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Abstract: Under conditions of continuous global warming, research into the future change trends
of regional dry-wet climates is key for coping with and adapting to climate change, and is also
an important topic in the field of climate change prediction. In this study, daily precipitation and
mean temperature datasets under four representative concentrative pathway (RCP) scenarios in
the geophysical fluid dynamics laboratory Earth system model with modular ocean model (GFDL-
ESM2M) version 4 were used to calculate the standardized precipitation-evapotranspiration index
of the Tibetan Plateau (TP) at different time scales. Using a multi-analytical approach including the
Mann–Kendall trend test and run theory, the spatiotemporal variation characteristics of drought in
the TP from 2016 to 2099 were studied. The results show that the overall future climate of the TP will
develop towards warm and humid, and that the monthly-scale wet–dry changes will develop non-
uniformly. As the concentration of carbon dioxide emissions increases in the future, the proportion of
extremely significant aridification and humidification areas in the TP will significantly increase, and
the possibility of extreme disasters will also increase. Moreover, influenced by the increase of annual
TP precipitation, the annual scale of future drought in the region will tend to decrease slightly, and
the spatial distributions of the frequency and intensity of droughts at all levels will develop uniformly.
Under all four RCP scenarios, the drought duration of the TP was mainly less than 3 months, and
the drought cycle in the southern region was longer than that in the northern region. The results of
this study provide a new basis for the development of adaptive measures for the TP to cope with
climate change.

Keywords: GFDL-ESM2M; RCPs; drought characteristics projections; standardized precipitation-
evapotranspiration index; Tibetan Plateau

1. Introduction

Drought is one of the most common and widely distributed natural disasters, and
is often responsible for serious losses [1]. It often causes problems such as reduced agri-
cultural production and exacerbated ecological deterioration [2,3]. Especially under the
influences of global climate change and rapid urbanization, frequent drought disasters
seriously restrict the sustainable development of economies and societies [4,5] and lead to
ecological and environmental problems, such as water shortages, land degradation, and
desertification [6–9]. Over the past 40 years, about 12 million hectares of land have been
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lost to drought and desertification each year, and this trend will continue to expand in the
21st century, especially in the mid-latitudes [10,11].

According to the Drought Numbers Report, from 1998 to 2017, the global economic
loss caused by drought was as high as $124 billion. Since 2000, the number and duration
of droughts globally has increased by 29%, affecting about 1.4 billion people. Over the
past century, more than 10 million people have died from major drought events, costing
the global economy hundreds of billions of dollars, and both numbers are rising [12–14].
Frequent drought disasters have become important in restricting regional sustainable
development and ecological protection [15]. In addition, the AR6 Working Group I report
released by the United Nations Special Assessment Committee on Climate Change pointed
out that in the future, global warming will intensify, and the frequency of extreme high
temperature events and marine heat waves will increase accordingly. Additional studies
have also shown that future drought duration, frequency, and intensity will increase to
varying degrees [16]. Therefore, analyzing the spatiotemporal variation characteristics of
future drought is not only beneficial to regional disaster prevention and mitigation, but is
also important for rationally managing and distributing regional water resources, as well
as for improving regional economic and social development planning.

However, most studies focus on the social, agricultural, and environmental impacts of
droughts on a global or regional scale for historical periods [17]. For example, Zhu et al. [18]
constructed a dynamic evaluation model and applied it to the distribution and development
trend of comprehensive drought disaster risk in Xuzhou, China; Hu et al. [19] used the crop
water deficit index for evaluation of agricultural drought, described the spatiotemporal
variation of drought in the growth period of winter wheat in the Huang-Huai-Hai plain,
and constructed a drought disaster risk index of winter wheat in each growth period; and
Orimoloye et al. [20] used the enhanced vegetation index and standardized precipitation
index (SPI) to study drought disaster events and their temporal and spatial patterns in
Free State Province, South Africa. Overall, there are relatively few studies on the changing
characteristics of drought under different climate scenarios in the future, considering the in-
crease of carbon dioxide concentration. In particular, the Tibetan Plateau (TP) region, which
is sensitive to climate change and has an active hydrological cycle, presents significant
knowledge gaps [21].

In addition, existing studies on meteorological drought mainly focus on arid and
semi-arid regions [22]. For example, Annette et al. [23] used the ParFlow-CLM model
to study the driving factors of drought-related changes in the southern United States;
Wang et al. [24] evaluated the drought monitoring effect of remote sensing precipitation
products based on a proposed grid drought index, revealing the drought characteristics
of the Yellow River Basin from 1998 to 2016; and Yang et al. [25] constructed a composite
drought index to determine the duration, peak, and severity of drought in the Weihe River
Basin, to assess multivariate drought risk. However, little is known about the variation
characteristics of drought in the TP, which is rich in glacier resources, especially in terms of
the variation characteristics of drought at different time scales in the future [26]. TP glaciers
are important buffers for regional drought resistance [27]. They can significantly affect the
climate model in East Asia and atmospheric circulation in the northern hemisphere through
dynamic, thermal, and frictional atmospheric effects; affect the regional and surrounding
land-atmosphere interactions and dry–wet changes; and also play a greater role in adapting
to climate change pressures [28,29]. In the context of global warming, the temperature of
the TP has increased significantly, accelerating the melting of ice and snow and increasing
permafrost activities [30,31]. How will the dry and wet conditions of the TP change under
global warming in the future? This is a very important scientific question in the field of
climate science.

