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Abstract: Miscanthus is one of the most promising perennial crops for bioenergy production, with
high yield potential and a low environmental footprint. The increasing interest in this crop requires
accelerated selection and the development of new screening techniques. New analytical methods
that are more accurate and less labor-intensive are needed to better characterize the effects of genetics
and the environment on key traits under field conditions. We used persistent multispectral and
photogrammetric UAV time-series imagery collected 10 times over the season, together with ground-
truth data for thousands of Miscanthus genotypes, to determine the flowering time, culm length,
and biomass yield traits. We compared the performance of convolutional neural network (CNN)
architectures that used image data from single dates (2D-spatial) versus the integration of multiple
dates by 3D-spatiotemporal architectures. The ability of UAV-based remote sensing to rapidly
and non-destructively assess large-scale genetic variation in flowering time, height, and biomass
production was improved through the use of 3D-spatiotemporal CNN architectures versus 2D-spatial
CNN architectures. The performance gains of the best 3D-spatiotemporal analyses compared to
the best 2D-spatial architectures manifested in up to 23% improvements in R2, 17% reductions in
RMSE, and 20% reductions in MAE. The integration of photogrammetric and spectral features with
3D architectures was crucial to the improved assessment of all traits. In conclusion, our findings
demonstrate that the integration of high-spatiotemporal-resolution UAV imagery with 3D-CNNs
enables more accurate monitoring of the dynamics of key phenological and yield-related crop traits.
This is especially valuable in highly productive, perennial grass crops such as Miscanthus, where
in-field phenotyping is especially challenging and traditionally limits the rate of crop improvement
through breeding.

Keywords: convolutional neural networks; time series; Miscanthus; flowering time; culm length; biomass

1. Introduction

New and improved bioenergy crops are needed to enhance the domestic production
of energy, stimulate rural economies, make agriculture more resilient to climate change,
and reduce greenhouse gas emissions by reducing dependence on fossil-fuel-based prod-
ucts [1]. Meeting this challenge requires the rapid development of crops optimized for their
ecosystem services, harvestable biomass, and high-value compounds [2]. Miscanthus is
a perennial rhizomatous C4 grass originating from East Asia, with high photosynthetic
efficiency, high nutrient- and water-use efficiency, and wide adaptability to various climates
and soil types [3], i.e., traits that favor high productivity and sustainability on marginal
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lands [3]. Consequently, it is expected to play a major role in the provision of biomass as a
feedstock for energy and bioproducts [4].

However, the need for rapid domestication and improvement of dedicated energy
crops presents an unprecedented challenge to plant breeding that can best be addressed
with the application of cross-disciplinary approaches and novel technologies [2]. Tradi-
tionally, the selection of the best candidate genotypes in breeding programs has mainly
relied on in situ visual inspection [5] and laborious destructive sampling throughout critical
stages of crop development [6]. Remote sensing has been widely adopted for monitoring
physiological and structural traits in annual crops [7,8]. Nevertheless, the adoption of this
technology has been significantly slower in perennial feedstock grasses [9]. This partially
reflects less research investment relative to existing commodity crops, as well as challenges
associated with large, complex, rapidly growing canopies, where signal saturation and
occlusion can be significant problems [10]. The challenging nature of Miscanthus propaga-
tion also means that early-phase selection trials [11] often require evaluation of traits on
individual plants [12], rather than as closed stands in plots, which adds to the technical
difficulty of using remote sensing. The development of digital tools that provide precise
and dedicated characterization of perennial grasses could therefore substantially reduce
the cost of evaluating large populations and commercial fields, but requires technical
innovation to do so [13].

Vegetation indices [14] and photogrammetric features [15] have been used to estimate
biomass yield in bioenergy crops. More recently, vegetation indices derived from remote
sensing imagery and machine learning were integrated to assess the relationship between
the senescence rate and moisture content in Miscanthus [13]. Research also suggests that the
use of trajectories of photogrammetric or vegetation indices can benefit the predictability
of traits of interest [16,17]. There is potential to increase the precision and automation
of analyses by acquiring images with a richer feature set and through the use of more
advanced analytical approaches that could more fully exploit the spatial and temporal in-
formation contained in the images. Additionally, the increasing availability of satellite- [18]
and UAV-based sensors [19], producing imagery at unprecedented spatial and temporal res-
olutions, represents a dramatic increase in the volume of data available. This then requires
the development of modular and scalable pipelines for actionable impact in agricultural
applications. Convolutional neural networks (CNNs) have proven powerful in extracting
information from very-high-spatial-resolution aerial imagery [20,21]. The capacity of CNNs
to automatically generate representations of complex features provides an advantage over
traditional machine learning, which has mainly relied on manual supervision, e.g., feature
generation and selection during modelling implementation [16,21]. However, most existing
applications of CNNs evaluate variation in image features over the two dimensions of
images collected at a single point in time. Given the dynamic nature of plant growth, there
is an increasing interest in adopting models capable of also integrating time as a third di-
mension explicitly captured by the CNN to better understand and gain novel insights about
the plant trait(s) under study [22,23]. Previous studies suggest that multi-date integration
of images can perform better than single-date CNNs in a limited set of circumstances. For
example, using time-series UAV RGB and weather data collected from nine farm fields
including oats, barley, and wheat, spatiotemporal deep learning architectures were able
to outperform single-time CNNs in intra-field crop yield estimates [24]. In a more recent
publication, a spatiotemporal CNN architecture was superior to a traditional CNN for
detecting and determining the severity of lodging in biomass sorghum [25]. However,
these are comparatively simple phenotyping challenges. The value of adopting CNN
architectures capable of exploiting the temporal information contained in a sequence of
images over time may be even greater when presented with the challenge of accurately
distinguishing differences in complex traits within a breeding population.



