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Abstract: Precipitation monitoring is important for earth system modeling and environmental
management. Low spatial representativeness limits gauge measurements of rainfall and low
spatial resolution limits satellite-derived rainfall. SM2RAIN-based products, which exploit the
inversion of the water balance equation to derive rainfall from soil moisture (SM) observations,
can be an alternative. However, the quality of SM data limits the accuracy of rainfall. The
goal of this work was to improve the accuracy of rainfall estimation through merging multiple
soil moisture (SM) datasets. This study proposed an integration framework, which consists of
multiple machine learning methods, to use satellite and ground-based soil moisture observations
to derive a precipitation product. First, three machine learning (ML) methods (random forest
(RF), long short-term memory (LSTM), and convolutional neural network (CNN)) were used,
respectively to generate three SM datasets (RF-SM, LSTM-SM, and CNN-SM) by merging satellite
(SMOS, SMAP, and ASCAT) and ground-based SM observations. Then, these SM datasets were
merged using the Bayesian model averaging method and validated by wireless sensor network
(WSN) observations. Finally, the merged SM data were used to produce a rainfall dataset (SM2R)
using SM2RAIN. The SM2R dataset was validated using automatic meteorological station (AMS)
rainfall observations recorded throughout the Upper Heihe River Basin (China) during 2014–
2015 and compared with other rainfall datasets. Our results revealed that the quality of the SM2R
data outperforms that of GPM-SM2RAIN, Climate Hazards Group InfraRed Precipitation with
Station data (CHIRPS), ERA5-Land (ERA5) and multi-source weighted-ensemble Precipitation
(MSWEP). Triple-collocation analysis revealed that SM2R outperformed China Meteorological
Data and the China Meteorological Forcing Dataset. Ultimately, the SM2R rainfall product was
considered successful with acceptably low spatiotemporal errors (RMSE = 3.5 mm, R = 0.59, and
bias = −1.6 mm).

Keywords: soil moisture; rainfall; SM2RAIN; SMAP; SMOS; ASCAT

1. Introduction

Monitoring of precipitation is essential for earth system modeling and environmental
management, such as flood and landslide forecasting and water resources management.
Precipitation can be derived from gauge stations, ground-based weather radars, and
satellite radars and radiometers [1]. With the steady development of remote sensing,
rainfall retrievals from satellite have proven successful and become increasingly important
in various applications globally [2], e.g., meteorology, hydrology, agricultural applications,
drought monitoring, flood forecasting, and water resources management [3–5].
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Ground-based measurements of rainfall, which are generally considered the most ac-
curate. However, the spatial and temporal coverages they provide are inadequate for many
applications [6]. Moreover, the spatial distribution of rain gauges is often insufficiently
dense, and the instruments are often not well maintained by local governments or organi-
zations in many remote rural areas around the word, especially in developing countries.
Generally, rain gauge networks are most inadequate in areas where they are needed most.
Low spatial representativeness limits applications of gauge measurements. Fortunately,
rainfall information for remote rural areas can be derived from remote sensing data [7–10].
Satellite rainfall is usually derived using microwave, visible, or infrared sensors onboard
low-Earth-orbiting and geostationary satellites. Visible and infrared sensors are generally
deployed on geostationary satellites to retrieve rainfall signals with high spatial and low
temporal resolutions. Passive microwave observations obtained regularly by low-Earth-
orbiting satellites usually provide global precipitation measurements with high temporal
resolution and low spatial resolution [11]. Since the launch of the Tropical Rainfall Measur-
ing Mission (TRMM) satellite in 1997, satellite remote-sensing-based precipitation products
have matured [2]. The TRMM multisatellite precipitation analysis (TMPA) product [7]
and its global successor, the integrated multisatellite retrievals for global precipitation
measurement (GPM) product, have been used widely in many areas owing to their reason-
ably high accuracy and general applicability [12–15]. The GPM product provides rainfall
estimates from merged multisensor information [7]. Satellite-based rainfall products still
have various sources of inherent systematic biases and random errors [12,16–23]. Errors
inherent in satellite rainfall include measurement errors and model errors. For example, the
magnitude of the sampling error depends on both the type/rate of precipitation and the
orbit/swath of the satellite [24]. There are also certain other problems related to estimation
of light rainfall and attributable to seasonally dependent biases.

To produce more accurate rainfall products, incorporating multiple ground-based and
satellite-based precipitation retrievals are needed. Datasets such as the fifth generation
European Centre For Medium-Range Weather Forecasts reanalysis (ERA5) [25,26] represent
notable alternatives to rainfall products produced from ground-based or remote-sensing-
derived observations [27–29]. In recent years, attention has focused increasingly on merging
satellite and reanalysis datasets, such as data assimilation and data fusion. For example, the
multi-source weighted-ensemble precipitation (MSWEP) dataset, which has 3 h temporal
resolution, takes advantage of satellite-, ground-, and reanalysis-based data to estimate
rainfall [28]. The Climate Hazards Group Infrared Precipitation with Station (CHIRPS) data
rainfall product merges ground-based and infrared cold cloud duration data [30]. However,
these datasets depend on the availability of gauge-based measurements.

