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Abstract: Near-surface cameras, such as those in the PhenoCam network, are a common source of
ground truth data in modelling and remote sensing studies. Despite having locations across numerous
agricultural sites, few studies have used near-surface cameras to track the unique phenology of
croplands. Due to management activities, crops do not have a natural vegetation cycle which many
phenological extraction methods are based on. For example, a field may experience abrupt changes
due to harvesting and tillage throughout the year. A single camera can also record several different
plants due to crop rotations, fallow fields, and cover crops. Current methods to estimate phenology
metrics from image time series compress all image information into a relative greenness metric,
which discards a large amount of contextual information. This can include the type of crop present,
whether snow or water is present on the field, the crop phenology, or whether a field lacking green
plants consists of bare soil, fully senesced plants, or plant residue. Here, we developed a modelling
workflow to create a daily time series of crop type and phenology, while also accounting for other
factors such as obstructed images and snow covered fields. We used a mainstream deep learning
image classification model, VGG16. Deep learning classification models do not have a temporal
component, so to account for temporal correlation among images, our workflow incorporates a
hidden Markov model in the post-processing. The initial image classification model had out of
sample F1 scores of 0.83–0.85, which improved to 0.86–0.91 after all post-processing steps. The
resulting time series show the progression of crops from emergence to harvest, and can serve as a
daily, local-scale dataset of field states and phenological stages for agricultural research.

Keywords: crop phenology; PhenoCam; VGG16; hidden Markov model; time series; LTAR

1. Introduction

The timing of planting, emergence, maturity, and harvest of crops affects the yield
and long-term sustainability of croplands, thus tracking crop phenology has numerous
interested parties from local to national levels. Remotely sensed data is an important
data source for tracking crop phenology, and other attributes, from the field to global
scales [1]. For example, crop type, crop succession, and off-season management strategies
can all be monitored using remote sensing data to inform large-scale management [2].
Estimating crop phenology from remotely sensed data is difficult since crops do not follow
the same patterns as natural vegetation. Harvest may happen when crops are still green,
and multiple harvests in a single year will result in several “peaks” in greenness. Crop
rotations result in different crop types year to year, which affects the relative greenness
and derived phenology metrics [3]. A primary limitation for improving satellite remote
sensing-based crop phenology models is a lack of widespread ground truth data [4]. Near-
surface cameras used in the PhenoCam network offer a novel solution to this need for
local-scale crop management information. Images from near-surface cameras can document
the date of emergence, maturity, harvest, and tillage at the field scale with a daily temporal
resolution [5,6].
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Automatically extracting cropland attributes and phenological information from Phe-
noCam imagery is difficult. The primary method to estimate phenological metrics with
PhenoCam data uses the direction and amplitude of a greenness metric (the green chromatic
coordinate, Gcc) of regions of interest in the camera field of view [7,8]. These metrics are
well correlated with crop emergence and maturity, but cannot be used to directly identify
other attributes such as crop type, flowering, or the presence of crop residue [9]. Deep learn-
ing models provide a straightforward method for identifying information in images [10],
and can potentially identify phenological states directly as opposed to inferring them from
relative greenness in the images. Studies have successfully used deep learning image
classification models to identify and count animals [11,12], classify animal movement [13],
and identify the phenological stage [14,15], species [16], or stressors [17] of individual
plants. Deep learning has been used previously with PhenoCams to identify images with
snow cover with up to 98% accuracy [18] and also with high accuracy to classify forest
phenology [19,20].

In agriculture, deep learning classification of near-surface images, either from fixed
or handheld cameras, has primarily been used for weed and crop disease detection [21].
Few studies have used deep learning for the classification of crop and field attributes
(e.g., [22–24]) and to our knowledge no study has applied deep learning methods at
cropland sites in the PhenoCam image archive [25]. In addition to producing widespread
ground truth data for large-scale models, automated classification of crop phenology would
be beneficial in local-scale experiments of cropping practices. Recent studies have shown
phenology from PhenoCams enables high-throughput field phenotyping and tracking a
variety of crop characteristics [6,26].