Remote Sens. 2022, 14, 5333 3 of 20

The overall aim of this study was to evaluate how spectral and geometric features
in aerial imagery collected throughout the growing season under field conditions could
best be exploited in analyses by CNNs for phenotyping time-series-based plant-level
predictions of three relevant Miscanthus productivity traits: flowering time, culm length,
and biomass yield. We propose to adopt CNNs as a means to ease and semi-automate
both feature extraction and the estimation of these three relevant Miscanthus traits. In
the context of performing data-based modelling to quantify relevant descriptive traits of
Miscanthus, we first utilized a timepoint CNN architecture (i.e., 2D-CNN) to understand
the predictive ability of the proposed approach to determine the traits throughout the
season. We then focused on determining the value of persistent aerial monitoring by
implementing a spatiotemporal CNN architecture (i.e., 3D-CNN) based on sequences of
time-steps to understand whether it outperformed the predictive ability of single-time
models. The third element of the study was an assessment of how the accuracy of trait
prediction depends on the use of the various spectral and geometric features derived from
the UAV imagery. Finally, we visualized activation maps to derive insights about the CNN
learning and predictive ability [26].

2. Materials and Methods
2.1. Experimental Site

The data collected consisted of three Miscanthus diversity trials located at the Univer-
sity of Illinois Energy Farm, in Urbana (40.06722◦N, 88.19583◦W) (Figure 1a,b). In one trial
we evaluated M. sacchariflorus, and in the other trials we evaluated M. sinensis. The trials
were planted in spring 2019; this study focused on the second year (2020)—the first growing
season in which we typically phenotyped Miscanthus plants for yield and related traits.
The M. sacchariflorus trial (Figure 1a, north field, rectangular yellow area divided into four
quadrants) included 2000 entries as single-plant plots in four blocks, each block including
58 genetic backgrounds (half-sib families). The analysis was limited to 46 of these genetic
backgrounds from South Japan. The size of the trial was 79 m long × 97 m wide, and each
plot (plant) was 1.83 × 1.83 m size. A full set of images of the plots were prepared for this
trial, and 1307, 1867, and 1864 images for flowering time, culm length, and biomass yield,
respectively, were used in the analysis to allow for comparison with the ground-truth data.
Two adjacent M. sinensis trials were studied, with one for the South Japan genetic group
(Figure 1a, southern field, two southern tiers in yellow) and the other for the Central Japan
genetic group [27] (Figure 1a, the two yellow-highlighted northern tiers in the southern
field). Each trial consisted of five blocks (tiers). Between blocks, there were 1.83 m wide
alleys (Figure 1a, south field, in pink). Each plot consisted of up to 10 plants spaced 0.91 m
within and between plots within each block. The plots contained seedlings from a single
half-sib family. Miscanthus is an obligate outcrosser due to self-incompatibility, so each
seedling was genetically unique. Thus, families were replicated in these trials. Each block
had 130 plots (up to 1300 plants). In the M. sinensis South Japan trial there were 124 families,
and in the Central Japan trial there were 117 families; some large families were included
in more than one plot per block. Only two middle blocks of each M. sinensis trial were
considered in the analysis (Figure 1a, south field, in yellow). Additionally, subsets of 1722,
2519, and 2481 images for flowering time, culm length, and biomass yield, respectively,
were used to allow for comparison with the ground-truth data. The size of the field that
included both of the M. sinensis trials was 115 m long × 121 m wide.
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Figure 1. (a) Aerial overview of Miscanthus sacchariflorus (top) and Miscanthus sinensis (bottom) trials 
and plots analyzed in this study (in yellow) located at the Energy Farm, University of Illinois, Ur-
bana. (b) Close-up images of plots and individual plants under intensive growth during the summer 
of 2020 (top, M. sacchariflorus; bottom, M. sinensis). 

2.2. Traits of Interest and Ground-Truthing 
The target traits—flowering time, culm length, and biomass yield—were selected as 

relevant descriptors of the phenology and aboveground productivity of the crop [5]. Man-
ual screening of Miscanthus trials is a massive repeated effort carried out by researchers 
at the University of Illinois as part of its breeding program. Regular field activities include 
visual determination of flowering time (Figure 2a), collection of mature stems for meas-
urement of culm length, and end of season harvest (i.e., destructive sampling) to estimate 
biomass yield (Figure 2b,c). In these trials, each plant was phenotyped directly for the 
target traits and other traits of interest. 

 
Figure 2. Example cases of plant traits collected during field activities and used as ground-truthing 
for model implementation and validation. Examples of (a) early (back) and late (front) flowering 
time, (b) culm length measurement, and (c) biomass yield collected in seasons 2020–2021. 

In this study, the data collected manually provided the inputs for implementing 
models based on UAV data. The target traits are described as follows:  

Figure 1. (a) Aerial overview of Miscanthus sacchariflorus (top) and Miscanthus sinensis (bottom) trials
and plots analyzed in this study (in yellow) located at the Energy Farm, University of Illinois, Urbana.
(b) Close-up images of plots and individual plants under intensive growth during the summer of
2020 (top, M. sacchariflorus; bottom, M. sinensis).

2.2. Traits of Interest and Ground-Truthing

The target traits—flowering time, culm length, and biomass yield—were selected as
relevant descriptors of the phenology and aboveground productivity of the crop [5]. Manual
screening of Miscanthus trials is a massive repeated effort carried out by researchers at the
University of Illinois as part of its breeding program. Regular field activities include visual
determination of flowering time (Figure 2a), collection of mature stems for measurement
of culm length, and end of season harvest (i.e., destructive sampling) to estimate biomass
yield (Figure 2b,c). In these trials, each plant was phenotyped directly for the target traits
and other traits of interest.

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 20 
 

 

 
Figure 1. (a) Aerial overview of Miscanthus sacchariflorus (top) and Miscanthus sinensis (bottom) trials 
and plots analyzed in this study (in yellow) located at the Energy Farm, University of Illinois, Ur-
bana. (b) Close-up images of plots and individual plants under intensive growth during the summer 
of 2020 (top, M. sacchariflorus; bottom, M. sinensis). 

2.2. Traits of Interest and Ground-Truthing 
The target traits—flowering time, culm length, and biomass yield—were selected as 

relevant descriptors of the phenology and aboveground productivity of the crop [5]. Man-
ual screening of Miscanthus trials is a massive repeated effort carried out by researchers 
at the University of Illinois as part of its breeding program. Regular field activities include 
visual determination of flowering time (Figure 2a), collection of mature stems for meas-
urement of culm length, and end of season harvest (i.e., destructive sampling) to estimate 
biomass yield (Figure 2b,c). In these trials, each plant was phenotyped directly for the 
target traits and other traits of interest. 