The SM2RAIN model towards addressing these problems by inferring or correcting
rainfall estimation over land using SM observations from satellites or gauges [31]. This
method provides accumulated rainfall estimates instead of the instantaneous rate [31,32].
Most methods based on this approach share the same limitations, linked to the limits of
measuring SM from space: rainfall estimated only over land, low accuracy in presence of
dense vegetation or complex topography and difficulties in estimating rainfall in case of soil
saturation. Currently, SM2RAIN has been applied to different satellite SM products over
different regions worldwide with satisfying results. SM2RAIN is able to take advantage
of SM information because the difference in SM between specific time intervals can be
associated directly with rainfall [33,34]. However, multiple SM datasets are rarely used for
rainfall estimation.
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Generally, a merged dataset usually outperforms a single dataset. In recent decades,
many machine learning methods have been developed for data fusion and forecasting pur-
poses, e.g., support vector machine, random forest (RF), long short-term memory (LSTM),
and convolutional neural network (CNN) methods. For example, multiple global precipita-
tion datasets can be merged to improve the spatiotemporal rainfall characterization through
machine learning algorithms [35]. RF is a supervised machine learning algorithm and first
presented by Breiman [36]. The long short-term memory (LSTM) model (which represents
the state-of-the-art recurrent cell in many fields) was first proposed in 1997 [37–43]. CNNs
were originally designed to resolve image classification problems and they have been
applied effectively for remote-sensing-based image classification [44–48]. Recently, CNNs
have been successfully used for soil moisture estimations based on Sentinel multi-source
data [49]. Integrating multiple machine learning methods for rainfall retrieving gains rare
attention.

The traditional statistical analysis of standard deviation, coefficient of variation and
root mean square error of SM can represent the spatial and temporal variability of SM. The
spatial and temporal variability of SM is largely affected by soil texture and land cover
types [50,51]. Therefore, the rainfall retrieval from SM may also be affected by the soil types
and land cover characteristics.

Based on the research gaps discussed above, the objectives of the study were to
improve the accuracy of rainfall estimation based on SM2RAIN through merging multiple
soil moisture (SM) datasets with machine learning methods. This study will propose
an integration framework, which consists of multiple machine learning methods, to use
satellite (SMOS, SMAP, and ASCAT) and ground-based soil moisture (SM) observations
to derive a precipitation product. The remainder of this paper is structured as follows.
Section 2 describes the geographic area, reanalysis data, and remote-sensing-derived and
ground-based SM and precipitation data considered in the study. Section 3 presents the
methodology and statistical metrics. In Section 4, the results of the assessment of the SM
and rainfall datasets are presented, and they are discussed in Section 5. Finally, the derived
conclusions are presented in Section 6.

2. Data
2.1. Study Area

This study considered the Babaohe River Basin, which is located in the Upper Heihe
River Basin in the arid region of Northwest China. The Babaohe River originates in the
Qilian Mountains and flows across Qilian County in Qinghai Province. The area and
the elevation of the Babaohe River Basin are 2456 km2 and 2678–4883 m above sea level,
respectively (Figure 1a). The most important water supplies in this region are snow and
ice melt. Mean annual precipitation is approximately 400 mm, whereas mean annual
evaporation is approximately 1500 mm. There are four dominant land use types (i.e., alpine
meadow, subalpine shrub, desert steppe, and alpine steppe) and are two principal soil
types (i.e., alpine meadow soil and chestnut soil). The spatial distributions of the land use
type and the surface soil types maps are shown in Figure 1b,c.
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Figure 1. (a) Location of the Babaohe River Basin (WSN: wireless sensor network; AMS: automatic 
meteorological station, including HuangZangShi (HZS), ARou (AR), north slope of ARou (ARN), 
south slope of ARou (ARS), HuangChaoGou (HCG), and EBo (EB); DEM: digital elevation model). 
(b) Land use types and (c) soil types in the Babaohe River Basin. 
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The precipitation data used most widely in China are those recorded at national 
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(b) Land use types and (c) soil types in the Babaohe River Basin.

2.2. China Meteorological Data Service Centre (CMD) Precipitation Dataset

The precipitation data used most widely in China are those recorded at national
weather stations. However, some raster datasets derived from these weather station
observations are also available, e.g., the precipitation dataset from the China Meteorological



Remote Sens. 2022, 14, 5355 5 of 27

Data Service Centre (CMD). This rainfall dataset is generated from daily rainfall data
observed at ground stations, which are interpolated to a 0.5◦ grid through a bilinear method
based on GTOPO30 digital elevation data (0.05◦ × 0.05◦) using ANUSPLIN VERSION 3.2
software [9]. The density of the national weather stations is nearly 700. The elevation data
(GTOPO30) was used to regenerate DEM of China to decrease the effect of topography on
interpolation of rainfall. The RMSE and R between CMD and stations are 0.49 mm and 0.93,
respectively. There are two national meteorological stations (Qilian and Minle) located near
the Babaohe River Basin (Figure 1). The CMD dataset is used as reference for calibration of
the parameters of the SM2RAIN algorithm (i.e., the soil moisture data retrieval algorithm).

2.3. Remote Sensing Soil Moisture Products
2.3.1. Advanced Scatterometer Data

The Metop-A, Metop-B, and Metop-C satellites acquire Advanced Scatterometer (AS-
CAT) SM data in the C band. The ASCAT SM product has a spatial resolution of 25 km
and daily temporal resolution [52]. For use in this study, ASCAT SM data were obtained
from the EUMETSAT project. This product, which has 25 km spatial resolution, has been
distributed since 2014. For consistency with other satellite SM and rainfall products, the
nearest-neighbor interpolation method was used to reproject the ASCAT dataset to a 0.25◦

grid. The ASCAT data used in this study (2014–2015) have 0.25◦ spatial resolution and
daily temporal resolution.