This study is aimed at addressing this question. Considering TP as the study area,
according to the climate change prediction results obtained using the geophysical fluid
dynamics laboratory Earth system model with modular ocean model (GFDL-ESM2M)
version 4, and based on the annual scale standardized precipitation-evapotranspiration
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index (SPEI), the spatiotemporal variation trends of meteorological drought in the TP under
various future emissions scenarios were predicted. In addition, based on the monthly SPEI,
the spatiotemporal evolution characteristics of future meteorological droughts in the TP
were systematically analyzed with respect to the duration, frequency, intensity, and cycle
of drought events, and the characteristics of changes in drought under different climate
scenarios were compared and analyzed. The results contribute to a better understanding
of the evolution of meteorological drought on the TP and provide a scientific basis for
relevant agencies to further improve drought prevention systems and formulate appropriate
drought disaster prevention measures and countermeasures.

2. Materials and Methods
2.1. Study Area

The TP, located in southwest China, has a total area of ~2.5 million km2 (26◦00′–39◦47′N,
73◦19′–104◦47′E). It is the largest plateau in China and the highest plateau in the world,
sometimes called “the roof of the world”. The TP has a mean elevation of more than 4000 m
and its 12 major rivers flow to East Asia, Southeast Asia, and South Asia. The major outflow
rivers include the Yangtze, Yellow, Lancang, Nujiang, and Yarlung Zangbo rivers, and the
lake area of the TP comprises more than 1500 large and small lakes. The more famous
lakes are the Nam Co, Qinghai, Qarhan Salt, and Eling lakes (Figure 1a). The TP belongs
to a plateau climate zone with distinct dry and wet conditions and frequent nighttime
rains. The mean annual precipitation in the southern part of the TP is more than 1500 mm,
whereas the mean annual precipitation in the Qaidam Basin (QB) in the northeast is less
than 200 mm (Figure 1b). In addition, the TP experiences strong radiation, a high degree of
sunshine, low temperatures, and low cumulative temperatures. The temperatures decrease
with increasing altitude and latitude. The daily temperature difference is large. The mean
annual temperature of the plateau hinterland is below 0 ◦C, and the mean temperature of
the warmest month in large regions is less than 10 ◦C (Figure 1c).
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Figure 1. Main environmental characteristics of the TP: (a) geographical location, topography and
river system of the study area, (b) spatiotemporal variation characteristics of precipitation in the
study area from 1985 to 2015, (c) spatiotemporal variation characteristics of mean temperature in
the study area from 1985 to 2015. River name abbreviations: LR-Lancang; NR-Nujiang; YR-Yellow;
YTR-Yangtze; YZR-Yarlung Zangbo.
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2.2. Data Source and Climate Model

A precipitation and temperature dataset for the TP from 1980 to 2015 was obtained
from the Resources and Environment Science and Data Center of the Chinese Academy of
Sciences (http://www.resdc.cn/, accessed on 11 November 2021) [32]. The dataset was
based on daily observation data from more than 2400 meteorological stations in China and
was generated by sorting, calculation, and spatial interpolation processing. In this study,
the dataset for precipitation and temperature on the TP from 1980 to 2015 was obtained by
mask extraction.

The future climate model selected for this study uses the GFDL-ESM2M. GFDL-
ESM2M is a coupled model intercomparison project phase 5 (CMIP5) global coupled carbon-
climate model proposed by the US National Oceanic and Atmospheric Administration
(NOAA) that is similar to GFDL’s previous generation climate model 2.1 (CM2.1) [33].
CM2.1 has exhibited efficient performance in simulating and reproducing global climate
interannual variability and climate characteristics [34]. In contrast to the CM2.1 model,
the GFDL-ESM2M uses modular ocean model version 4.1, with vertical pressure layers
and new biogeochemical algorithms and stoichiometric phytoplankton functional group
dynamics. GFDL-ESM2M includes a revised land model to simulate competing vegetation
distributions and functions, including carbon cycling among vegetation, soil, and the
atmosphere [35]. Therefore, GFDL-ESM2M has a wide range of applications and can
be adapted to various climatic conditions around the world. Jia et al. [36] conducted a
comprehensive evaluation of GFDL–ESM2M by comparing the performance of 33 CMIP5
general circulation models (GCMs) in a temperature simulation of the TP. Their results
showed that GFDL-ESM2M exhibits better temperature simulation performance than other
GCMs, which indicates that GFDL-ESM2M is well suited to the simulation of future climate
changes in the TP. In addition, China’s special program for climate change science and
technology development during the 12th five-year plan period has simulated the future
water resources situation in China based on the GFDL-ESM2M climate model [37]. Based
on that climate model, Ma et al. [38] predicted the future trend of dry–wet area and climate
change in China. The study showed that the GFDL-ESM2M climate model has a good
application effect in China. Therefore, GFDL-ESM2M was considered in this study to
predict future drought changes in the TP.