 
Figure 2. Example cases of plant traits collected during field activities and used as ground-truthing 
for model implementation and validation. Examples of (a) early (back) and late (front) flowering 
time, (b) culm length measurement, and (c) biomass yield collected in seasons 2020–2021. 

In this study, the data collected manually provided the inputs for implementing 
models based on UAV data. The target traits are described as follows:  
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for model implementation and validation. Examples of (a) early (back) and late (front) flowering
time, (b) culm length measurement, and (c) biomass yield collected in seasons 2020–2021.
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In this study, the data collected manually provided the inputs for implementing
models based on UAV data. The target traits are described as follows:

Flowering time (50% heading date): Determined as the date on which 50% of the
culms that contribute to the plant’s canopy height had inflorescences that emerged ≥1 cm
beyond the flag leaf sheath. Each plant was phenotyped weekly between days of the year
(DOYs) 238 and 285 (Table 1).

Culm length: Determined as the length in centimeters of the plant’s tallest culm in
late autumn, measured from the base of the stem to the tip of the panicle if present, or
otherwise to the highest part of the highest leaf. Culms were collected in December 2020
(Table 1) from dormant plants by cutting at ground level, tagged with a barcode label, and
transported to a laboratory for measurement.

Biomass yield: After dormancy, the stems of each plant were cut 15–20 cm from the
ground. To determine the dry biomass yield, samples were oven-dried at 60 ◦C until a con-
stant weight was obtained before recording the dry weights. For the M. sinensis trials, whole
plants were tied in a bundle, tagged with a barcode label, cut with a handheld bush cutter
(Stihl Inc., Virginia Beach, VA, USA), dried, and then weighed. For the M. sacchariflorus
trial, plots were harvested using a Wintersteiger Cibus Harvester (Wintersteiger AG, Ried,
Austria) with a Kemper Champion C 1200 Forage Harvester attachment (Kemper GmbH &
Co. KG, Stadtlohn, Germany). With the Wintersteiger harvester, the plots were chopped,
and fresh weights of the main sample were measured using the machine’s weigh-wagon.
A 1 kg subsample was taken from the harvester for measuring the fresh and dry weights
to estimate the water content and calculate the dry weight of the plot. The yield of dry
weight per plot was expressed in g per plant. Biomass harvesting was conducted between
February and March, 2021 (Table 1).

Table 1. Timing of data collection in the field: ground-truthing in the trials and UAV flights through-
out the season considered for the CNN modelling setup.

Traits Data Collection Dates (DOY)

Flowering time

Emergence of
inflorescences
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Table 1. Cont.

Traits Data Collection Dates (DOY)

UAV (time sequence)
221:310 (5)
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2.3. Aerial Data Collection and Imagery Preprocessing

The aerial platform utilized was a Matrice 600 Pro hexacopter (DJI, Shenzhen, China)
equipped with a Gremsy T1 gimbal (Gremsy, Ho Chi Minh, Vietnam), which held a
multispectral (MSI) Rededge-M sensor (Micasense, Seattle, WA, USA). The camera included
five spectral bands in the blue (465 to 485 nm), green (550 to 570 nm), red (663 to 673 nm),
red edge (712 to 722 nm), and near-infrared (820 to 860 nm) regions of the electromagnetic
spectrum. Flights were conducted 10 times in the season between DOYs 157 and 332,
under clear-sky conditions and ±1 h from solar noon. Once Miscanthus is senesced late in
the growing season, the plants stay dormant during winter, so there is no further gain in
aboveground biomass. The standard agronomic practice is for this crop to be harvested
in the winter. During winter, cold temperatures make UAV operation very unreliable,
so image acquisition cannot be continued into that period. The altitude of the flights
was set to 20 m above ground level, resulting in a ground sampling distance (GSD) of
0.8 cm/pixel. The flights were planned with 90% forward and 80% side-overlapping
during image acquisition to ensure high-quality image stitching and photogrammetric
reconstruction. Ten black-and-white square panels (70 cm × 70 cm) were distributed in
the trials as ground control points (GCPs). An RTK (real-time kinematic) survey was
implemented using a Trimble R8 global navigation satellite system (GNSS) integrated with
the CORS-ILUC local station to survey the GCPs for accurate co-registration of orthophotos
throughout the season. A standard Micasense calibration panel was imaged on the ground
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before and after each flight for spectral calibration. The images were further imported
into Metashape version 1.7.4 (Agisoft, St. Petersburg, Russia) to generate two types of
aerial image features: (1) multispectral, 5-band orthophotos; and (2) geometric orthophotos,
resulting from the photogrammetric reconstruction of the canopy, referred to as crop surface
models (CSMs). The computation time for processing each orthophoto was 3 h and 10 min
for the M. Sacchariflorus trial and 4 h and 20 min for the M. Sinensis trial, using an Intel i7
16GB RAM CPU and 8GB GPU. An early-season flight before plant emergence provided
a ground-level reference for the extraction of the absolute height from the CSM files on
subsequent sampling dates (n = 10). The resulting multispectral and CSM orthophotos were
resampled to a common 1.4 cm/pixel resolution and stacked into one multi-feature and
multi-date raster stack object. Image chips for each plot/plant were generated by clipping
the stacked orthophoto objects using a polygonal shapefile including each plot polygon of
the trials. Three variations of the image chips were generated: (1) spectral features from
RGB images (RGB); (2) spectral features from the RGB, red-edge, and NIR bands (MS); and
(3) spectral and geometric features from the RGB, red-edge, and NIR bands along with
a crop surface model (CSM_MS) (Table S1). A customized pipeline for the production of
image chips, data import, and matching between images and labels was implemented in
Python 3.7.11.