Here, we use images from 55 agricultural cameras in the PhenoCam network to build
a classification model for identifying cropland phenological states. The database includes
images with a variety of real-world conditions across several crop types (Figure 1). We used
a generalized classification scheme with 21 classes across 3 mutually exclusive categories,
ranging from emergence to post-harvest residue. We also included classes for crop type
and factors such as flooded or snow covered fields. Deep learning models designed for
image classification do not have a temporal component, so we use a hidden Markov model
in the classification post-processing to account for the temporal correlation of daily camera
time series. Results show the feasibility of a daily, local-scale dataset of field states and
phenological stages for agricultural research.
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Figure 1. Example images from the PhenoCam network used in this study. The image sources and
annotations are as follows: (A) is from arsope3ltar on 17 September 2018 with soybeans in the growth
stage, (B) is from cafcookwestltar01 on 15 August 2017 with wheat which is fully senesced, (C) is
kelloggcorn on 27 November 2018 and is blurry for all categories, (D) is arsltarmdcr on 28 August
2017 with corn in the flowers stage, (E) is from mandanh5 on 27 June 2017 and has corn in the growth
stage with a dominant cover of residue, (F) is from arsgacp1 on 25 August 2016 with dominant cover
of plant residue and no crop present, (G) is from NEON.D06.KONA.DP1.00033 on 24 December 2017
with dominant cover of snow and no crop present, (H) is from hawbeckereddy on 26 November 2015
with an unknown crop type in the growth state, and (I) is from bouldinalfalfa on 22 October 2019
with a dominant cover of residue and no crop present. Images (A,B,D,H) all have vegetation as the
dominant cover class.

2. Methods
2.1. Data

We used PhenoCam images from agricultural sites to train an image classification
model (Figure S1, Table S1). To obtain a representative sample of images across all potential
crops and crop stages, we used seasonal transition dates provided by the PhenoCam
Network. Based on the transition date direction (either rising or falling) and threshold
(10%, 25%, and 50%), we partitioned each calendar year into distinct periods of senesced,
growth, peak, and senescing [7]. We chose 50 random days from each site, year, and period,
for a total of 8270 images. We annotated each image by hand using the imageant software
into the 21 classes described below [27].

Initial image classifications were organized into 21 classes across three categories of
Dominant Cover, Crop Type, and Crop Status (Table 1). The categories are each mutually
exclusive such that any single image can be independently classified into a single class
within each category. This allows finer grained classification given an array of Crop Types,
and more flexibility in classifying crop phenological stages. For example, it would be
informative for remote sensing models to know the exact date of crop emergence, but also
that on the specified date and for several days to weeks after the feld is still predominantly
bare soil. The first category, Dominant Cover, is the predominant class within the field of
view. The Crop Type category represents the four predominant crops in the dataset (corn,
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wheat/barley, soybean, and alfalfa). Wheat and barley are combined into a single category
as they are difficult to discern in images. The unknown Crop Type class is used during
emergence when an exact identification is impossible. The other Crop Type class represents
all other crops, including fallow fields, besides the four predominant ones. The stages of
the Crop Status category are loosely based on BBCH descriptions [28], but generalized to
be applicable across a variety of crops and what is discernible. The Flowers stage is used
solely for identifying reproductive structures for corn, wheat, or barely. No reproductive
structures were discernible in images with Crop Types of Soybean, Alfalfa, or Other, thus
images in those three Crop Type classes have no Crop Status annotations of Flowers.

Table 1. Class descriptions used in the classification model.

Category Class Used in Final
Product Description

Dominant
Cover Blurry No Image blurry, out of focus, or other-

wise obscured
Vegetation Yes Live or senesced vegetation
Residue Yes Post-harvest plant residue
Bare soil Yes
Snow Yes
Water Yes

Crop Type Blurry No Image blurry, out of focus, or other-
wise obscured

Unknown plant Yes Plants are present but cannot be con-
fidently identified

Corn Yes
Wheat/barley Yes
Soybean Yes
Alfalfa Yes
Other Yes Any other crop or a fallow field

No crop Yes No crop present (e.g., a plowed field
or completely snow covered)

Crop Status Blurry No Image blurry, out of focus, or other-
wise obscured

Emergence Yes First shoots and/or leaves are visible

Growth stage Yes
Plants have several distinct leaves
and/or tillers visible, but no visible
tassels, flowers, or fruit

Tassels/flowering Yes Plants have distinct tassels, flowers,
or fruit

Senescing/browning Yes 10% or more of visible plants are
brown/browning

Fully senesced Yes 90% or more of visible plants are
fully senesced

No crop Yes No crop present (e.g., a plowed field
or completely snow covered)

After annotation we excluded some images based on low prevalence of some category
combinations. For example, only 8 images had the combined combination of Soil, Unknown
Plant, and Senescing for the Dominant Cover, Crop Type, and Crop status categories,
respectively. When a unique combination of the three categories had less than 40 total
images, all images representing that combination were excluded from the model fitting.
This resulted in 255 annotated images, from the original 8270, being excluded. A total of
8015 annotated images were available for model fitting.

