can be acknowledged that the DLF
achieved the highest accuracy, with the R2 and RMSE each being 0.86 and 9.32 days. There-
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fore, the DLF performed best in extracting maize phenology, followed by SG, with the R2

and RMSE being 0.83 and 9.60 days, respectively. The R2 (RMSE) was 0.80 (10.05 days)
and 0.75 (12.93 days), using the HANTS and SI, respectively. Thus, the DLF and SG per-
formed better than the HANTS and SI and the DLF achieved the highest accuracy in maize
phenological extraction.
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the R2 and RMSE of extracted and measured maize phenology were calculated for different
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performance of the filtering methods, the results are shown for each site and each year
(Figures A1–A4).
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3.4. Phenological Extraction Using Different Indices

Maize phenological extraction using only spectral indices, textural indices and the new
index were each assessed using data from all sites and all years, as well as using different
sites and different years (Figure 7). The extracted phenology was separately compared
with ground observations. It can be acknowledged that the new index obtained the highest
accuracy, with the R2 and RMSE each being 0.917 and 9.381 days. The new index obtained
the highest R2 for Shangqiu in 2019 and 2020 and for Nanpi in 2020. Similarly, the new
index achieved the lowest RMSE for Shangqiu in 2019 and 2020 and for Nanpi in 2020,
respectively. Thus, it can be concluded that the new index, integrated by the spectral
and textural information, obtained the highest accuracy for maize phenological extraction.
Meanwhile, it was also observed that the indicator correlation performed worst among
all indicators. Therefore, it can be guessed that the lower performance of phenological
extraction in 2019 and 2020 may have been induced by the indicator correlation.
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4. Discussion
4.1. Comparison of Phenological Extraction with Previous Studies

In this study, phenocam images concerning maize were innovatively applied to calcu-
late the spectral and textural indices for maize phenological extraction. Maize phenological
aspects, including six leaves, booting, heading and maturity, were pre-defined, extracted
and compared with ground observations. Four different filtering methods were indepen-
dently applied and it was found that the DLF achieved the highest accuracy, with an R2 and
an RMSE being 0.92 and 9.38 days, respectively. This may be because the real growth of
vegetation was more similar to the forms of the DLF [81–84]. The current result is slightly
more accurate than the reported extraction of start of green up (SOG), which showed a
wide range of 14 days using the RGB from phenocams for soybean and between 6 and
7 days for the other phenophases [65]. Liu et al. defined the start of growing season of
winter wheat and extracted the phenological aspects based on the filtered GCC using the
double logistic model and the RMSE was about 10 days [85]. Another study reported that
the RMSE for the start of season (SOS) and end of season (EOS) ranged from 3.3 to 5.5 days
and from 3.0 to 11.6 days, respectively, for deciduous forest tree canopies in nine different
sites at the University of Connecticut campus in Mansfield, Connecticut, USA [49]. The
detailed comparison of the phenological extraction in this study with previous studies
is specifically shown in Table A1. Previous studies mainly focused on the extraction of
SOS and EOS of forests and only the SOS or the EOS were commonly extracted, while,
in the current study, four important phenological events of maize were extracted with a
similar R2 or RMSE. Therefore, the proposed new index and the DLF achieved relatively
high accuracy for maize phenological extraction. Besides, our findings indicate that the
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proposed method (new index with DLF) was a relatively impressive and convenient way
for phenological extraction.

4.2. Performance of the New Index

The new index, which integrated spectral and textural indices, achieved the highest
accuracy. The new index combined both the advantages of spectrum and texture and it
could precisely catch the dynamic growth condition, as well as describing the detailed
variations in the growth status of maize. This may be because textural information can
express and describe the dynamic growth of maize in a different way compared with
spectral information [26,86,87]. The new index combines the advantages of both spectral
and textural information; the added textural information improved the accuracy of maize
phenological extraction. Thus, it is highly recommended the potential usage of the new
index for identifying the phenology of other crops, such as winter wheat and soybean.
Besides, crop phenotypes, such as crop height and diameter, blade length, blade, leaf length,
leaf width, leaf area and leaf inclination, are also important indicators for expressing the
dynamic growth of crops and their potential usage for identifying the crop phenology
should also be well investigated [88–90].