2.4. CNN Modelling

The architecture of a convolutional neural network consists of a sequence of layers,
where every layer transforms the activations or outputs of the previous layer through an-
other differentiable function. The core component of the CNN algorithm is the convolution
operation [28], where a set of trainable kernels are applied to an input image (Figure 3a)
to generate a set of spatial features that describe the target predictor. The first part of the
architecture, known as the backbone feature generator, learns basic features in the first
layers and more complex feature representations at deeper layers [28] (Figure 3b). The
final output of the feature generator is a set of feature maps that are directly fed into the
regressor head, which uses a linear function to deliver the prediction (Figure 3c). The
3D-CNN architecture belongs to the group of spatiotemporal CNN architectures and can
be defined as a variation of the traditional 2D-CNN [29]. It includes all of the standard
features but adds a new dimension across the time sequence of the image, enabling capture
of the temporal dynamics of vegetation that can contribute to better characterizing the trait
of interest. The spatiotemporal architecture adopts a 3D kernel that operates in both the
spatial and temporal dimensions of the multi-timepoint image.
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trait prediction.
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2.5. CNN Implementation and Metrics

A customized CNN architecture was utilized for all traits under study. The backbone
feature generator includes five convolution layers, maximum-pooling operations following
the convolution operation in layers 2 and 4, and 50% feature dropout and global average
pooling at layer 5, (Figure 3b). After preliminary experimentation, the number of features
in each layer is set to 64, 64, 32, 32, and 32, respectively (Figure 3b). Zero padding, stride
equal to one with no overlapping, and the rectified linear unit activation function are
also considered in the architecture design. The convolution layers are two- and three-
dimensional for 2D-CNNs and 3D-CNNs, respectively. In contrast with the 2D-CNN
kernel, the 3D-CNN kernel moves in three instead of two dimensions. The 2D-CNN’s
kernel filter size was set to (3 pixels × 3 pixels × n features), while the 3D- kernel’s size
was set to (3 pixels × 3 pixels × n features × n-time sequence lengths), operating at the
sequence of each feature over time. The 2D-max-pooling was set to two following each
convolution, with 3D-max-pooling equal to two over the spatial dimensions and equal to
one over the time/depth dimension. The feature generator was linked to a fully connected
layer or regressor head, which generated the prediction values for each trait.

A 2D-CNN analysis was conducted on data from individual dates for each trait as a
means to test the sensitivity between ground-truthing, timing of aerial data collection, and
modelling of the CNN architectures. In addition, various configurations of input data from
sequences of dates were analyzed using the 3D-CNN architecture to test the sensitivity of
the predictions to variations in the length and timepoint selected in the time sequence to
the final prediction power of the traits. Table 1 summarizes the dates of ground-truth data
collection and aerial data collection, as well as the different timepoints and time ranges
selected for analysis in the 3D-CNN architecture. We tailored the time series tested to
reflect that flowering time is a discrete event that occurs in the mid-to-late season, while
end-of-season culm length and biomass are the product of growth processes that span
the whole field season. Flowering occurred from DOY 238 to 283. Therefore, we focused
the 3D-CNN analysis around this period, but with different time sequences that varied in
the number of dates, their timing with respect to when the crop flowered, and the total
duration of the sampling period. Analysis of culm length and biomass yield used the same
set of time series. In their case, we considered a wider window of time for aerial coverage,
up to and including all phases of the growing season. Periods of early intensive vegetative
growth, the transition between the vegetative and reproductive stages, and the senescence
period were also selected for isolated analysis.

The modelling step was implemented in the Python Keras API with a TensorFlow-
GPU version 2.8.0 backend using a NVIDIA GeForce RTX 3070 (8 GB) GPU unit. The
combination of different types of features, CNN architectures, and time sequence lengths
of days of flights resulted in the implementation of 138 models (Table S2). In total, across
all traits, 81 models were implemented using the 2D-CNN architecture and 57 models were
implemented using the 3D-CNN architecture. Each model fitting was iterated 5 times using
a random training and testing partition to ease the convergence of the models’ prediction
metrics. The dataset used for prediction of the traits varied for each trait according to the
ground-truth data available. The total number of image chips for the analysis of flowering
time, culm length, and biomass yield on each date for the 2D-CNN and on all dates stacked
for the 3D-CNN was 3029, 4296, and 3937, respectively. The input datasets were split (70:30)
into training and testing datasets. The training datasets were split further (80:20) into
training and validation datasets. The validation datasets were used to optimize the models’
performance and prevent overfitting during training. Mean squared error was used as the
loss function. The models were trained up to 500 epochs using an early stop with a lambda
value of 0.01 to ensure efficient training time. The learning rate and decay parameters were
initialized with values of 0.01 and 0.001, respectively. The test datasets were utilized to
expose the models to unseen data to evaluate the generalization ability of the models.
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The mean absolute error (MAE), the relative root-mean-square error (RMSE), and
the coefficient of determination (R2) were estimated (Equations (1)–(3)) to determine the
performance of the CNNs for each of the traits.

MAE =
1
n ∑n

i=1|yi − ŷi| (1)

RMSE =

√
1
n ∑n

i=1 (yi− ŷi)2 (2)

R2 = 1−
[
∑N

i=1 (yi− ŷi)2/ ∑N
i=1 (yi− yi)2

]
(3)

In Equations (1)–(3), y, ŷ, and y are the observed, predicted, and observed mean
trait values of the ith plot, respectively, and n is the total number of samples within the
study area.

Activation mapping visualization was implemented to improve the interpretation of
the CNN learning process [26]. The visualization technique highlighted the importance of
different regions of the image in the output prediction by projecting back the weights of the
output layer onto the convolutional feature maps [30]. The following steps, as described
in [31], were used to generate the activation maps: First, the CNN model mapped the input
image to the activations of the last convolution layer as well as the output predictions. The
gradient of the predicted value for the input image with respect to the activation of the
last convolution layer was computed. Each image channel in the feature map array was
weighted by how important the channel was with regard to the predicted value, and then
all of the channels were summed to generate the corresponding activation map array. The
activation map provided a measure of how strongly portions of the image contributed to
the predictions made by the CNN, visualized in a 0–255-scale map array.