The GFDL-ESM2M climate model includes the representative concentrative pathways
(RCP) 2.6, 4.5, 6.0, and 8.5 climate scenarios. The RCP2.6, RCP4.5, RCP6.0, and RCP8.5
climate scenarios represent very low, low, medium, and high levels of greenhouse gas
emissions, respectively, meaning that radiative forcing will stabilize at 2.6, 4.5, 6.0, and
8.5 W/m2, respectively, by 2100, and the carbon dioxide concentration will reach 490,
650, 850, and 1370 ppm, respectively. In this study, we used daily precipitation and
temperature datasets from multiple climate models from the National Tibetan Plateau
Data Center (TPDC; http://data.tpdc.ac.cn, accessed on 16 November 2021) [39,40]. In
addition, the geographic coordinate system of all datasets was uniformly transformed into
GCS_WGS_1984.

2.3. Methods
2.3.1. Standardized Precipitation-Evapotranspiration Index (SPEI)

The meteorological drought index integrates different climatic factors that represent
the overall climate and environment of the region [41]. The commonly used meteorological
drought indices include the SPI, Palmer drought severity index (PDSI), and SPEI [42].
The SPEI, proposed by Vicente-Serrano et al. [43], is used to characterize meteorological
drought. This index inherits the characteristics of the PDSI, considering evapotranspiration
to be sensitive to temperature, as well as the advantages of SPI with respect to simplicity of
calculation, multiple time scales, and multiple spatial comparisons [44,45]. In the context
of global warming, temperature increase has become one of the most important factors
affecting regional drought [46–48]. Therefore, SPEI has unique advantages in studying the
characteristics of drought on different time scales in the future, which is of great significance

http://www.resdc.cn/
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to further understand the impact of climate change on drought. Previous studies have
shown that the annual-scale SPEI (SPEI-12) is more suitable for long-term drought trend
assessment [49], and the monthly-scale SPEI (SPEI-1) is sensitive to short-term dry and
wet variation [50]. Therefore, in this study, SPEI was used to analyze the future drought
variation characteristics of the TP on both the annual and monthly scales. The calculation
method of SPEI refers to Vicente-Serrano et al., but it should be noted that in this study, we
used the Thornthwaite approach with a limited range of mean air temperatures to calculate
the potential evapotranspiration (PET) for the TP [51,52]. The formula used is as follows:

PET =


0 if T < 0

16( 10T
I )

α
if 26.5 > T ≥ 0

−415.85 + 32.24T − 0.43T2 if T ≥ 26.5
(1)

where I is the heat index, T is the average air temperature (in ◦C), and α is estimated using
an I-related third-order polynomial:

I =
12

∑
i=1

(
Ti
5

)1.514
, (2)

α = 0.49239 + 1.792× 10−2 I − 7.71× 10−5 I2 + 6.75× 10−7 I3, (3)

According to the “Meteorological Drought Grade” classification standard, the SPEI
values were divided into nine classes, as shown in Table 1.

Table 1. Categorization according to the SPEI values.

SPEI Value Category SPEI Value Category SPEI Value Category

<−2 Extreme
drought −1 to −0.5 Light

drought 1 to 1.5 Moderately
wet

−2 to −1.5 Severe
drought −0.5 to 0.5 Normal 1.5 to 2 Severely wet

−1.5 to −1 Moderate
drought 0.5 to 1 Lightly wet >2 Extremely

wet

2.3.2. Mann–Kendall (M-K) Test

The M-K test is often used to analyze the changing trend and significance of various
factors [53,54]. The change trend of SPEI can be expressed as:

Slope = median
( xj − xk

j− k

)
, (4)

where Slope is the rate of change, Slope > 0 represents a wetting trend, and Slope < 0
represents a drought trend.

The significance calculation formula is as follows:

Z =


S−1√

n(n−1)(2n+5)/18
for S > 0

0 for S = 0,
S+1√

n(n−1)(2n+5)/18
for S < 0

(5)

S =
n−1

∑
k=1

n

∑
j=k+1

sgn(xj − xk), (6)

where S is the Kendall sum statistic, sgn is a symbolic function, and xj and xk are the
parameter values at times j and k, respectively. When |Z| ≥ Z1−α/2, the null hypothesis
that the trend is not significant is not rejected. In this study, α = 0.01, α = 0.05, and α = 0.1
significance levels were considered, and the corresponding value of Z1−α/2 were 2.58, 1.96,
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and 1.64, respectively [55,56]. Based on the SPEI trend, it is further divided into six levels,
as detailed in Table 2.

Table 2. Index Classification.

Data Type Slope |Z| Description Class Slope |Z| Description Class

SPEI >0

[2.58, +∞) Extremely significant
humidification EW

<0

[2.58, +∞) Extremely significant
aridification ED

[1.64, 2.58) Significant
humidification SW [1.64, 2.58) Significant

aridification SD

[0, 1.64) Insignificant
humidification IW [0, 1.64) Insignificant

aridification ID

2.3.3. Run Theory

The run theory is typically used to identify drought events requiring a cutoff level k
(k = drought level corresponding to SPEI) [57,58]. In this study, combined with the drought
characteristics of each grade of the TP, the value of k is –1 (i.e., moderate drought and
above). When the value of the random variable (SPEI) is greater than –1, it has a positive
run; otherwise, it has a negative run. In drought research, the length of a negative run is
called the drought duration (D), and the drought intensity (S) is the area encompassed by
the drought duration and the intercept level (Figure 2).
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Figure 2. Schematic diagram of drought characteristics recognition process.