4.3. Limitations

Phenocams can be deployed to monitor the dynamic growth condition of vegetation
(forest and crop) by acquiring data in relatively high temporal and spatial resolutions [91,92].
Currently, the approach was limited to some basic traits that should be well introduced.
Firstly, the PhenoCams deployed in this study were of commercial use, the bandwidths
of which are typically too wide to identify the absorption features of pigments [29,93].
Therefore, continuous data collection using multi-spectral cameras might be more suit-
able for monitoring the phenology of vegetation [94–97]. Multi-spectral images can be
applied to extract multi-spectral-based indices such as NDVI and EVI and a camera with
narrow bands could also be used to calculate the solar-induced chlorophyll fluorescence
(SIF) [98–103]. Thus, the potential ability of phenological extraction using multi-spectral
images could be tested and explored in further analyses. Secondly, the viewing geometry
changes continuously across the whole image and, consequently, across the field, using
phenocams [65,104]. The viewing geometry is also related to the elevation and the viewing
angle of the phenocam. It is really hard to monitor the full study area with only one
phenocam when the study area is relatively large [105]. Fortunately, the easy deployment
of unmanned aerial vehicles/systems (UAV/UASs) has provided us with a new perspec-
tive for acquiring high-throughput data for the phenotyping of vegetations (forest and
crop) [106–108]. There is an increased need to explore the potential of UAV/UAS-based
data for phenological extraction [109–112]. Images from UAV/UASs and phenocams
are captured from different viewing angles and the data can be combined to integrate
the advantages, as the data are complementary for both platforms [48,113]. Thirdly, the
methods for phenological extractions rely on filtered indices; however, the results of the
extracted phenological features are very sensitive to the input parameters of the filtering
models [80,114]. Machine learning methods such as SVM, RF and BP and deep learning
approaches such as alexnet and googlenet are excellent models for classification and they
can be applied to perform the identification of maize phenology [115–120]. Nevertheless,
phenocams provide an important approach for monitoring the phenological processes
of vegetation, by analyzing the agricultural yield of crops by the high-throughput (high
temporal and high spatial) data [121–123].

5. Conclusions

In this study, the time series of RGB images retrieved from phenocams were applied
to extract spectral indices, textural indices and a new index by integrating spectral and
textural indices. The indices were separately filtered using four commonly applied methods,
double logistic function, harmonic analysis of time series, Savitzky–Golay and spline
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interpolation. Six leaves, booting, heading and maturity of maize were identified based
on the filtered indices and the results were compared with observed phenology from
ground observations. The double logistic function achieved the highest accuracy compared
with the HANTS, SG and SI. The new index, obtained by integrating the spectral and
textural indices by the improved adaptive feature-weighting method, performed best.
Therefore, it is highly recommended the adoption of the new index by integrating spectral
and textural indices with the double logistic function when identifying the phenology of
maize using phenocams.
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Table A1. Comparison of phenological extraction with previous studies. 

Study Crop Filtering Method Phenological Events R2 RMSE (Days) 
Helge Aasen 

et al. 
Soybean Savitzky–Golay filter Start of green up (SOG) 0.78 14 

Yingying 
Xie et al. 

Deciduous for-
est tree 

Logistic curves Start of season, end of season --- 
From 3.3 to 5.5, from 3.0 to 

11.6 

Yujie Liu et 
al. 

Winter wheat Double logistic 

Start of growing season, stabi-
lization date, position of peak 

greenness, downturn date, end 
of season 

--- 10 

This study Summer maize 

Double logistic function, 
harmonic analysis of time 

series, Savitzky–Golay 
and spline interpolation 

Six leaves, booting, heading, 
maturity 

0.92 9.38 

Note: ‘---’ indicates no record in the paper. 

References 
1. Schlenker, W.; Lobell, D.B. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 2010, 5, 014010. 
2. Ramirez-Villegas, J.; Jarvis, A.; Läderach, P. Empirical approaches for assessing impacts of climate change on agriculture: The 

EcoCrop model and a case study with grain sorghum. Agric. For. Meteorol. 2013, 170, 67–78. 
3. Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. 
4. Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P. Temperature increase reduces 

global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. 
5. Howden, S.M.; Soussana, J.-F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting agriculture to climate change. Proc. 

Natl. Acad. Sci. USA 2007, 104, 19691–19696. 
6. Vitasse, Y.; Signarbieux, C.; Fu, Y.H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl. 

Acad. Sci. USA 2018, 115, 1004–1008. 
7. Geng, X.; Fu, Y.H.; Hao, F.; Zhou, X.; Zhang, X.; Yin, G.; Vitasse, Y.; Piao, S.; Niu, K.; De Boeck, H.J. Climate warming increases 

spring phenological differences among temperate trees. Glob. Chang. Biol. 2020, 26, 5979–5987. 
8. Fu, Y.H.; Zhang, X.; Piao, S.; Hao, F.; Geng, X.; Vitasse, Y.; Zohner, C.; Peñuelas, J.; Janssens, I.A. Daylength helps temperate 

deciduous trees to leaf-out at the optimal time. Glob. Chang. Biol. 2019, 25, 2410–2418. 
9. Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant phenology and global climate 

change: Current progresses and challenges. Glob. Chang. Biol. 2019, 25, 1922–1940. 

Figure A4. Comparison of extracted and observed phenology from ground observations of maize
using different filtering methods at the site in Nanpi in 2020. Note: (a–d) represented the comparison
of extracted phenology using DLF, HANTS, SG, and SI, respectively.

Table A1. Comparison of phenological extraction with previous studies.

Study Crop Filtering Method Phenological Events R2 RMSE (Days)

Helge Aasen et al. Soybean Savitzky–Golay filter Start of green up
(SOG) 0.78 14

Yingying Xie et al. Deciduous forest
tree Logistic curves Start of season, end of

season — From 3.3 to 5.5,
from 3.0 to 11.6

Yujie Liu et al. Winter wheat Double logistic

Start of growing
season, stabilization

date, position of peak
greenness, downturn
date, end of season

— 10

This study Summer maize

Double logistic function,
harmonic analysis of

time series,
Savitzky–Golay and
spline interpolation

Six leaves, booting,
heading, maturity 0.92 9.38

Note: ‘—’ indicates no record in the paper.
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