3. Results
3.1. Flowering Time

For the task of estimating flowering time, 2D-CNN analyses (Figure 4a) of imagery
from any single date throughout the growing season were outperformed by all of the
3D-CNN analyses tested (Figure 4b) in terms of MAE, RMSE, and R2. This was the case
regardless of the number or timing of dates from which imagery was used as inputs for
the 3D-CNNs. The ability of the 3D-CNN to model variation between dates as well as
among images from different genotypes led to the best 3D-CNN model (3D_262_279(2))
performing significantly better (Figure 4d; MAE = 4.61 days, RMSE = 6.05 days, R2 = 0.70)
(Figure 4d) than the best 2D-CNN (Figure 4e; 2D_262(1) and 2D_279(1); MAE = 5.20 days,
RMSE = 6.69 days, R2 = 0.63) (Figure 4c).

Unsurprisingly, among the 2D-CNN analyses, the model accuracy was substantially
greater midway through the flowering period (DOYs 262 and 279) than when using images
of plants prior to the onset of flowering for many genotypes (DOY < 262) or after all geno-
types had completed flowering and were senescing (DOY > 279) (Figure 4a). Meanwhile,
while the results from the 3D-CNNs were generally robust, a slight loss of predictive power
from the 3D-CNNs was observed as additional dates of imagery were added beyond the
two dates (DOYs 262 and 279) in the middle of the flowering period (Figure 4b).

Compared to using multispectral features or geometric + multispectral features, the
effect of analyzing only RGB spectral features on the estimation of flowering time was that
the predictions were slightly weaker and inconsistent across the scenarios tested by both
2D-CNNs and 3D-CNNs (Figure 4a,b).

When interpreting the CNN learning process via activation maps, it was notable that
the models tended to modulate their activation levels depending on the flowering time and
were driven by the presence of inflorescences (silver-white areas) in the imagery. For early
flowering time (i.e., lower numerical values), higher activation regions (red) were visibly
located over the green areas of the plant, but minimized over the inflorescence (Figure 4e).
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In contrast, for plants with a later flowering time that had still not flowered (i.e., higher
numerical values) at the time of the UAV flight, higher (red) activation was notable in
the imagery due to the dominant greenness (i.e., absence of inflorescences) on the plant
(Figure 4f).
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3.2. Culm Length

For the task of estimating culm length, the performance of both 2D-CNN analyses
(Figure 5a) and 3D-CNN analyses (Figure 5b) was strongly dependent on the dates in the
field season from which imagery was used as an input. Thus, the comparative performance
of 2D-CNNs versus 3D-CNNs must be discussed in that context. Nevertheless, a key high-
level conclusion is that the best 3D-CNN model (3D_157:332(10)) performed significantly
better (Figure 5c; MAE = 19.06 cm, RMSE = 24.93 cm, R2 = 0.66) than the best 2D-CNN
(Figure 5d; 2D_262(1) and 2D_279(1); MAE = 20.95 cm, RMSE = 27.08 cm, R2 = 0.58).

For both 2D-CNNs and 3D-CNNs, the best results in terms of MAE, RMSE, and R2

came from using images collected late in the growing season. The performance of the
2D-CNNs was moderate when using imagery from dates early in the growing season,
worsened slightly with mid-season imagery, and improved again with late-season imagery,
before dropping again on the final date (Figure 5a). The performance of the 3D-CNNs was
moderate when relying on only early-season (3D_157_174_190(3)) or mid-season imagery
(3D_205_221_247(3)), and improved significantly when using late-season data, especially
as the number of dates of imagery analyzed increased from 3 (3D_279_310_332(3)) to 5
(3D_247:332(5)) or 10 (3D_157:332(10)) (Figure 5b). Intermediate predictive power was
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achieved when imagery from fewer dates, which were spread at lower frequency across
the growing season, were used as inputs to the 3D-CNN (3D_174_247_332(3)).

On most individual dates, analysis of geometric plus multispectral features (CSM_MS)
led to the best predictions of culm length, followed by multispectral features (MS) and
then RGB spectral features, with those differences being most pronounced when analyzing
imagery from late-season dates (Figure 5a). Using multispectral + geometric features
delivered the most benefit when the 3D-CNNs analyzed data from three or fewer dates.
In contrast, in the best-performing 3D-CNN models—which exploited 5 or 10 dates of
imagery—adding additional spectral bands or geometric features had modest effects on
predictive power.

When evaluating how CNNs exploit the information contained in the imagery, the
models assigned high (red) activation levels to the dense greenness of the plant in the
image, while low (blue) activation levels were focused on the background (e.g., soil and
plant shade) in the images, as shown in Figure 5e,f.
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Figure 5. Evaluation of culm length prediction in testing data for (a) 2D models by DAP and (b) 3D
models by number of time-frame sequences via the MAE, RMSE, and R2 metrics. Observed and
predicted values for the best (c) 2D models and (d) 3D models for testing datasets with low- (blue) to
high-density (red) sample distribution. Example RGB image chips and activation maps for (e) low
and (f) high-culm-length plants from the 2D-based model of aerial data collected on DOY 279. The
level of activation of the deepest CNN layers in the images is represented by low (blue), intermediate
(yellow), and high (red) values on a 0–255 scale.

3.3. Biomass Yield

When determining the biomass yield, 3D analysis generally tended to perform better
than 2D analysis, with the best 3D-CNN model (3D_157:332(10)) performing significantly
better (Figure 6c; MAE = 110.61 g, RMSE = 149.31 g, R2 = 0.69) than the best 2D-CNN
(Figure 6d; 2D_247(1); MAE = 139 g, RMSE = 180 g, R2 = 0.56). The best 3D-CNN pre-
dictions (Figure 6c) and the best 2D-CNN predictions (Figure 6d) both had a tendency to
underestimate the biomass of the most productive genotypes, but this was more marked
for the 2D-CNN models.
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The performance of 2D analyses was generally higher in the early–mid growing season
(DOYs 157 to 247) than in the late season (DOYs 262 to 332). The best 3D-CNN models were
those that integrated early-, mid-, and late-season imagery (Figure 6b), although imagery
from 3 dates over these periods of time (3D_174_247_332(3)) resulted in model predictions
(MAE = 114.46 g, RMSE = 153.90 g, R2 = 0.68) almost as good as when data from all 10 dates
were used (3D_157:332 (10); MAE = 110.61g, RMSE = 149.31 g, R2 = 0.69). The 3D-CNNs’
predictive power was progressively lower when the imagery used was only from dates in
the early–mid season (3D_57_174_190(3), 3D_205_221_247(3)) or the late season (Figure 6b;
3D_247:332(5), 3D_279_310_332(3)).