We used midday images in the annotation stage and leveraged more of the PhenoCam
archive to increase sample size for model fitting. The 8015 images that we annotated
represent the midday image for a single date, though phenocams record images up to every
30 min. For each annotated image date, we also downloaded all images between 0900 and
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1500 local time, resulting in an additional 83,469 images. We applied the annotation of the
midday image to all images of that date, resulting in 91,484 total images used in the model
fitting. This allowed us to increase training image data by a factor of 10 with minimal
effort, and include more variation in lighting conditions. While it is possible some of these
non-midday images were annotated incorrectly (e.g., a blurry camera becoming cleared, or
a field being plowed after midday), these are likely minimal and did not have a large effect
on model accuracy [12].

2.2. Image Classification Model

We used the VGG16 model in the Keras python package to classify images into the
21 classes (Table 1) [29,30]. We evaluated several other models preconfigured in the Keras
package and found VGG16 to be the best performing (see Supplement). The model allows
us to specify the hierarchical structure of the three categories, such that the predicted
class probabilities for any image sum to one within each category. We held out 20% of
the images as a validation set. The validation set included all images from three cameras:
arsmorris2, mandani2, and cafboydnorthltar01 totaling 10,172 images. It also included
8124 randomly selected images from the remaining locations to obtain the full 20%. This
resulted in a validation sample size of 18,296 and a training sample size of 73,188. The
VGG16 classification model was trained fully, as opposed to using transfer learning [12].
We experimented with transfer learning, where a pre-trained model is fine-tuned using our
own data, but found that training the model fully had better results.

We resampled the 73,188 training images to 100,000 using weights proportional to the
unique combinations among the three categories. For example, there were 4407 images
annotated as Vegetation, Corn, and Flowers for the three categories, but only 1074 images
annotated with Vegetation, Wheat, and Flowers. The images in the former class were given
a lower weight in the resampling to reach 100,000 total training images. This allows for even
sample sizes among classes and protects against the model being biased toward common
classes. During model fitting the images are shuffled and transformed using random shifts
and rotations such that the exact same image is never seen twice, which protects against
over-fitting. We trained the model with an image resolution of 224 × 224 pixels using the
Adams optimizer with a learning rate of 0.01 for 15 epochs, and an additional 5 epochs
with a learning rate of 0.001.

2.3. Post-Processing

After fitting, the VGG16 model was used to classify approximately fifty-five thousand
midday images from all agricultural PhenoCam sites , totalling approximately 170 site-
years [31]. These classified images were then put through a post-processing routine to
produce a final classification for each day (Table 2). First, for all dates marked as Snow in the
Dominant Cover category, the Crop Type and Crop Status predictions were removed and
gap-filled using linear interpolation from surrounding non-snow dates as long as the gap
was 60 days or less. The reasoning behind this is during the constant snow cover of winter
the crop, if any, likely remains unchanged. Next, any image marked as blurry was removed
and the associated image date marked as missing across all three categories (Dominant
Cover, Crop Type, Crop Status). Gaps of missing dates, up to 3 days, in the time series for
each site were filled with a linear interpolation of the two bounding date probabilities for
each of the remaining 18 classes. Probabilities across all dates were normalized across the
remaining classes to account for removing the “Blurry” class. After this initial filtering the
classification time series from the approximately fifty-five thousand images were input
into an hidden Markov, and several additional post-processing steps, to produce the final
time series.
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Table 2. The post-processing steps performed on the VGG16 model predictions.

1. Predict probabilities for each of the 55 k daily images.
2. For snow days remove Crop Type and Crop Status and gap-fill up to 60 days.
3. For blurry images remove all predictions for that date and gap fill up to 3 days.
4. Apply HMM to Dominant Cover and Crop Status categories.
5. Identify each unique crop sequence. A crop sequence is all dates between two non-consecutive
“no crop” dates of the Crop Status category.
6. For each crop sequence identify the Crop Type using the highest cumulative probability
excluding the unknown class.
7. Mark crop sequences as unknown for sequences 60 days or less, where the most common Crop
State was emergence.
8. Mark crop sequences as unknown when the highest cumulative probability within the
sequence was No Crop.