2.3.2. Soil Moisture and Ocean Salinity Data

The Soil Moisture and Ocean Salinity (SMOS) data, which are obtained using an L
band radiometer, have a spatial resolution of 30–50 km and 3D temporal resolution [53].
In this study, we used Level 3 products distributed by the Centre Aval de Traitement des
Données SMOS. These products, which have 25 km spatial resolution, are generated using
SMOS L1B products from the European Space Agency (ESA), and are distributed in the
most widely used raster format (i.e., NetCDF). The SMOS products are daily products
of SM and they contain filtered data. The retrievals are based on a multiorbit retrieval
algorithm. Ice and snow cover can be determined and added to the flags. We processed the
ascending and descending orbit datasets separately. This product has been produced since
2010 with 0.25◦ spatial resolution and daily temporal resolution. The SMOS data used in
this study (2014–2015) have 0.25◦ spatial resolution and daily temporal resolution.

2.3.3. Soil Moisture Active and Passive Data

The Soil Moisture Active and Passive (SMAP) SM data, which are obtained by an
L-band (1.4 GHz) radiometer, have 36 km spatial resolution and 1–2-d temporal resolu-
tion [54,55]. In this study, Level 3 SM retrievals were used. This product is generated from
SMAP Level 2 SM data, which are derived from SMAP Level 1C interpolated brightness
temperatures. The SMAP data used in this study (2015) have 0.25◦ spatial resolution and
daily temporal resolution.

2.4. Remote Sensing Rainfall Data

The near real-time TMPA rainfall dataset (3B42-RT) has 0.25◦ spatial resolution and
3 h temporal resolution (accumulated to daily resolution) [7]. Although the grid extends
from 60◦S to 60◦N, high latitude (beyond 50◦S/N) near real-time retrievals are considered
very unreliable and thus are masked from the daily accumulations. The start and end
times for every daily granule are listed in the file’s global attributes and they are taken
correspondingly from the first and last 3 h granules participating in the aggregation.
Therefore, the time period covered by one daily granule amounts to 24 h, which can be
inspected in the file’s global attributes. Counts of valid retrievals for specific days are
provided for every variable, making it possible to compute conditional and unconditional
mean precipitation for grid cells where fewer than eight retrievals are available for the day.
The TMPA product is available for the period 2000–2020 with 0.25◦ spatial resolution and
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daily temporal resolution. The latency of this product is approximately 7 h. The TMPA data
used in this study (2014–2015) have 0.25◦ spatial resolution and daily temporal resolution.

2.5. China Meteorological Forcing Dataset

The China Meteorological Forcing Dataset (CMFD) is a high spatiotemporal resolution
gridded near-surface meteorological dataset developed specifically for studies of land
surface processes in China [56]. The dataset was produced through fusion of remote
sensing products, reanalysis datasets, and ground-based observations at national weather
stations [57]. The dataset covers the period 1979–2018 with 3 h temporal resolution and
0.1◦ spatial resolution. The CMFD provides seven near-surface meteorological elements:
2 m air temperature, surface pressure, specific humidity, 10 m wind speed, downward
shortwave radiation, downward longwave radiation, and precipitation rate. For consistency
with the other satellite SM and rainfall products used in this study, the nearest-neighbor
interpolation method was used to resample the CMFD to 0.25◦ spatial resolution and
daily temporal resolution. The CMFD rainfall data used in this study (2014–2015) have
0.25◦ spatial resolution and daily temporal resolution.

2.6. GPM-SM2RAIN Dataset

The rainfall dataset (GPM-SM2RAIN) was based on the integration of IMERG-LR of the
Global Precipitation Measurement Mission (GPM) with SM2RAIN-based rainfall estimates
derived from ASCAT H113 H-SAF, SMOS L3 and SMAP L3 soil moisture products [58].
The dataset is available ±60◦ (2007–2018) (available at https://zenodo.org/record/3854817
(accessed on 1 October 2022)). The GPM-SM2RAIN we use in this study (2014–2015) was
projected to 0.25◦ spatial resolution and one day temporal resolution.

2.7. Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) Dataset

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) is a
35+ year quasi-global rainfall data set (available at https://www.chc.ucsb.edu/data/chirps
(accessed on 1 October 2022)). Spanning 50◦S–50◦N (and all longitudes) and ranging from
1981 to near-present, CHIRPS incorporates high resolution satellite imagery, and in situ
station data to create gridded rainfall time series for trend analysis and seasonal drought
monitoring. The hourly CHIRPS we use in this study (2014–2015) was resampled to one
day temporal resolution.

2.8. ERA5-Land (ERA5) Dataset

ERA5-Land is a replay of the land component of the ERA5 climate reanalysis, forced
by meteorological fields from ERA5 (available at https://www.ecmwf.int/en/era5-land
(accessed on 1 October 2022)). ERA5-Land is produced under a single simulation, without
coupling to the atmospheric module of the ECMWF’s Integrated Forecasting System (IFS)
or to the ocean wave model of the IFS. It runs without data assimilation, making it com-
putationally affordable for relatively quick updates. The core of ERA5-Land is the Tiled
ECMWF Scheme for Surface Exchanges over Land incorporating land surface hydrology
(H-TESSEL). It uses version CY45R1 of the IFS. The ERA5-Land dataset is available for
public use for the period from 1950 to 2–3 months before the present with a finer spatial
resolution: ~9 km grid spacing. The hourly ERA5 we use in this study (2014–2015) was
resampled to one day temporal resolution.