Adding additional spectral features (i.e., MS versus RGB) along with geometric fea-
tures (i.e., CSM_MS versus MS) as inputs to the analysis progressively improved the
predictions of biomass by both 2D- and 3D-CNNs (Figure 6a,b). When using CSM_MS
data, 2D-CNN analyses of imagery from any single date throughout the growing season
(Figure 6a) were outperformed by all of the 3D-CNN analyses tested (Figure 6b) in terms of
MAE, RMSE, and R2.
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Figure 6. Evaluation of biomass yield prediction in testing data for (a) 2D models by DAP and (b) 3D
models by number of time-frame sequences via the MAE, RMSE, and R2 metrics. Observed and
predicted values for the best (c) 2D models and (d) 3D models for testing datasets with low- (blue) to
high-density (red) sample distribution. Example RGB image chips and activation maps for (e) low-
and (f) high-biomass plants from the 2D-based model of aerial data collected on DOY 279. The level
of activation of the deepest CNN layers in the images is represented by low (blue), intermediate
(yellow), and high (red) values on a 0–255 scale.

When considering how CNNs exploit the imagery to maximize biomass yield predic-
tion, higher activation regions (red) were located over dense green regions of the plant in
the image. Correspondingly, low (blue) activation levels were assigned to the background,
e.g., soil and shaded regions of the image. It was notable that the models tended to assign
larger areas of high (red) activation levels to plants with larger biomass (Figure 6f) and
smaller areas of high activation to plants with a lower biomass yield (Figure 6e).
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4. Discussion

This study of large, diverse populations of Miscanthus successfully demonstrated the
following: (1) 3D-CNNs, which analyzed the time-courses of remote sensing imagery to
assess flowering time, culm length, and aboveground biomass, outperformed 2D-CNNs,
which analyzed imagery from single dates; (2) the three traits differed in how the models’
performance depended on the combination of dates from which imagery was selected
for input to the 3D-CNN analysis; and (3) combining more spectral features along with
geometric features in the imagery led to better trait predictions. Overall, this highlights
how high-spatial- and -temporal-resolution UAV time-series imagery can be analyzed by
3D-CNNs to more fully exploit the information contained in imagery than commonly used
2D-CNN methods, while also simplifying workflows by semi-automating feature extraction.
Making these advances in a highly productive perennial biomass crop, such as Miscanthus,
is particularly challenging and important because such crops are less studied and more
difficult to phenotype than the annual grain crops that currently dominate agricultural
commodity production [32]. In addition to advancing remote sensing science, this work
could accelerate efforts to select Miscanthus for improved productivity and adaptation to
regional growth environments by providing a rapid, efficient approach to phenotyping
key traits across breeding populations [33]. For example, these analyses could optimize
sampling strategies, including whether or not to inspect or collect samples in certain areas
with early support from UAV imagery. Otherwise, breeders and farmers are often advised
to inspect the entire area or to use a random strategy to sample commercial fields, with the
risk of missing relevant areas or expending unnecessary labor [34]. Moreover, the improved
efficiency of UAV phenotyping can enable plant breeders to grow larger populations for
a given level of research funding, thereby improving the probability of identifying rare
individuals that are truly outstanding. This enables efforts to transition to more sustainable
and resilient cropping systems that can mitigate greenhouse gas emissions and climate
change [35].

4.1. Flowering Time

Previous studies have reported the use of imagery to monitor the vegetative–reproductive
transition in annual crops [36,37]. Traditional approaches have mainly been based on using
the temporal trajectories of vegetation indices derived from UAV [16,38] and satellite [39]
imagery. While these studies have demonstrated significant advances for the rapid as-
sessment of phenological transitions, they mainly relied on manual interventions—for
example, to determine the optimal parameters in curve-smoothing algorithms or threshold
values to match the phenological transitions, which are important challenges for successful
scalability [40]. Success has also been achieved in computer vision applications, report-
ing significant advances in exploiting very-high-spatial-resolution imagers mounted on
close-range [41] or aerial [42] platforms for detecting reproductive organs in plants. While
these represent valuable advances, most of these studies have focused on delivering binary
outcomes (i.e., flowering versus not-flowering status) [43,44], without accounting for the
dynamic nature of the underlying biological process. Implementing scalable remote sensing
methodologies that can identify differences in the phenological dynamics of a population
with diverse origins and genetic backgrounds can be of significant interest for breeders,
because they are otherwise very challenging to assess by traditional manual inspection
over large areas [32].

The 3D-CNN analysis of imagery from multiple dates generally outperformed 2D-
CNN analysis of imagery from any single date (Figure 4). The performance enhance-
ment produced a 12% greater R2 and 10% lower RMSE for the best 3D-CNN analysis
(3D_262_279(2)) versus the best 2D-CNN analysis (2D_262(1)). By definition, flowering
time is a trait that involves a single, specific event in the development of the crop over
the growing season. When a genotype rapidly transitions between the vegetative and
reproductive stages, the appearance of inflorescences produces strong spectral and spatial
changes in the images of the plants. The 2D-CNN analysis of single-date data is able
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to differentiate plots that have or have not passed through this transition, but 3D-CNN
analysis can additionally exploit information about the changes in spectral or geometric
features that occur between two or more dates [25]. Notably, the potential improvement in
the accuracy of phenotyping flowering time with 3D-CNN analysis may be underestimated
here. In line with standard practice by breeders and the laborious nature of a person
visiting thousands of field plots on foot, ground-truth data were collected on a weekly
basis. This set an upper limit on the precision of flowering time estimates. Hence, in the
future, higher-frequency ground-truth data could potentially allow the power of 3D-CNNs
to be fully exploited.