Out-of-the box image classification models such as VGG16 have no temporal compo-
nent. Every image is treated as an observation independent of temporally adjacent images.
Thus, mis-classification of images can lead to noisy time series and improbable transitions
between classes. To correct for this, we used a hidden Markov model (HMM) to reduce the
day-to-day variation and remove improbable transitions [32–34]. HMM’s are state-space
models which combine a latent “true” state of a process with an observation model. The
latent state evolves dynamically where every timestep is a discrete state which depends
only on the state of the previous timestep, and where the probability of moving from one
state to another is decided by a transition matrix. The observation model is a time series
of the same length where every observed state depends only on the latent state of the
same timestep. Given a latent state, all observed states have a non-zero probability of
being observed.

We used two HMMs, one for Dominant Cover and another for Crop Status, each with
a daily timestep. Only sequences with at least 60 continuous days, after the gap-filling
from Snow and Blurry dates described above, were processed with the HMM. For the
observation model within each HMM we used the direct output from the classification
step, which for each image date consisted of probabilities of the image belonging to each
class in the respective category. The transition matrix describing the probabilities of the
hidden state changing states from one day to the next was created manually for each
HMM (Tables S2 and S3). The probability of the hidden state staying the same between
two dates was set as the highest (0.90–0.95) in all cases. In this way, the hidden state
only changes when there is strong evidence in the observation model, represented by
continuous and high observed probabilities of a new state. Within the Dominant Cover
category, transitions to other states besides the current one were set to equal values with
one exception. Transition from Soil to Residue was set to 0 probability since residue can
only be present after a crop has been harvested. Within Crop Status transitions between
states were constrained to be biologically possible. Improbable transitions (e.g., from
Emergence to Senescing in a single day) had probabilities of 0. Reproductive structures
were not visible on all crops in images, so transitioning from the Growth stage directly to
Senescing was allowed. Transitioning from either Senescing or Senesced to Growth was
also allowed since this represents dormancy exit in overwintering crops such as winter
wheat. Given observation probabilities and the transition matrices the most likely hidden
state was predicted using the viterbi algorithm to produce the final time series across the
Dominant Cover and Crop Status categories.

For the Crop Type category, the HMM methodology is less useful, since no day-to-
day transitions between Crop Types are expected. Here, we used the HMM output of
Crop Status to identify each unique crop sequence, defined as all dates between any two
“No Crop” classifications. For each unique crop sequence, we identified the associated
Crop Type with the highest total probability within that sequence, and marked the entire
sequence as that Crop Type. In this step, we considered all Crop Type classes except
“Unknown Plant”, which is used during the emergence stage when a plant is present but
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the exact type is unclear. This allows information later in the crop cycle, when Crop Type is
more easily classified, to be propagated back to the emergence stage. Finally, we marked
the final Crop Type as Unknown for some crop sequences in two instances: (1) when the
length of a crop sequence is less than 60 days and the sequence was predominantly in the
emergence stage, and (2) when the “No Cop” class was selected as the final Crop Type
with the highest probability within a sequence. These two scenarios tended to occur when
volunteer plants are growing sparsely on an otherwise bare field.

2.4. Evaluation

We calculated three metrics to evaluate the performance of the image classifier: preci-
sion, recall, and the F1 score. All three metrics are based on predictions being classified
into four categories of true positive (TP), false positive (FP), true negative (TN), and false
negative (FN). Precision is the probability that an image is actually class i, given that
the model classified it as class i. Recall is the probability that an image will be classified
into class i, given that the image is actually class i. The F1 score is the harmonic mean of
precision and recall. All three metrics have the range 0–1, where 1 is a perfect classification.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(3)

where TP, FP, FN are the number of true-positive, false-positive, and false-negative
classifications, respectively. Using only the midday images we calculated all three metrics
for the 21 original classes to evaluate the performance of the VGG16 model. For this step,
the predicted class for each category on a single date was the one with the maximum
probability. We re-calculated all three metrics again after all post-processing steps. The
second round of metrics does not include two classes removed during post-processing: the
Blurry class across all categories and the Unknown Plant class in the Crop Type category.

Software packages used throughout the analysis include Keras v2.4.3 [30], TensorFlow
v2.2.0 [35], Pandas v1.0.4 [36], NumPy v.1.20.2 [37], and Pomegranate v0.14.5 [38] in the
Python programming language v3.7 [39]. In the R language v4.1 [40], we used the zoo
v1.8.0 [41], tidyverse v1.3.1 [42], and ggplot2 v3.3.5 [43] packages. All code for the analysis,
as well as the final model predictions, are available in a Zenodo repository [44].