2.9. Multi-Source Weighted-Ensemble Precipitation (MSWEP) Dataset

MSWEP incorporates daily gauge observations and accounts for gauge reporting
times to reduce temporal mismatches between satellite-reanalysis estimates and gauge
observations (available at http://www.gloh2o.org/mswep/ (accessed on 1 October 2022)).
MSWEP tends to exhibit better performance than other precipitation products in both
densely gauged and ungauged regions. MSWEP is a global precipitation product with a

https://zenodo.org/record/3854817
https://www.chc.ucsb.edu/data/chirps
https://www.ecmwf.int/en/era5-land
http://www.gloh2o.org/mswep/
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3-hourly 0.1◦ resolution available from 1979 to ~3 h from real-time. The 3-hourly MSWEP
we use in this study (2014–2015) was resampled to one day temporal resolution.

2.10. Ground Soil Moisture and Rainfall Data

The ground-based SM and rainfall data were measured by automatic meteorologi-
cal stations (AMSs) and the Heihe Watershed Allied Telemetry Experimental Research
ecohydrological wireless sensor network (WSN) [59]. There are 6 AMS sites and 43 WSN
sites within the study area (Figure 1). The ordinary AMS measures radiation, precipitation,
air pressure, wind speed and direction, air temperature, humidity, SM, and temperature
profiles, and soil heat flux (Figure 2), while hydrological, meteorological, and ecological
observations can be acquired by the ecohydrological WSN. The temporal resolution of both
the SM data and the rainfall data is minutes.
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3. Methodology

A new framework was proposed in this study to retrieve rainfall from satellite-derived
and ground-based SM. First, satellite SM (SMOS, SMAP and ASCAT) and ground SM were
trained in RF, LSTM and CNN machine learning models. The trained model (RF, LSTM and
CNN) was then used to generate SM (RF-SM, LSTM-SM and CNN-SM) based on satellite
SM datasets. The Bayesian model averaging method was used to merge RF-SM, LSTM-SM
and CNN-SM based on each data error. The original TMPA was corrected by weather
station data first using an empirical bias correction equation. Then, the merged SM and
the corrected TMPA rainfall datasets were used to calibrate SM2RAIN model parameters.
The AMS and GPM-SM2RAIN rainfall datasets were used to assess SM2R dataset. Finally,
SM2R, CMD and CMFD were used for TC analysis (Figure 3).
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3.1. Data Processing

Because SM and rainfall products can present different spatiotemporal resolutions, we
resampled the SM datasets (SMOS, SMAP, and ASCAT) and rainfall datasets of the Upper
Heihe River Basin to the same spatial and temporal resolutions (i.e., 0.25◦ × 0.25◦ and daily,
respectively) using the nearest-neighbor interpolation method. Additionally, the CMD
rainfall data, characterized by 0.5◦ resolution, were downscaled to 0.25◦ resolution using a
bilinear interpolation method. Rainfall accumulations were accumulated to the daily scale.
A single empirical bias correction equation was used to correct TMPA, that was uniform in
space and time, and the details of the bias correction equation can be referred to Vernimmen
et al. [60]. Ground SM and rainfall data were separately averaged and accumulated over
the period 00:00–23:59 UTC.

3.2. SM2RAIN Model

SM2RAIN is an algorithm used to estimate rainfall from SM observations [31]. This
model is a type of inverted single-layer soil water balance model that uses SM observations
at current and previous time steps as input. As the evapotranspiration and surface runoff
contributions are negligible during a rainfall event, the water balance algorithm can be
expressed as follows:

Psm2rain(t) = Z∗
ds(t)

dt
+ R(t) + E(t) + G(t), (1)

Psm2rain(t) = Z∗
ds(t)

dt
+ as(t)b, (2)

where Psm2rain is the estimated rainfall, R(t) is the surface runoff, E(t) is the evapotranspira-
tion, G(t) is the drainage rate, s is the relative saturation of the soil (value: 0–1), t is time,
Z* is the soil water capacity (equal to the soil layer depth multiplied by porosity), and a
and b are two parameters that illustrate the nonlinearity between the loss rate (including
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drainage and evapotranspiration components) and soil saturation. In Equation (1), when
the estimates of rainfall are below zero, rainfall values will be zero.

The SM2RAIN parameters (a, b and Z*) can be obtained by calibration on the basis
of the differences between two observed consecutive SM and rainfall data. We used
Equation (2) to estimate the rainfall within the time between the two observations [31,61].
When snowfall occurred, the TMPA value was used.

3.3. Model Calibration

All the parameters described in Section 3.2 were calibrated using the rainfall dataset
(corrected TMPA). In this process, the daily root mean square error (RMSE) between the
SM2RAIN rainfall (SM2R) estimated from the merged SM product and ground rainfall
(AMS) during 2014–2015 was minimized. However, because the algorithm of RMSE
calibration is based on minimizing variance, which is subject to conditional biases, it might
reduce the temporal variability of the estimated rainfall; consequently, the extreme values
of precipitation might be underestimated. To overcome this problem, other metrics such
as the Kling–Gupta Efficiency index [62] could be applied to consider the performance of
extreme value estimation between observations and estimations. Nevertheless, to ensure
homogeneity between the model calibration and assessments of rainfall and SM products,
we decided to use RMSE. The product obtained from SM2RAIN is referred to as SM2R.

3.4. Machine Learning Methods
3.4.1. Random Forest

The RF is a collection of multiple decision tree models (i.e., a type of flowchart that
shows a clear pathway to a decision). The RF is a supervised machine learning algorithm
first presented by Breiman [36]. The RF algorithm generates a set of decision trees from a
few randomly nominated subsets of a training set and selects predictions from each tree.
Finally, the RF algorithm chooses the best solution by means of voting (Figure 4).
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When there is a nonlinear relationship between the input values and the target values,
decision trees are suitable for determining the relationship between them. The RF algorithm
is a type of conception of an ensemble of decision tress [36].