Since the signal from the canopy is strongly influenced by the presence of inflores-
cences, the variance between individuals of the populations declined after most individuals
flowered. Additionally, autumn senescence began in November, during which the canopy
underwent a sequence of profound biochemical and biophysical changes that affected its
reflectance. Therefore, it is not surprising that in this case—and others [43]—late-season
imagery was not effective for estimating flowering time by 2D-CNN analyses (Figure 4).
While performance also declined when 3D-CNNs were provided with images collected
from a larger number of dates outside the main period of flowering, the results were more
robust. Operationally, this would aid in the adoption of these methods by breeders, because
they could rely on acquiring high-quality phenotypic data from a set of regular UAV flights
without having to stratify the data before analysis.

While the use of simpler RGB features proved to be effective throughout the season
and was consistent with a previous report on maize for tassel detection [37], the inclu-
sion of multispectral or multispectral + geometric features resulted in slightly superior
performance. The high sensitivity of near-infrared [45] and geometric [46] features to the
fast-emerging new objects (i.e., inflorescences) (Figure 2a) can explain the superior ability
of these features in both timepoint and time-series analysis. It was also possible to better
understand the learning process of the CNNs via activation maps. The models coherently
modulated the levels of activation by assigning high and low values to the greenness and
inflorescence components of the plants, respectively. It was notable that the area of high
activation tended to be smaller during early flowering, given the presence of inflorescences,
while it was relatively larger in late-flowering plants, given the absence of inflorescences
or dominance of greenness. This indicates that both the level and the area of high acti-
vation played a relevant role in maximizing the predictive ability of the neural networks.
Understanding that the models adjusted their learning process according to the ratio of
greenness versus inflorescences in the images was a valuable insight when implementing
neural-network-based inference processes.

4.2. Culm Length

Sensors mounted on close-range [47] and aerial [15] platforms have recently been
adopted to determine culm length in perennial grasses. Traditional approaches to inferring
culm length from remote sensing data mainly rely on using point clouds derived from
LIDAR or photogrammetry features, which are extracted and summarized over an area
of interest via statistical descriptors [17] (e.g., mean, median, quantile) and then fed into a
regression step to deliver the final prediction [22]. Even though this methodology has en-
abled the rapid deployment of data analytics, it relies on a high level of manual supervision,
e.g., selecting an adequate vegetation index and statistical descriptor that represent the case
under study [48]. Another limiting factor of these approaches is the need for handcrafted
feature engineering when using multiple sensors or features [49]. Additionally, while these
procedures are feasible at small sample sizes (<200) [14], they can be challenging to imple-
ment at larger sample sizes (>1000). Moreover, when considering integrating timepoint
features as inputs into time-series analysis, this uncertainty is passed forward into the
curve-fitting step [22,50], which can lead to biased inference and limited repeatability. The
use of CNNs contributes to a more automated data extraction and data-driven inference
procedure to determine culm length from high-resolution aerial imagery.
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In this study, the accuracy with which culm length could be phenotyped was improved
in several ways by using a 3D-CNN architecture rather than a 2D-CNN architecture
(Figure 5). For example, the best 3D-CNN analysis (3D 157:332(10)) achieved a 16% greater
R2 and 8% lower RMSE than the best 2D-CNN analysis (2D 310). End-of-season culm length
is the consequence of gradual growth over most of the growing season. This distinguishes
it from flowering time, which is the product of a discrete event in time. Therefore, it
is logical that the 3D-CNN analyses, which could directly exploit information from the
changing nature of image features across a series of sampling dates, became more powerful
as they were provided with imagery from a larger number of sampling dates (Figure 5).
This outcome was consistent with the superior ability of long time-series sequences in 3D-
CNNs to predict yield in annual crops compared to both shorter 3D-CNNs and timepoint
analysis [24]. It is also intuitive that prediction accuracy increased when the 3D-CNNs
were provided with series of images from later in the growing season i.e., when plants were
nearer to their final height. In fact, the 3D-CNNs’ performance only dropped to match that
of 2D-CNNs when relying solely on imagery from the early season.

The 3D-CNN and 2D-CNN architectures were also distinguished by their dependency
on the types of image features used by the model (Figure 5). The 2D-CNN analysis
of any sampling date, other than those in the first month of the growing season, was
significantly improved when using geometric features in addition to spectral features (i.e.,
CSM_MS versus RGB or MS). This reflects the fact that the geometric features directly
correspond to canopy height. The effect became stronger in the second part of the season,
when the spectral features would be saturated [51] due to the large volume of vegetation
accumulated at this stage. Exploiting additional image features also improved the 3D-CNN
models’ performance when imagery from only two or three dates was analyzed. However,
unexpectedly, this effect diminished when analyzing sequences of 5 or 10 dates of imagery
with the 3D-CNN, such that the model performance using RGB was essentially equal to that
of CSM_MS (Figure 5). This indicates that these models were also able to learn meaningful
spectral representations from the temporal dimension of these long time sequences [52], in
stark contrast to 2D-CNN analysis of single timepoints.

According to the activation maps (Figure 5e,f), the learning process focused over the
area of the plant by assigning high levels of activation to regions characterized by high CSM,
greater absorption of green, and high reflectance of the near-infrared light. This confirmed
that the models coherently exploited the information that represented meaningful areas
of an image to determine the culm length without the need for external supervision.
This resulted in a significant reduction in expert supervision needed during modelling
implementation. It is important to note that this is likely to be a particularly valuable
methodological advance for perennial crops with many stems, such as Miscanthus, because
heterogeneity in the height and ground cover both within and between plants of different
genotypes is much greater than for annual row crops with simpler plant architectures
(e.g., maize).

4.3. Biomass Yield

Remote sensing has been extensively adopted in agriculture to determine biomass
in annual crops [53], and more recently in perennial grasses [54]. Traditional approaches
to determine biomass have been mainly based on using multiple vegetation indices sum-
marized over an area of interest via statistical descriptors, which are then fed as tabular
features into a regression step for predictive inference [55]. This approach, together with
handcrafted feature engineering [56] (e.g., select optimal vegetation index, determine fea-
ture importance), has significantly advanced the adoption of remote sensing for modelling
biomass [57]. However, the early dimension reduction of the original image (i.e., two-
or three-dimensional matrices) into an unique tabular value and the manual supervision
needed (i.e., selecting optimal statistical descriptor) during the process [58] can limit the
scalability and repeatability of the approach. A similar challenge is faced when determin-
ing biomass using time-series analysis via traditional curve-fitting procedures [59]. The
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sequential convolutional design of CNNs, which directly operate in the original image
to automatically learn features that maximize the predictive ability of a certain trait, can
significantly reduce the need for expert knowledge and the uncertainty [60] related to the
manual supervision when determining biomass from aerial sensors.