According to the run theory, to calculate the return periods of different run lengths [59,60],
the calculation steps are as follows:

P =
1
n

n

∑
t=1

x f (x) x = 1, 2, · · · , n, (7)

where P is the mean probability of occurrence of different drought durations, x is the
drought duration, n is the number of months in the series of monthly precipitation for
many years, and f (x) is the number of occurrences of drought duration x.

The expected length (E) of the runs of different drought durations can be expressed by
the following formula:

E =
n

∑
t=1

x f (x)/
n

∑
t=1

f (x) , (8)

After eliminating the influence of dependent effects, the migration probability (Pz) of
different drought durations can be expressed as follows:

Pz = n(E− 1)/(E(n− 1)). (9)
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Hence, the one-dimensional run probability distribution function (F(x)) with parame-
ters including the drought duration and intensity can be expressed as follows:

F(x) =
1 + (1− Pz)(n− x)
1 + (1− Pz)(n− 1)

Pz
x−1. (10)

According to the definition of the run-length return period (T(x)), T(x) can be expressed
by the following formula:

T(x) =
x + (Pz

x − 1)/(1− Pz)

12
. (11)

In order to reflect the main research content more clarity, we have drawn a flowchart
(Figure 3), which mainly illustrates the input datasets, calculations, methods, and output
results of this study.
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Figure 3. Flowchart including the main steps of input dataset, computation, method, and output
result. The climate models are defined as follows: HadGEM2-ES-Hadley Centre global environment
model version 2-Earth system configuration, IPSL-CM5A-LR-Institut Pierre-Simon Laplace to study
natural climate variability and climate response to natural and anthropogenic forcings as part of the
5th phase of the coupled model intercomparison project, MIROC5-model of interdisciplinary research
on climate version 5, and NorESM1-M-Norwegian Earth system model.

3. Results
3.1. Model Simulation Capability Assessment

Because the CMIP5 model shows different simulation performances for different
climate elements in different regions, the model with the poorest performance will have
a serious impact on the results [61]. Therefore, according to the simulation ability of
different models in the TP for precipitation and mean temperature, this study selected
the best model, and on this basis, analyzed the future drought variation characteristics of
the TP. In order to more comprehensively and intuitively analyze the precipitation and
mean temperature simulation capabilities of the five CMIP5 models in the TP, the Taylor
diagrams analysis method is introduced here [62]. The Taylor diagrams comprehensively
examine the matching degree of model simulation and observation data from three aspects:
the spatial correlation coefficient, ratio of standard deviation, and centralization root mean
square error (RMSD).

Figure 4 shows the Taylor diagrams of precipitation and mean temperature over the
TP for five CMIP5 models under the RCP2.6 climate scenario from 2007 to 2015. The Taylor
diagram results show that the precipitation simulation capabilities of different models differ
to a certain degree, and the simulation results of the HadGEM2-ES, GFDL-ESM2M, and
NorESM1-M climate models are significantly better than the IPSL-CM5A-LR and MIROC5
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climate simulations. In addition, the variation amplitudes of the GFDL-ESM2M, NorESM1-
M, and IPSL-CM5A-LR climate model simulation results are close to the observed data
(Figure 4a). The five CMIP5 models have a similar ability to simulate the mean temperature
time series, and the spatial correlation coefficients are all above 0.9. Among them, the
GFDL-ESM2M climate model is the closest to the observational data, indicating that this
model can better simulate the variation characteristics of mean temperature (Figure 4b).
Overall, the GFDL-ESM2M model is better than the other four CMIP5 models in terms of
its ability to comprehensively simulate precipitation and mean temperature in the TP.
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3.2. Spatiotemporal Variation of SPEI
3.2.1. Temporal Variation Characteristics of SPEI

To explore the characteristics of the future drought evolution of the TP, the trends in
SPEI-12 from 2016 to 2099 under four climatic scenarios were analyzed (Figure 5). Under
the RCP2.6, RCP4.5, and RCP8.5 climate scenarios, the mean values of SPEI-12 for the
TP exhibit insignificant increases (p > 0.1), i.e., 8.93 × 10−5, 7.21 × 10−4, and 1.52 × 10−3,
respectively. Under the RCP6.0 climate scenario, the mean value of SPEI-12 for the TP
exhibits an insignificant (p > 0.1) decreasing trend of 2.07× 10−4. In addition, under RCP2.6,
RCP4.5, RCP6.0, and RCP8.5, the annual drought probabilities for the TP from 2016 to 2099
are 13.10%, 9.52%, 10.71%, and 14.29%, respectively, and the forecasted drought in each
case is mainly light drought.

In general, the mean value of SPEI-12 for the TP from 2016 to 2099 under the RCP2.6,
RCP4.5, and RCP8.5 climatic scenarios mainly exhibit an increasing trend, indicating that
the drought degree in the study area will be slowing in the future. This is mainly because
of the increasing trends of precipitation and temperature over the TP in the future, with
precipitation having a more significant effect on wet–dry changes over the TP.