For the RF model used in this study, the generation of the merged soil moisture data
(RF-SM) can be divided into two parts. First, SMOS and ASCAT were trained and validated
in RF data fusion from January 2014 to March 2015; second, the SMAP, SMOS and ASCAT
were trained and validated in RF data fusion from April to December 2015. For each
part, multiple (satellite and ground-based) SM time series at each point located within the
Upper Heihe River Basin were randomly split into a training dataset (80%) and validation



Remote Sens. 2022, 14, 5355 10 of 27

datasets (20%). In training the RF model, the maximum depth of the RF was set to 1–20
to reduce the phenomenon of overfitting. The optimal maximum depth (8) of the RF was
determined by comparing the Pearson correlation coefficient (R) value of the training and
validation dataset models. Finally, the trained RF was used to predict a new SM dataset
that was based on the multiple SM datasets.

3.4.2. Long Short-Term Memory

The LSTM model, which represents the state-of-the-art recurrent cell in many fields,
was first proposed in 1997 [37].

LSTM includes two important features. The first feature is an explicit state, which is a
separate set of variables that store the elements required to construct long- and short-term
dependencies, including the current state. The second feature is the presence of gates. A
gate can be considered as an element that can control the amount of information flowing
through it. In LSTM, gates are realized using sigmoid functions and their activation is
based on hyperbolic tangents. The structural diagram of an LSTM cell is shown in Figure 5.
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The functions f, i, and o represent the cores of the forget, input, and output gates, re-
spectively. The first element is the memory state, which is responsible for the dependencies
and for the actual output. The equations can be expressed as follows:

i = σ
(

xtUi + at−1Wi
)

, (3)

f = σ
(

xtU f + at−1W f
)

, (4)

o = σ(xtUo + at−1Wo), (5)

g = tanh(xtUg + at−1Wg), (6)

ct = ct−1 ◦ f + g ◦ i, (7)

at = tanh(ct) ◦ o, (8)

y = so f tmax(Vat), (9)

where i is the input gate that is responsible for how much new information is let into
the memory cell, f is the forget gate that is responsible for the information that should
be thrown away from the memory cell, o is the output gate that controls how much
information is passed on to the next time step, g is a self-recurrent connection that is
equivalent to a standard recurrent neural network, ct is the internal memory of the memory
cell, st is a hidden state, y is the final output, and

so f tmax(bi) =
exp(bi)

∑j′∈{1,2,...K} exp
(
bj
) . (10)
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The state is based on the following:

• A dynamic balance between the previous experience and its reevaluation according to
a new experience (modulated by the forget gate);

• The semantic effect of the current input (modulated by the input gate) and the potential
additive activation.

In this method, the generation of the merged soil moisture data (RF-SM) can be
divided into two parts. First, SMOS and ASCAT were trained and validated from Jan 2014
to Mar 2015; second, the SMAP, SMOS and ASCAT were trained and validated from April
to December 2015. For each part, multiple (satellite and ground-based) SM time series at
each point located within the Upper Heihe River Basin were considered as input training
and validation datasets for the LSTM. The network was repeatedly trained by varying the
number of hidden layers from 1–10 and increasing the number of neurons in each layer
from 1–128 with an increment of 8. Then, the optimal LSTM network structure (6 layers
and 68 neurons) was selected on the basis of SM. Finally, the trained LSTM model was used
to predict a new SM dataset that was based on the multiple SM datasets.

3.4.3. Convolutional Neural Network

A CNN is a distinct type of deep network that reflects the local topology of data.
A CNN comprises a fully connected network and a constrained network that includes
convolutional and pooling layers. The convolution and pooling operations are used in the
constrained network to realize the local receptive field and parameter reduction.

CNNs were originally designed to resolve image classification problems and they have
been applied effectively for remote-sensing-based image classification [44,45]. This study
used the deep learning method to learn the direct mapping between the ground-based
SM and the satellite-derived SM. The CNN was used to train the ground-based SM and
the corresponding satellite-derived SM to encode the mapping, and the fusion rules of
the merged SM were generated through CNN model learning. These rules determine
the ground and satellite information of the merged SM. In recent decades, experiments
have demonstrated that CNN-based deep learning methods are reliable for predicting SM
using multisource data [46–48,63]. Recently, CNNs have been used successfully for SM
estimations based on Sentinel multisource data [49].

In this method, the CNN was applied to prediction of SM at a given position and
time using satellite, and ground-based SM time series split into training (80%) input and
validation (20%) input. The generation of the merged soil moisture data (CNN-SM) can be
divided into two parts. First, SMOS and ASCAT were trained and validated from Jan 2014
to Mar 2015; second, the SMAP, SMOS and ASCAT were trained and validated in from
April to December 2015. The input time series at each ground-based SM point comprised
observations with the same time step. A 1D CNN model can learn a mapping from the
input sequences to an output value. CNNs can support parallel input SM time series as
separate channels, such as the red, green, and blue components of an image. Therefore, the
data should be split into samples that maintain the order of the observations across the
input sequences (e.g., SMOS, SMAP, and ASCAT). Then, the time series can be transformed
into input/output samples to train the model. Each input series can be handled by a
separate CNN, and the output of each of these CNNs can be combined before producing
the prediction as the output sequence, which can be referred to as a multilayer perceptron.