3. Results

The overall F1 score, a summary statistic which incorporates recall and precision,
was 0.90–0.92 for the training data across the three categories of Dominant Cover, Crop
Type, and Crop Status (Figure 2). The overall F1 score for validation data, which was not
used in the model fitting, was 0.83–0.85 for the three categories. In the Dominant Cover
category, the vegetation class was the best performing overall with recall and precision of
0.97 and 0.93, respectively. Thus, the classification model has a strong ability to discern
when the camera field of view is or is not predominantly vegetation. When vegetation is
not dominant, the classifier is still moderately accurate, though there is confusion between
soil and residue classes indicated by their recall scores (0.64–0.68). The precision of soil
and residue was 0.61 and 0.82 for validation data, indicating that the classifier leaned
toward residue.
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Figure 2. Accuracy metrics for the VGG16 image classifier. The black and grey bars represent the
validation and training datasets, respectively. The text indicates the respective metric value for
validation, training, and class sample size in parentheses. The training and validation sample sizes
are 80% and 20% of the total sample size, respectively. Overall indicates the average metric value
for the respective category, weighted by sample size. All three metrics have a range of 0–1, where
1 equals a perfect prediction.

Excluding the blurry class, the worst precision for Crop Type was soybeans, with a
precision of 0.53 on the validation data. This indicates that if an image was classified as
Soybean, then there is a 53% chance it is actually soybean. The recall for Soybean was
high, 0.97 with the validation data, indicating that there is a high amount of false positives
from non-Soybean images being classified as Soybean. Conversely, the Wheat/Barley
and Other classes have high precision (0.86 and 0.86, respectively), and low recall (0.60
and 0.65, respectively). This indicates a high amount of false negatives, where images
of Wheat/Barley and Other Crop Types are being classified as other Crop Type classes
(Figures S2 and S3).

The blurry class had low recall and precision across all three categories, with values of
0.29–0.43 and 0.33–0.50 for validation data recall and precision, respectively. Combined
with training data recall scores of 1.0, this indicates likely over-fitting of the blurry class
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in the classification model. We did not attempt to improve this further since the blurry
image prevalence was extremely low. Additionally, when images were marked as blurry
in the final dataset, the final state was interpolated in the HMM post-processing step by
accounting for the surrounding images.

Figure 3 shows the classification statistics after post-processing of the image time
series, where the HMM was used for Dominant Cover and Crop Status and the Crop Type
was set to the highest total probability within any single crop series. The blurry class is
not shown here since it was removed in the post-processing routine. The Unknown Plant
class for Crop Type is also excluded since in the post-processing, the Crop Type category
is assigned to the highest probability class seen in each crop sequence, thus performance
metrics for the Unknown Plant class would be uninformative.
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Figure 3. Accuracy metrics for the classifications after post-processing. The black and grey bars
represent the validation and training datasets, respectively. The text indicates the respective metric
value for validation, training, and class sample size in parentheses. The training and validation
sample sizes are 80% and 20% of the total sample size, respectively. Overall indicates the average
metric value for the respective category, weighted by sample size. All three metrics have a range of
0–1, where 1 equals a perfect prediction. Differences between this and Figure 2 is the exclusion of the
blurry and unknown plant classes, with total sample sizes reflecting this.

The validation data performance metrics after the post-processing steps either im-
proved or remained the same across all classes except four: the Snow class in Dominant
Cover, the Alfalfa Crop Type, and Flowers and Senescing Crop status classes. Overall F1
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scores using validation data increased from 0.85 to 0.88, 0.83 to 0.91, and 0.85 to 0.86 for
Dominant Cover, Crop Type, and Crop Status categories, respectively.

Next, we present four examples of the full classification and post-processing results
using a single calendar year from four sites. They show the initial output of the classification
model, as well as the capability of the HMM in removing high variation in the original
VGG16 model prediction. The original VGG16 predictions are obtained by choosing the
class with the maximum probability (MaxP) for each category and day. We compare them
with insight gained from the full image time series available on the PhenoCam data portal
https://phenocam.sr.unh.edu, accessed 1 September 2021. For example, at the arsmorris2
site in central Minnesota, in the months March through June of 2020, there is uncertainty in
whether the Dominant Cover of the field is Residue or Soil (Figure 4A, MaxP). The HMM
model resolved it to the Residue class for the three month period. From mid-June thru
October there is high certainty that that vegetation is present, reflected in both the initial
classifications (MaxP) and resulting HMM. The HMM model resolved the Crop Type as
Corn (Figure 4B). During June to October, the Crop Status progresses naturally through the
different stages, and uncertainty arises only in October when fully senesced vegetation is
confused with plant residue (Figure 4C).