To further research the intra-year distribution characteristics of the future wet–dry
variation on the TP, a statistical map of the temporal variation of the TP SPEI-1 from 2016
to 2099 under the four climatic scenarios was drawn (Figure 6). Under the RCP2.6, RCP4.5,
RCP6.0, and RCP8.5 climate scenarios, the future dry months (SPEI-1 < −0.5) on the TP
will be concentrated in the summer (June to August) and will account for 96.50%, 94.74%,
95.48%, and 92.86% of the total dry months, respectively. The wet months (SPEI-1 > 0.5)
will be concentrated in the spring (March to May) and October and will account for 88.67%,
89.80%, 92.35%, and 90.61% of the total wet months, respectively. In addition, under RCP2.6,
RCP4.5, RCP6.0, and RCP8.5 for the period of 2016–2099, regarding the monthly extreme
difference and standard deviation (Std) of the SPEI-1 of the TP, it can be expected that the
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maximum and minimum values will occur in May and December, respectively. As the
concentration of carbon dioxide emissions increases, the maximum value of the monthly
extreme difference (and the Std) will increase, as evidenced by predicted values of 1.87
(0.40), 1.70 (0.38), 2.14 (0.42), and 2.25 (0.45), respectively.
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In general, under the four climate scenarios, the characteristics of monthly wet–dry
variation and the annual distribution patterns for the TP are highly similar. However,
as the concentration of carbon dioxide emissions increases, the dispersion of intra-year
wet–dry variation will gradually increase, that is, towards the direction of non-uniform
development. This indicates that as the concentration of carbon dioxide emissions increases,
the intensity of climate extremes on the TP may also increase.

3.2.2. Spatial Variation Characteristics of SPEI

In this study, only the spatial variation characteristics of SPEI-12 under four future
climate scenarios were analyzed based on Equation (4). Under the RCP2.6, RCP4.5, RCP6.0,
and RCP8.5 climate scenarios, there will be a certain extent in the SPEI-12 of the TP
from 2016 to 2099 (Figure 7). The SPEI-12/10 years ranges from –0.152 to 0.116, from
–0.196 to 0.167, from –0.325 to 0.181, and from –0.374 to 0.269, respectively, for the four
climate scenarios, as listed above. These results indicate that as carbon dioxide emissions
increase, climate change on the TP will become more extreme in the future, and the trend of
increasing extreme drought events will become more obvious. Under RCP2.6, the resulting
aridification areas will be mainly concentrated in the Qilian Mountains, the Hengduan
Mountains, and Lhasa. Under RCP4.5, RCP6.0, and RCP8.5, the aridification areas will be
mainly concentrated in the QB, Kunlun Mountains, and Altun Mountains.
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Under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5 climate scenarios, 47.87%, 47.65%,
44.80%, and 35.45%, respectively, of the TP region will exhibit a trend of aridification in the
future; that is, the SPEI will exhibit a decreasing trend (Figure 8). Under the four climate
scenarios, the aridification of the TP will be dominated by insignificant aridification, and
the proportions of insignificant aridification will be 45.60%, 40.58%, 33.39%, and 19.75%,
respectively. As the carbon dioxide emissions concentration increases, the proportion of the
area of the TP exhibiting extremely significant aridification will also increase in the future,
from 0.01% to 2.79% to 6.35% to 10.06% for RCP2.6 to RCP8.5, respectively.

In addition, as the concentration of carbon dioxide emissions increases, the proportion
of humidified areas in the TP will increase under the RCP2.6, RCP4.5, RCP6.0, and RCP8.5
climate scenarios, from 52.13% to 52.35% to 55.20% to 65.55%, respectively. Moreover, the
proportions of insignificantly humidified area will be 50.05%, 40.11%, 41.74%, and 34.23%,
respectively. In the future, the TP will exhibit extremely significant humidified area ratios
of 0.05%, 3.39%, 3.04%, and 14.78%, respectively.

In summary, as the concentration of carbon dioxide emissions increases in the future,
the proportion of areal aridification on the TP will decrease, but the proportions of extremely
significant aridification and humidified areas will increase. This suggests that the TP will
be more prone to extreme droughts and floods in the future.
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3.3. Analysis of Drought Change Characteristics

Based on meteorological predictions for the different climatic scenarios, SPEI-1 was
used to analyze the characteristics of drought changes for the TP from 2016 to 2099. In
this study, we mainly analyzed the changing characteristics of drought frequency, drought
intensity, and drought cycles for the TP under the four climate scenarios.

3.3.1. Variation Characteristics of Drought Frequency in Different Grades

According to the drought identification method, combined with the SPEI-1 calculation
results for the 0.25◦ × 0.25◦ grid of the TP, the droughts in different regions of the TP were
distinguished, and the frequencies of drought events predicted from 2016 to 2099 for each
grid under the four climate scenarios were summarized and counted (Figure 9). Under the
RCP2.6, RCP4.5, RCP6.0, and RCP8.5 climate scenarios, the spatial variation characteristics
of the overall drought frequency on the TP in the future will conform to light drought >
moderate drought > severe drought > extreme drought ranking. Under the four climatic
scenarios, the frequency of light drought will be between 0.11% and 40.84%, mainly in the
southern regions of the TP. The frequency of moderate drought will be between 0.08% and
25.50%, mainly in the QB and southern regions of the TP. The frequency of severe drought
will be less than 16.94%, mainly in the northwestern regions of the TP. Extreme droughts
will occur less frequently, mainly concentrated in the western and central regions of the TP,
with a maximum of 6.32%.
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Figure 9. Spatial distributions of the frequency of droughts of various grades on the TP from 2016
to 2099 under four climatic scenarios: Frequency of light drought under the (a) RCP2.6, (b) RCP4.5,
(c) RCP6.0, and (d) RCP8.5 climatic scenarios; frequency of moderate drought under (e) RCP2.6,
(f) RCP4.5, (g) RCP6.0, and (h) RCP8.5; frequency of severe drought under (i) RCP2.6, (j) RCP4.5,
(k) RCP6.0, and (l) RCP8.5; and frequency of extreme drought under (m) RCP2.6, (n) RCP4.5,
(o) RCP6.0, and (p) RCP8.5.