We defined this type of CNN model in Keras (an artificial neural network Python
package) using the Keras functional application programming interface. First, we defined
the first input model as a 1D CNN with an input layer that expects vectors with total steps
and one feature. Second, we defined multiple 1D CNN models in the same way. Third,
we defined all the input models, and we merged the output from each model into one
vector that could be interpreted before producing the prediction as the output sequence.
Fourth, we fitted the CNN model defined above using the input SMOS, SMAP, ASCAT,
and ground-based SM time series. Finally, we ran the model to predict the SM time series
for each point.
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The workflow of the CNN model developed for producing SM dataset fusion (predic-
tion) is shown in Figure 6.
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3.5. Classical Validation

Three widely used metrics were adopted to evaluate the performance of the SMOS,
SMAP, ASCAT, and merged SM products and the CMD, TMPA, CHIRPS, ERA5, MSWEP
and SM2R rainfall products: the mean relative error (BIAS, in mm), R, and RMSE (in
mm), which were computed for each grid and each time on the basis of the accumulated
rainfall throughout the entire investigated period. The continuous metrics were adopted
for validating both daily and monthly SM and rainfall data at given times and locations.
The performance metrics were calculated as follows:

The value of R was calculated as follows:

R =
∑M

t=1 (Qst −Qst,g)
(
Qot −Qot

)
)√

∑M
t=1 (Qst −Qst)2

√
∑M

t=1
(
Qot −Qot

)2
. (11)

The additive bias was calculated as follows:

BIAS =
∑M

t=1
(
Qst −Qot

)
M

. (12)
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The averaged RMSE was calculated as the temporal and spatial averaged RMSE for
SM or rainfall, separately:

RMSE =

√
1

MN ∑M
t=1 ∑N

g=1

(
Qst,g −Qot,g

)2, (13)

where Qot,g is observed variable value at time t and grid cell g, M is the maximum number
of time steps, N is the maximum number of grid cells, and Qst,g is the ensemble mean
simulated variable value at time t and grid cell g.

3.6. Triple-Collocation Analysis

In this study, triple-collocation (TC) analysis [64] was used to estimate the errors of the
rainfall product (SM2R) derived from SM2RAIN with CMD and CMFD rainfall products.
Here, we present a short description of the theory underlying TC. Suppose we have three
measurement systems Xi, observing a true variable t that is characterized by an additive
error model:

Xi = αi + βit + εi, (14)

where variables Xi (i = 1, 2, 3) are collocated measurement systems linearly related to the
true underlying value t with additive random errors εi„ while αi and βi are the ordinary least
square intercepts and slopes separately. Assuming that the errors from the independent
sources have zero mean (E(εi) = 0) and are uncorrelated with each other (Cov(εi;εj) = 0, with
i 6= j) and with t (Cov(εi,t) = 0), the variance of the error of each dataset can be expressed as
follows Chen et al. [65]:

σε =


√

Q11 − Q12Q13
Q23√

Q22 − Q12Q23
Q13√

Q33 − Q12Q23
Q12

, (15)

where Qij = Cov(Xi; Xj) is the covariance within the variables Xi.

3.7. Spatial and Temporal Analysis of SM Products

The temporal analysis of SM was performed based on the annual mean of SM (Mean),
standard deviation (Std) and the coefficient of variation (CV) of SM within the entire
watershed. The spatial analysis of SM was calculated based on the annual mean of SM,
standard deviation and the coefficient of variation of SM in different underlying surface
conditions of the watershed. The calculation of CV is as follows:

CV =
Std

Mean
(16)

4. Results

The presentation of the results is split into three parts: (1) assessment of the merged
SM product with WSN, (2) assessment of the SM2R product with ground-based rainfall
datasets, and (3) assessment of the SM2R product through TC with the CMD and CMFD
products.

4.1. Assessment of the Merged Soil Moisture Product with WSN

The merged SM product is shown at the monthly time step in Figure 7. During winter
or the dry season (January–March), surface SM is distributed reasonably uniformly within
the Upper Heihe River Basin. During summer and autumn or the wet season (April–June,
August, October, and November), southern parts of the Babaohe River Basin have relatively
high SM, reflecting the reasonably high vegetation coverage in the south of the Babaohe
River Basin. The daily SM RMSEs for RF, CNN and LSTM is 0.052 m3/m3, 0.06 m3/m3 and
0.058 m3/m3. Based on Bayesian theory, the uncertainties of the models can be decreased by
using Bayes model averaging (BMA) [66]. Therefore, the merged SM (SMm) was generated
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by using BMA with three SM datasets. The equation of the BMA to generate merged SM
with RF-SM (SM1), LSTM-SM (SM2), and CNN-SM (SM3) can be expressed as:

SMm = ∑M
i=1 wi(SMi) (17)

where w is the weight which was calculated based on the error distributions. The weight w
was calculated as errors of SMi divided by sum of all the errors of SM.
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Figure 8 shows the monthly RMSEs (merged SM product and WSN) of SM at the
WSNs during the study period (2014–2015). The overall RMSEs of SM at all WSNs is nearly
0.05 m3/m3. The merged SM agrees well with the ground-based SM with an R value of
0.8 and bias of −0.06 m3/m3. The results of the merged SM dataset show that it not only
retains the spatial distribution of the satellite-derived data but also has greater accuracy
than that of a single dataset (compared with SMOS (RMSE = 0.1 m3/m3, R = 0.29), SMAP
(RMSE = 0.06 m3/m3, R = 0.6), and ASCAT (RMSE = 0.06 m3/m3, R = 0.42)).
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The merged SM dataset shows substantial errors during the wet period (April–October).
Rainfall can dramatically affect the moisture condition of soil and the higher the SM content,
the higher the errors in the SM product. Some sites have insufficient data for plotting the
RMSEs; therefore, data from only 32 sites considered in this study are plotted. Overall, the
above results further demonstrate the effectiveness of the merged SM, which means that
the merged SM dataset is suitable for high-precision hydrology and drought monitoring
applications.