Blurry
Water
Snow

Residue
Soil

Vegetation
MaxP
HMM

Feb. 1 Apr. 1 Jun. 1 Aug. 1 Oct. 1 Dec. 1

A. Dominant Cover − arsmorris2 − 2020

Blurry
No Crop

Unknown Plant
Other
Alfalfa

Soybean
Wheat/Barley

Corn
MaxP
HMM

Feb. 1 Apr. 1 Jun. 1 Aug. 1 Oct. 1 Dec. 1

B. Crop Type − arsmorris2 − 2020

Blurry
No Crop

Senesced
Senescing

Flowers
Growth

Emergence
MaxP
HMM

Feb. 1 Apr. 1 Jun. 1 Aug. 1 Oct. 1 Dec. 1

Probability
0.00 0.25 0.50 0.75 1.00

C. Crop Status − arsmorris2 − 2020

Figure 4. Classification results for the arsmorris2 site for the year 2020. The panels represent the
results for the Dominant Cover (A), Crop Type (B), and Crop Status (C) categories. The top two rows
of each panel represent the final classification for either the daily maximum probability (MaxP) or
the hidden Markov model (HMM). The remaining rows in each panel represent the initial model
classification for the respective class, where larger sizes represent higher probability.

https://phenocam.sr.unh.edu
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Cropping systems with multiple harvests per season are challenging for remote sensing
models. There were multiple harvests for the bouldinalfalfa site in northern California
for the year 2018. Here, an alfalfa field was persistent for the entire year with several
harvests (Figure 5A). During the intervals of regrowth after each harvest the Dominant
Cover of the field was classified as Residue with emergence of an Unknown crop type
(Figure 5B). Once the plants matured then it was identified consistently as Alfalfa, which in
the post-processing was back propagated in time for each crop sequence.

Blurry
Water
Snow

Residue
Soil

Vegetation
MaxP
HMM

Feb. 1 Apr. 1 Jun. 1 Aug. 1 Oct. 1 Dec. 1

A. Dominant Cover − bouldinalfalfa − 2018

Blurry
No Crop

Unknown Plant
Other
Alfalfa

Soybean
Wheat/Barley

Corn
MaxP
HMM

Feb. 1 Apr. 1 Jun. 1 Aug. 1 Oct. 1 Dec. 1

B. Crop Type − bouldinalfalfa − 2018

Blurry
No Crop
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Growth

Emergence
MaxP
HMM

Feb. 1 Apr. 1 Jun. 1 Aug. 1 Oct. 1 Dec. 1

Probability
0.00 0.25 0.50 0.75 1.00

C. Crop Status − bouldinalfalfa − 2018

Figure 5. Classification results for the bouldinalfalfa site for the year 2018. The panels represent the
results for the Dominant Cover (A), Crop Type (B), and Crop Status (C) categories. The top two rows
of each panel represent the final classification for either the daily maximum probability (MaxP) or
the hidden Markov model (HMM). The remaining rows in each panel represent the initial model
classification for the respective class, where larger sizes represent higher probability.

At the site cafcookeastltar01 in eastern Washington in the year 2018 there was a short
residual crop of wheat in April (Figure 6A). Since the plants were not allowed to grow
into the summer, due to a new crop being planted, they were not positively identified and
instead marked as Unknown Plant. From manual image interpretation, we know a crop of
chickpeas was planted in May which grew until harvest in early September. Throughout
the summer the model initially classifies this crop as wheat, soybean, or alfalfa. The post-
processing correctly chose the Other Crop Type as the final class. In October and November
there is confusion in the Dominant Cover category between soil and residue, even after
post-processing. From the images, we can conclude there was likely no activity in the field
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during this time, thus confusion likely stems from a moderate amount of residue on the
field combined with low light conditions of this northern (47.7° latitude) site.