To examine further the variation characteristics of future drought changes of various
categories for the TP, a statistical analysis of the different categories of drought at each grid
point was carried out (Figure 10). Under the four climate scenarios, the mean frequencies of
monthly droughts on the TP from 2016 to 2099 were relatively similar, but overall, the mean
frequency of droughts is predicted to increase at a rate of 2.65% as the concentration of
carbon dioxide emissions increase (RCP8.5 (30.27%) > RCP6.0 (30.23%) > RCP4.5 (30.07%)
> RCP2.6 (29.49%)). The mean frequencies of light droughts are predicted to be RCP2.6
(10.81%) < RCP8.5 (11.30%) < RCP4.5 (11.42%) < RCP6.0 (11.33%), with the largest rate
of increase being 5.72%. The mean frequencies of moderate and extreme droughts are
predicted to increase (i.e., RCP2.6 < RCP4.5 < RCP6.0 < RCP8.5), and the rates of increase
for moderate and extreme droughts are predicted to be 9.07% and 4.74%, respectively.
The mean frequencies of severe droughts are predicted to decrease gradually (i.e., RCP2.6
(7.34%) > RCP4.5 (6.89%) > RCP6.0 (6.77%) > RCP8.5 (6.66%)), with a decreasing rate of
9.25%. In addition, under the four climatic scenarios from RCP2.6 to RCP8.5, the Std of
various drought categories in the TP are in the order of: light drought > moderate drought >
severe drought > extreme drought, and Cv of various drought categories are in the order of:
extreme drought > severe drought > light drought > moderate drought. These results also
indicate that, as the concentration of carbon dioxide emissions increases, the Std and Cv of
various drought categories on the TP are predicted to exhibit overall decreasing trends.

In general, as the concentration of carbon dioxide emissions increases, the frequency of
monthly droughts on the TP from 2016 to 2099 will increase, the increase of the frequency of
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moderate droughts will become even more pronounced, and all categories of drought will
trend toward more uniform spatial distributions. The degree of dispersion of the spatial
distribution of droughts at different levels for the four climate scenarios are in the order of:
extreme drought > severe drought > light drought > moderate drought.
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Figure 10. Predicted drought frequencies for various categories at each grid point on the TP from
2016 to 2099 under four climatic scenarios.

3.3.2. Variation Characteristics of Drought Intensity under Different Climatic Scenarios

Based on the calculated sub-mean drought intensity of each grid point, the spatial
distribution map of the sub-mean drought intensity for the four climatic scenarios con-
sidered for the TP from 2016 to 2099 was drawn (Figure 11). Under the RCP2.6, RCP4.5,
RCP6.0, and RCP8.5 climate scenarios, the sub-mean drought intensities on the TP will
range from 1.030 to 3.106, 1.042 to 3.044, 1.027 to 2.973, and 1.033 to 2.759, respectively. The
region with the strongest drought intensity is located mainly in the northwest and central
part of the TP, while the region with the weakest drought intensity is located mainly in
the south of the TP. As the concentration of carbon dioxide emissions increases, the spatial
means of the sub-mean drought intensity on the TP from 2016 to 2099 are predicted to be
1.549, 1.535, 1.534, and 1.531, respectively; the Std values are predicted to be 0.169, 0.165,
0.168, and 0.163, respectively; and the Cv values are predicted to be 0.109, 0.107, 0.109, and
0.107, respectively.

In general, there are certain differences in the spatial distributions of the sub-mean
drought intensities for the four climatic scenarios for the TP from 2016 to 2099, but the
spatial distribution of drought intensities is more uniform than that of drought frequency.
The spatial mean values of the sub-mean drought intensity are low, not exceeding 1.55,
and the Cv values are also low, not exceeding 0.11. As the concentration of carbon dioxide
emissions increases, the overall change in the spatial mean of sub-mean drought intensity is
predicted to exhibits a decreasing trend, and the spatial distribution of sub-mean drought
intensity develops in a more uniform direction.
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3.3.3. Migration Probabilities and Return Periods of Different Drought Durations

In this study, the run theory was used to calculate the migration probabilities and
return periods of different drought durations on the TP under the four climatic scenarios.
In calculating the migration probabilities of different drought durations, combined with
the SPEI drought grade distribution and the impacts of different grades of drought on the
TP, k is taken as –1, i.e., this study only examined the migration probabilities of moderate
and more severe droughts on the TP (Figure 12). Under the four climatic scenarios, the
drought duration of the TP exhibited approximately the same trend as the theoretical
probability distribution. As the drought duration increases, the theoretical probability
density decreases exponentially, and when the drought duration exceeds 5 months, the
theoretical probability density approaches 0. In addition, under the RCP2.6, RCP4.5,
RCP6.0, and RCP8.5 climate scenarios, the drought duration on the TP is mainly less than
3 months, accounting for 82.09%, 80.89%, 79.80%, and 78.28% of the total drought duration,
respectively. This indicates that as the concentration of carbon dioxide emissions increases,
the possibility of long-lasting meteorological drought on the TP gradually increases.