4.2. Classical Validation of SM2R Using High-Quality Ground-Based Observations

The SM2R dataset at the monthly time step is shown in Figure 9. Rainfall events
generally occur in central and northern parts of the Babaohe River Basin. However, the
distribution of rainfall is nonuniform and extreme rainfall usually occurs in central or
southeastern parts of the Babaohe River Basin, associated with the orographic effects of
the Qilian Mountains (elevation in the southeast is slightly higher than in the northwest).
Compared with CMFD (Figure 10) and TMPA (Figure 11), SM2R showed similar spatial
distributions with CMFD and TMPA (rainfall usually occurs in the southern part of the
Babaohe River Basin), but lower rainfall estimates. Additionally, TMPA showed higher
estimates and lower accuracy compared with interpolated daily rainfall (such as CMD) [67].

The performance metrics (RMSE, R, and bias) of most stations are acceptable most
of the time. Sites ARS, HZS, and HCG have lower R values and higher values of RMSE
and bias in comparison with the other sites (Figure 12). There are large errors in the SM2R
product at the ARS and HCG sites due to the sparse grassland. During July and August, the
RMSEs at site ARS are dramatically higher than those at other sites. Extreme rainfall (storm)
usually occurs during July and August (Figure 12). However, the SM2R dataset presents
higher R values at the ARS site, which is located on the southern slope of a mountain near
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the AR superstation (Figure 1). The ARS site is a typical desert steppe station (Figure 2).
Therefore, when storm rainfall occurs, the soil will quickly become saturated owing to its
fragile surface and thus the low fluctuations will not truly reflect the strength of the rainfall,
which plays an important role in rainfall retrieval. Consequently, the SM at sites with this
type of soil structure will not reflect the rainfall conditions after a storm rainfall event; the
stronger the storm, the greater the errors presented in the rainfall product. In addition to
ARS, site HCG is also in a sparse grassland location (Figure 2).
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The R value of site HZS is lower (higher) than that of AR, ARN, EB, and ARS (HCG),
and the RMSE and bias values of HZS are higher (lower) than those of AR, ARN, EB and
ARS (HCG) (Table 1). Site HZS is located in an area of cropland. The jointing period of wheat
occurs after April; therefore, during the investigated period, the cropland surface reflected
either low or high coverage of vegetation (Figure 2). In comparison with the other sites,
the SM of HZS is most affected by human activities (irregular irrigation). Therefore, the
performance metrics of site HZS are worse than those of most other sites. The performance
metrics of site HCG are the worst among all the investigated sites. The surface of site HCG
has the lowest coverage of grass among all the sites, and the evapotranspiration associated
with the sparse grass affects the fluctuation of surface SM dramatically. Additionally, root
uptake of surface SM under conditions of low grass coverage is also much larger than that
under conditions of higher grass coverage. Consequently, SM fluctuations cannot reflect
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only the rainfall effect, and there will be large errors in the SM2RAIN rainfall estimates for
areas with sparse grass coverage, which mostly reflect the effects of evapotranspiration
and root uptake. However, evapotranspiration in the mountains of Western China is
dramatically high, even during a rainfall event. Therefore, evapotranspiration should be
considered in SM2RAIN in areas with high and rapidly changing evapotranspiration.

Table 1. Performance metrics of SM2R/GPM-SM2RAIN/CHIRPS/ERA5/MSWEP rainfall data.

AMS R RMSE (mm) Bias (mm) Land Cover Soil Type

AR 0.9/0.62/0.25/0.28/0.27 1.98/2.32/2.62/4.37/2.71 −0.88/−1.1/0.99/2.31/1.01 High Coverage
Grassland alpine meadow soil

ARN 0.7/0.55/0.35/0.7/0.54 3.30/3.63/3.65/4.2/3.61 −1.51/−1.9/1.48/1.93/1.49 High Coverage
Grassland alpine meadow soil

EB 0.84/0.61/0.26/0.32/0.25 2.58/3.5/3.39/4.8/3.23 −1.21/−1.7/1.79/2.1/1.94 Middle Coverage
Grassland alpine meadow soil

HCG 0.17/0.23/0.13/0.64/0.48 4.86/4.38/4.75/5.1/3.71 −2.29/−2.1/2.46/2.39/2.77 Low Coverage
Grassland alpine meadow soil

HZS 0.32/0.26/0.1/0.6/0.5 3.83/4.02/4.34/4.2/2.74 −1.61/−1.8/1.73/2.13/1.66 Cropland chestnut soil

ARS 0.563/0.45/0.29/0.23/0.3 4.20/4.14/4.32/5.1/4.13 −2.1/−2.5/2.81/2.2/2.24 Low Coverage
Grassland alpine meadow soil

For most of the AMS sites with moderate or high grass coverage, the SM2R product
developed in this study has reasonable agreement with the ground-based SM observations,
indicating that the integration successfully excludes low-quality SM information.

For different rainfall products, the performance ordered by R (Table 1): SM2R (0.58) >
ERA5 (0.46) > GPM-SM2RAIN (0.45) > MSWEP (0.39) > CHIRPS (0.23); the performance
ordered by RMSE: MSWEP (3.35 mm) < SM2R (3.45 mm) < GPM-SM2RAIN (3.66 mm) <
CHIRPS (3.85 mm) < ERA5 (4.62 mm); the performance ordered by Bias: SM2R (−1.6 mm) <
GPM-SM2RAIN (−1.85 mm) < MSWEP (1.852 mm) < CHIRPS (1.88 mm) < ERA5 (2.18 mm).
After all, SM2R is best among GPM-SM2RAIN, CHIRPS, ERA5 and MSWEP.