Blurry
Water
Snow

Residue
Soil

Vegetation
MaxP
HMM

Feb. 1 Apr. 1 Jun. 1 Aug. 1 Oct. 1 Dec. 1

A. Dominant Cover − cafcookeastltar01 − 2018
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B. Crop Type − cafcookeastltar01 − 2018
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Probability
0.00 0.25 0.50 0.75 1.00

C. Crop Status − cafcookeastltar01 − 2018

Figure 6. Classification results for the cafcookeastltar01 site for the year 2018. The panels represent
the results for the Dominant Cover (A), Crop Type (B), and Crop Status (C) categories. The top two
rows of each panel represent the final classification for either the daily maximum probability (MaxP)
or the hidden Markov model (HMM). The remaining rows in each panel represent the initial model
classification for the respective class, where larger sizes represent higher probability.

Crops going into dormancy in the winter and resuming growth in the spring are
accounted for in the post-processing routines as demonstrated by the Konza Agricultural
site in the NEON network in 2017 (NEON.D06.KONA.DP1.00042, Figure 7). A winter
wheat crop (Figure 7B), which was planted in the fall of 2016, resumed growth in February.
The remainder of that crop life cycle proceeded normally until harvest in July (Figure 7B).
The crop type here is correctly classified as Unknown Plant by the classifier from January
thru March here, since the plants were relatively small at this time. The correct classification
of wheat began in March when the plants were large enough to confidently identify, and
this was propagated back to the initial emergence in 2016. Additionally, the primary
field at this site was harvested at the end of June 2017 (as seen in the original images),
though the classification model indicated it happened mid-July (Figure 7A). This was due
to the foreground plants being removed in mid-July, while the primary field was harvested
in June.
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A. Dominant Cover − NEON.D06.KONA.DP1.00042 − 2017
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B. Crop Type − NEON.D06.KONA.DP1.00042 − 2017
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Figure 7. Classification results for the NEON.D06.KONA.DP1.00042 site for the year 2017. The panels
represent the results for the Dominant Cover (A), Crop Type (B), and Crop Status (C) categories. The
top two rows of each panel represent the final classification for either the daily maximum probability
(MaxP) or the hidden Markov model (HMM). The remaining rows in each panel represent the initial
model classification for the respective class, where larger sizes represent higher probability.

4. Discussion

Daily images from the PhenoCam network contain a wealth of information beyond
just vegetation greenness, and here we showed they are also a novel source of cropland
phenological information. Using a deep learning-based image classification model, we
identified the daily field state, crop type and phenological state from PhenoCam images
in agricultural fields. Since mainstream classification models do not have a temporal
component we applied a hidden Markov model as a post-classification smoothing method
which accounts for temporal correlation. This improved classification metrics and removed
improbable transitions. Improvements would be beneficial to better classify field and
crop states outside the primary growing season, and to better account for crops which go
through a period of dormancy.

The classification model here was developed to simultaneously identify several crop
and field attributes and has a variety of potential uses. For example, the United States
Department of Agriculture currently monitors crop status throughout the USA using
surveys [45]. An array of PhenoCams positioned in representative fields could enable a
real-time crop status monitoring system using the methodologies outlined here. Remote
sensing models for monitoring crop progression would benefit from the large temporal and
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spatial extent of PhenoCams in agricultural fields as a source of verification data [4]. The
on-the-ground daily crop status data could also be used to parameterize or validate earth
system models, where crop phenology is a primary source of error for crop yields [46].

Numerous studies have used Gcc from PhenoCams to study various biological pro-
cesses [25,47]. Yet compressing images down to a single greenness index discards large
amounts of information, especially in agricultural fields which are constantly managed [9].
Our approach here allows us to extract more relevant data from images, such as the crop
type or the state of the field after vegetation is removed. These image-based metrics of crop
type and stage from PhenoCam time series can complement Gcc as opposed to replacing
it though. For example, Gcc, and other greenness metrics, can be used to derive the date
of peak greenness or the rate of greenup or greendown, which reflects important plant
properties not present in our image classification approach such as water stress and plant
vigor [6,26,48]. Added insight from complementary metrics enrich interpretation and offer
decision-makers flexibility in crop management [9].

Most studies using deep learning methods to identify cropland attributes use satellite
or aerial imagery [21], though several studies have used near-surface imagery similar to
the work here. Yalcin [22] used a CNN to classify crop types and had F1 scores of 0.74–0.87.
Han et al. [23] used a CNN to classify development stages in rice with F1 scores ranging
from 0.25–1.0. The high accuracy seen here and in other studies shows the capability of
tracking crop and field attributes with near-surface cameras. This approach is advantageous
since the cameras are not affected by cloud cover and, after initial installation, do not have
significant labor costs.