When the TP drought duration exceeds 5 months, the theoretical probability density
will approach zero. Therefore, only the spatial distribution map of the TP drought cycle
from 1 to 5 months (Figure 13) was drawn in this study. It can be seen from Figure 13
that for the same drought duration conditions, the spatial distribution of the drought
cycles on the TP under the four climate scenarios was relatively consistent. However, as
the concentration of carbon dioxide emissions increases, the drought cycle of the TP is
gradually shortened. In addition, under the four climate scenarios, the drought cycle of
drought duration for one month on the TP is less than one year. The distribution of drought
cycles of drought durations of 2–5 months shows obvious differences between the north
and south, and the drought cycles in the southern region are longer than in the northern
region. The drought cycle of 2-month drought duration in the southern region of the TP is
between 2 and 10 years, and that in the northern region is between 1 and 2 years. The cycle
of 3-month drought duration in the southern region is between 10 and 50 years, and that in
the northern region is between 2 and 5 years. The cycle of 4-month drought duration in the
southern region is between 50 and 200 years, and that in the northern region is between 2
and 10 years. The cycle of 5-month drought duration in the southern region is between 200
and 500 years, and that in the northern region is between 5 and 20 years.

Based on these results, it can be concluded that the drought duration is different across
the different regions of the TP, and the distribution of drought cycles is also different. The
greater the drought duration, the longer the drought cycle. From the perspective of the
spatial distribution of drought cycles, the southern region of the TP has a longer drought
cycle than the northern region, indicating that the northern region is more susceptible
to drought, which is consistent with the actual situation. The reason for this is that the
southern region of the TP has a subtropical and tropical northern marginal mountain forest
climate, with an annual precipitation of more than 1000 mm, while the annual precipitation
in the northern region of the TP is less than 600 mm (Figure 1b). In addition, precipitation
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in the northern region of the TP is more concentrated in summer, therefore, spring and
autumn droughts are more likely to occur in the northern region.
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Figure 13. Distribution maps of the drought cycle of the TP for drought durations of 1–5 months under
four climatic scenarios: drought duration of 1 month under the (a) RCP2.6, (b) RCP4.5, (c) RCP6.0, and
(d) RCP8.5 climate scenarios; drought duration of 2 months under (e) RCP2.6, (f) RCP4.5, (g) RCP6.0,
and (h) RCP8.5; drought duration of 3 months under (i) RCP2.6, (j) RCP4.5, (k) RCP6.0, and (l) RCP8.5;
drought duration of 4 months under (m) RCP2.6, (n) RCP4.5, (o) RCP6.0, and (p) RCP8.5; drought
duration of 5 months under (q) RCP2.6, (r) RCP4.5, (s) RCP6.0, and (t) RCP8.5.

4. Discussion
4.1. Adaptability Analysis of SPEI Index

To evaluate the ability of the SPEI index to reflect the annual scale of drought on the
TP, the SPEI, SPI, and precipitation anomaly in percentage (PA) indices of each grid point
under the four climate scenarios from 2016 to 2099 were used to conduct a correlation
analysis (Figure 14). The following levels of degree of correlation were defined: greater
than 0.60, a strong positive correlation; between 0.40 and 0.60, a significant correlation;
between 0 and 0.4, a weak positive correlation; and less than 0, a negative correlation.
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Judging from the spatial distribution results of the correlation coefficients of the three
drought indices under the four climate scenarios, the correlations between the SPEI, SPI,
and PA indices for the southern part of the TP are stronger than those for the northern
part, because the southern region receives more precipitation and is mostly a high-altitude
mountainous area, with relatively low temperatures and evaporation [63,64]. The change in
precipitation dominates the wet–dry change in the southern part of the TP [65]. Therefore,
the SPI and PA indices, which only consider precipitation, can better reflect the wet–dry
changes in the southern part of the TP. The SPI, PA, and SPEI indices are all strongly
positively correlated. However, the precipitation in the northern part of the TP is relatively
low, especially in the QB, where precipitation and evaporation jointly dominate the wet–dry
changes in this region [66,67]. Therefore, the correlations between the SPI, PA, and SPEI
indices in the northern region are poorer than in the southern region.

In addition, the temperature and evaporation of the TP increase with carbon dioxide
emissions, and the correlations between the SPEI index (which considers precipitation and
evaporation) and the SPI and PA indices (which only consider precipitation) gradually
decrease. This is especially true for the QB under the RCP8.5 climate scenario: the corre-
lation coefficients of the SPI, PA, and SPEI indices were all less than 0.4, indicating weak
positive correlations. This indicates that as the temperature increases in the future, the
influence of evaporation on climate change on the TP will gradually increase, and the SPEI
index (which considers precipitation and evaporation) will better reflect the characteris-
tics of climate change on the TP [68] This is consistent with research results obtained by
Xu et al. [69], who found that by using different drought indices to predict the drought
characteristics of humid subtropical basins in China in the context of climate warming, the
SPI would not reflect the effect of evaporation and would underestimate the frequency of
regional droughts.