Biomass yield is the most complex trait evaluated in this study, but also the most
important trait that Miscanthus breeders are trying to improve. The complexity stems
from trying to accurately evaluate the biomass of all aboveground tissues in plants across a
genetically diverse population that vary considerably in canopy architecture (i.e., height,
stem numbers, stem widths, leaf size, leaf angles). Perhaps as a result of this complex-
ity, the benefits of using 3D-CNN analysis over 2D-CNN analysis were even greater for
phenotyping of biomass than for flowering time or culm height. The accuracy of biomass
predictions from all of the 3D-CNN analyses performed exceeded that of any 2D-CNN
analysis (Figure 6). For example, the best 3D-CNN analysis (3D 157:332(10)) achieved a
23% greater R2 and 17% lower RMSE than the best 2D-CNN analysis (2D 247). While the
3D-CNN analysis using imagery from 10 dates across the whole growing season proved to
be the best-performing (3D_157:332(10)), a model with fewer timepoints that still spanned
all phases of the growing season (i.e., early, mid, and late season) performed almost as
well (3D_174_247_332(3)). This was consistent with the rate of early-season growth, as
well as the rate and timing of canopy closure, providing valuable information from which
the CNN could learn beyond exploiting measures of final size late in the growing season.
This highlighted that time-series analysis was not dependent on high-temporal-resolution
imagery to produce accurate estimates of biomass.

Throughout the season, estimates of biomass from multispectral and multispectral +
geometric features were significantly better than estimates from RGB features alone. This
gap in performance increased further at the end of the season, when the very best estimates
could be generated. Spectral saturation is a limiting factor when determining biomass using
passive optical sensors mounted on aerial platforms [61]. The signal becomes more rapidly
saturated in visible wavelengths than in the longer wavelengths of the electromagnetic
spectrum as the amount of vegetation accumulated on the ground increases. In contrast,
there is no saturation of geometric features with increasing crop biomass. In fact, as crop
stature increases, the power to detect equivalent relative differences between genotypes is
likely to grow. The multiple elements of plant growth dynamics—i.e., increasing leaf expan-
sion, ground cover (perimeter), and height—produce considerable complexity throughout
the season, which needs to be considered in order to understand the seasonal patterns of
the different features (Figure 6a).

Regarding the learning process of the neural networks to determine biomass, the
models mostly focused over regions of the plant related to dense green coverage, which
represented meaningful regions of the images in terms of biomass accumulation. It was
notable that the level and the area of high activation tended to be positively correlated
with the level of biomass (Figure 6e,f). This was consistent with the higher predictive
ability in the first part of the season and with the capacity of the models to exploit non-
vertical descriptors—e.g., horizontal green coverage—to maximize the information gain
from images.

4.4. Limitations

The process of cropping individual plots’ plants from the orthophotos into individual
plant image chips can add noise in the analysis. Given the massive growth of these plants,
some contamination from neighboring plants may also have occurred. Future studies
should investigate the integration of plant detection techniques as an early step in the
analysis pipeline.

The multispectral sensor used here was able to generate both photogrammetric and
multispectral features from a single flight. However, the limited spatial resolution of the
sensor compared to other widely available RGB sensors may have penalized the learning
ability of the neural networks. Future research should investigate this, e.g., whether more



Remote Sens. 2022, 14, 5333 17 of 20

detailed identification of small inflorescences in a higher-resolution image can lead to a
more accurate determination of flowering time.

Although photogrammetry provided a low-cost alternative to generate geometric
descriptors of the plants, future studies should also explore the benefits of integrating more
descriptors of the internal and external structure of the canopy (e.g., via LIDAR technology)
for the performance of the neural networks, given the massive vertical growth and complex
plant architecture of this crop.

5. Conclusions

Our analysis demonstrates that Miscanthus can be effectively characterized using
high-spatial- and -temporal-resolution aerial imagery integrated with convolutional neural
networks. To the best of our knowledge, this is the first effort to characterize individual
plant traits in large, genetically diverse populations of Miscanthus in large-scale field trials
using remote sensing. Flowering time, culm length, and biomass yield were chosen as target
traits due to their importance for Miscanthus breeding and the sustainable production of
feedstock for bioenergy and bioproducts. The different natures of these traits present a
range of challenges and opportunities for interpreting the outcomes of this work. While
flowering time can be considered to be a short–medium-term process, culm length and
biomass yield are the result of growth processes that progress throughout the entire growing
season. This work indicates that the estimation of phenological transitions and yield-related
traits is feasible and can produce results accurate enough to monitor Miscanthus using
very-high-spatial-resolution remote sensing imagery. The study shows that feature-rich
(i.e., multispectral + geometric) data produce meaningful gains in the prediction accuracy
of flowering time, culm length, and biomass yield, regardless of the CNN architecture
considered. Additionally, (2D-spatial) timepoint CNN analysis was outperformed by 3D-
spatiotemporal CNN analysis. Predictions of flowering time were highly sensitive to the
period of time over which the imagery was collected. Meanwhile, estimates of culm length
and biomass improved as sequences of images from more dates, which were also spread out
over more of the growing season, were used. These outcomes are valuable for informing
future strategies by aligning the biological processes of perennial grasses and the timing
of aerial data collection. In practice, this can result in large benefits for breeding selection,
e.g., by adopting the proposed methodology for within-season yield prediction to make
selections prior to flowering, thereby saving a whole year in the breeding cycle. This work
partially addresses the need for advanced modelling techniques that can take advantage of
recently improved temporal and spatial resolution sensors and aerial platforms, the ease of
collecting data, cloud storage, and scalable modelling for UAV remote sensing imagery.
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