We identified several areas of our approach which could be improved. Firstly, the
VGG16 model used here could be replaced with either a more advanced or a customized
neural network model. Though the initial accuracy of the VGG16 model was relatively high,
it was originally designed for classification of common objects as opposed to croplands.
It could likely be improved through model customization or fine-tuning of parameter
estimation. Improving the initial image classification would improve the final results
without any other adjustments to the post-processing routines.

Our approach here worked best during continuous periods where crops were present
on the field. Once crops were removed, the dominant cover state could be difficult to discern
due to soil, plant residue, and fully senesced plants having similar visual characteristics
(Figures S4–S11). Improvements could potentially be made here by using a zoomed-in or
cropped photo of the field. Since the images were compressed from their full resolution to
224 × 224 pixels, it is likely important details were lost. Han et al. [23] showed that zoomed-
in images, used simultaneously with full resolution images in a custom neural network
model, greatly improved accuracy of rice phenology classification. Using zoomed-in images
may also help with identifying the reproductive structures of crops. Though this may be
limited by camera placement since even during manual annotation we could only identify
reproductive structures of corn, wheat, and barley. Residue versus Soil classification may
also be improved by classifying the amount of residue (e.g., the fractional cover of plant
residue or soil) as opposed to using two distinct classes.

Our use of an HMM is an ideal solution to account for temporal correlation in the
classified image time series. The progression of crops at a daily time step is constrained
by plant biology, and these constraints are easily built into the HMM using the transition
matrix. Additionally, the predicted probabilities from the classification model can be used
directly in the HMM observation model, resulting in a straightforward data workflow.
Since we used a basic HMM we had to create separate models for the Dominant Cover
and Crop Status categories, which resulted in occasional inconsistencies. For example, the
Dominant Cover HMM may occasionally identify a time period as being predominantly
vegetation, while the Crop Status HMM identifies the same time period as having no
crop present (Figure 7). A multi-level, or layered, HMM may be able to overcome this
by modelling the joint probabilities of classes across the two categories [49]. Temporal
segmentation, a newer deep learning approach which is under active development, could
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model the joint probability of classes across the different categories in addition to having
better performance than seen here [50]. A downside to temporal segmentation is that it
would require fully annotated training sequences (i.e., annotations for all images in a year
for numerous sites) as opposed to the random selection of training images used here.

We observed some mis-classifications when field management activities are not uni-
formly applied to all parts of a field in the camera field of view. In the NEON-KONA
example (Figure 7), the final classification showed vegetation present due to foreground
plants remaining even though the primary field was harvested. This could be improved by
having a pre-processing step which identifies distinct agricultural fields within the camera
field of view. Each agricultural field could then be classified independently. This would
also allow the inclusion of PhenoCam sites focused on one to several experimental plots,
which were excluded from this study. This step could be done automatically through image
segmentation models, or manually as in the region of interest (ROI) identification in the
current PhenoCam Network data workflow [7].

Instead of discarding blurry or obscured images, we accounted for them directly in the
modelling. This is ideal since real-time applications must account for such images without
human intervention. The Blurry class across all three categories had high performance
metrics for the training images, but with validation images it had the lowest performance
among all classes. There are two possibilities for this low performance of this class. One is
that the classification model was confident in classifying some partially obscured images as
non-blurry where the human annotator was not (Figures S12–S13). Second was the low
sample size of the blurry image class, which had less than 70 total midday images. This
likely resulted in the over-fitting of the blurry class on the training images and resulting
low performance among validation images. Obtaining more PhenoCam images which are
blurry or where the field of view was obscured in some way would be beneficial, and could
be obtained from the numerous non-agricultural sites. Regardless, the low accuracy of
blurry images had little effect on the final results, since the final classification of any single
day is determined by the joint classifications of all surrounding days in the post-processing.

5. Conclusions

Monitoring and assessing crop extent and status using a consistent, data-driven ap-
proach is essential to meeting the growing demand for food while meeting our sustainability
goals in light of climate change. We formulated a workflow using a deep learning model
applied to PhenoCam time series to generate a daily crop phenology time series for loca-
tions across the continental U.S. The workflow uses a hidden Markov model to account
for the temporal correlation of daily images. By using images from the full PhenoCam
database, our model workflow is more resilient since it can accommodate an array of
real-world conditions. The resulting outputs offer a ground truth to calibrate and refine
existing models for mapping crop status and yield using satellite remote sensing.
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.3390/rs14020286/s1, Figure S1: Locations of all PhenoCam sites used in this study. Figures S2 and S3:
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Markov models.
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