4.2. Difference Analysis of Drought Variation at Different Time Scales

The annual-scale degree of drought in the region will tend to decrease slightly in the
future (Figure 5) as a result of the increases in precipitation and temperature in the TP,
except under the RCP6.0 climate scenario. Xu et al. [70] analyzed China’s past drought
trends and found that the TP has exhibited a wetting trend, which is consistent with our
research findings on the future drought trends predicted for the TP. In addition, we found
that the frequency of monthly-scale droughts in the TP is predicted to increase, which is
consistent with the results of Han et al. [57] and Wang et al. [71], who found that southwest
China may suffer from more severe drought disasters in the future.
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In general, there will be differences in the characteristics of drought change at different
time scales on the TP in the future. The main reasons for this phenomenon are that the
frequency of severe drought and extreme drought will increase significantly and that
extremely humid events will also become more frequent, especially under the RCP8.5
climate scenario (Figure 8). The annual-scale SPEI can reflect the relationship between the
long-term trend and interannual variation of drought, but it is less sensitive to extreme
events, so it is more suitable for long-term drought trend assessment [49]. The monthly-
scale SPEI can reflect the characteristics of regional short-term dry and wet variation
and is more sensitive to extreme events, and thus it is more suitable for the analysis of
drought characteristics [50]. Therefore, this study analyzed the future drought variation
characteristics of the TP on annual and monthly scales, which can better reflect the drought
variation characteristics of the study area under different climate scenarios.

4.3. Analysis of Difference in Spatiotemporal Variation of Drought Characteristics

As global carbon dioxide emission concentrations, as well as the extreme difference
and Std of the SPEI-1 for the TP, are predicted to increase, this indicates that the dispersion of
dry-wet changes in each month will also gradually increase, and that the annual distribution
law will gradually develop in a non-uniform direction (Figure 6). The main reasons for this
phenomenon are that extreme precipitation in the TP will respond strongly to warming in
the future, daily mean precipitation extremes will increase, extreme precipitation events will
occur significantly more frequently, and the intra-annual distribution of precipitation will
be more uneven than in the past, which is consistent with previous research results [72–74].

Spatially, as the carbon dioxide emission concentration increases, the spatial distri-
butions of drought and sub-mean drought intensity at all levels on the TP will develop
in a more uniform direction (Figures 8 and 10). There are two main reasons for this phe-
nomenon. First, in the context of climate warming, the temperature of the TP has increased
significantly, which has aggravated the melting of ice and snow and the increase of per-
mafrost active layers [75,76]. These changes have led to soil moisture change and migration
(especially in the upper layer), and have affected water and heat exchange between the
land and air [77]. Second, the TP has a high altitude and complex terrain, with a large
spatial variability of annual and seasonal precipitation [78,79]. As the overall precipitation
on the TP increases, the spatial distribution of water differences decreases [80].

In general, the annual precipitation on the TP will increase in the future, and the
annual distribution will develop in a more uneven direction, resulting in differences in the
spatiotemporal variation of drought on the TP and increasing the frequency of extreme
climate events on the TP. Previous studies have shown that ~45% of the world’s land is
affected by drought disasters, and the annual losses due to drought are as high as 6 to
8 billion dollars [81]. In the future, the global area affected by drought will continue to
expand, and there will be a trend of gradual expansion of drought from arid areas to
sub-humid and humid areas [11]. By the end of this century, it is expected that dry land will
cover half of the Earth’s land surface, and the total area of extremely dry land will increase
by more than double [82,83]. In addition, studies have shown that future aridification will
not only cause huge economic losses but also lead to systematic and abrupt changes in
various ecosystem properties [84,85]. Under the scenario of future global warming, the TP,
as a sensitive and vulnerable region, will face a greater threat of drought, especially extreme
drought events. Therefore, we should continue to pay close attention to climate change in
the TP and improve our abilities to predict and provide early warnings of extreme climate
disasters [86,87].

5. Conclusions

Annual and monthly scale SPEI drought indices were used with the GFDL-ESM2M
climate model to study predicted drought trends for the TP from 2016 to 2099 under four
RCP scenarios: RCP2.6, RCP4.5, RCP6.0, and RCP8.5, representing very low, low, medium,
and high levels of greenhouse gas emissions, respectively. The duration, frequency, intensity,



Remote Sens. 2022, 14, 5084 19 of 22

and cycle of drought events were analyzed based on the variation of SPEI on the TP over
different time, and the applicability of different drought indices was examined. The
following conclusions are drawn from the results:

(1) The future climate of the TP is predicted to be warmer and more humid than that
of the past, and these changes are most obvious under the RCP8.5 climate scenario. As the
concentration of carbon dioxide emissions increases, the annual wet–dry variation of the TP
will tend to develop in a non-uniform direction, and the proportion of areas of extremely
significant aridity and humidification will both increase significantly, which indicates the
possibility of increased extreme disasters for the region in the future.

(2) Under all four climate scenarios, the TP will be dominated by light drought in the
future. As the carbon dioxide emission concentration increases, the frequency of occurrence
of droughts in the TP will gradually increase, yet the spatial average value of sub-mean
drought intensity will decrease. However, the spatial distribution of both these factors will
tend to develop in a uniform direction.

(3) Under all four climate scenarios, the drought duration of the TP is mainly less than
3 months, and when the drought duration exceeds 5 months, the theoretical probability
density will approach 0. As the carbon dioxide emission concentration increases, the
drought cycle of the TP will gradually shorten. The southern region of the TP has a longer
drought cycle than the northern region, which indicates that the northern region is more
susceptible to drought.
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