Overall, the above results further demonstrate the effectiveness of the SM2R product
and indicate its suitability for operational and near real-time hydrological applications and
climate change analyses.

4.3. Validation of SM2R Using Triple-Collocation Analysis

The errors for the SM2R dataset calculated through TC analysis are shown in Figure 13.
Areas that present high SM2R uncertainties often reflect mountains with high coverage of
vegetation; some residential areas show that the SM2R product has low accuracies.
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Assessment of the SM2R, CMFD, and CMD rainfall products over the Upper Heihe
River Basin was conducted using TC analysis. Overall, reasonably good performance was
obtained by the SM2R rainfall product in data-sparse areas.

4.4. Spatial and Temporal Analysis of SM and SM2R

The temporal variations of SM are illustrated in Table 2. The standard deviation (Std)
was highest in autumn, followed by summer, spring and winter. The coefficient of variation
(CV) was highest in spring, followed by autumn, summer and winter. In spring (March–
May), the SM increased rapidly. As the temperature increased, permafrost melt and rainfall
increased, and soil moisture increased. In summer (June–August), the SM was highest.
Rainfall frequently occurred and SM fluctuated as the rainfall occurred. The variation was
only nearly 0.06 m3/m3; therefore, the Std is large, and CV is low. In autumn (September–
November), the SM decreased rapidly. Rainfall decreased and the evapotranspiration was
still large; therefore, SM decreased. In winter (December–February), the SM was stable and
lowest. When the temperature decreased and soil froze, soil moisture became solid and
nearly no rainfall compensated the soil moisture, and evapotranspiration was low, the SM
was lowest and stable.

Table 2. Statistics of SM data in 2014.

Month Range (m3/m3) Median (m3/m3) Mean (m3/m3) Std (m3/m3) CV

1 0.036–0.045 0.04 0.04 0.002 0.05
2 0.035–0.052 0.044 0.043 0.005 0.105
3 0.043–0.131 0.083 0.079 0.028 0.349
4 0.104–0.333 0.274 0.241 0.081 0.335
5 0.282–0.371 0.338 0.326 0.029 0.09
6 0.343–0.453 0.384 0.382 0.023 0.061
7 0.309–0.449 0.368 0.372 0.041 0.11
8 0.292–0.389 0.363 0.354 0.024 0.067
9 0.323–0.381 0.358 0.356 0.017 0.049
10 0.232–0.341 0.321 0.308 0.032 0.102
11 0.077–0.261 0.135 0.153 0.053 0.346
12 0.04–0.038 0.05 0.05 0.01 0.158

Annual 0.035–0.453 0.308 0.241 0.135 0.561

Figures 14 and 15 showed the linear regression between coefficient of variation of soil
moisture content CV and its mean daily value in different soil and land cover conditions.
In all conditions, as the SM increased, CV decreased. In the silty loam and range shrubland
conditions, the CV corresponds well with the mean of SM; therefore, the spatial variations
of SM can be presented more regularly in the silty loam and range shrubland conditions.
Corresponding to the rainfall event, the rainfall product has higher accuracy when the
underlying surface consists of silty loam soil or range shrubland (Table 1).

Remote Sens. 2022, 14, x FOR PEER REVIEW 22 of 28 
 

 

was stable and lowest. When the temperature decreased and soil froze, soil moisture be-
came solid and nearly no rainfall compensated the soil moisture, and evapotranspiration 
was low, the SM was lowest and stable. 

Table 2. Statistics of SM data in 2014. 

Month Range (m3/m3) Median (m3/m3) Mean (m3/m3) Std (m3/m3) CV 
1 0.036–0.045 0.04 0.04 0.002 0.05 
2 0.035–0.052 0.044 0.043 0.005 0.105 
3 0.043–0.131 0.083 0.079 0.028 0.349 
4 0.104–0.333 0.274 0.241 0.081 0.335 
5 0.282–0.371 0.338 0.326 0.029 0.09 
6 0.343–0.453 0.384 0.382 0.023 0.061 
7 0.309–0.449 0.368 0.372 0.041 0.11 
8 0.292–0.389 0.363 0.354 0.024 0.067 
9 0.323–0.381 0.358 0.356 0.017 0.049 

10 0.232–0.341 0.321 0.308 0.032 0.102 
11 0.077–0.261 0.135 0.153 0.053 0.346 
12 0.04–0.038 0.05 0.05 0.01 0.158 

Annual 0.035–0.453 0.308 0.241 0.135 0.561 

Figures 14 and 15 showed the linear regression between coefficient of variation of 
soil moisture content CV and its mean daily value in different soil and land cover condi-
tions. In all conditions, as the SM increased, CV decreased. In the silty loam and range 
shrubland conditions, the CV corresponds well with the mean of SM; therefore, the spatial 
variations of SM can be presented more regularly in the silty loam and range shrubland 
conditions. Corresponding to the rainfall event, the rainfall product has higher accuracy 
when the underlying surface consists of silty loam soil or range shrubland (Table 1). 

 
Figure 14. The linear regression between the coefficient of variation of soil moisture content CV and 
its mean daily value in different soil conditions. 

 
Figure 15. The linear regression between the coefficient of variation of soil moisture content CV and 
its mean daily value in different land cover types. 

Figure 14. The linear regression between the coefficient of variation of soil moisture content CV and
its mean daily value in different soil conditions.



Remote Sens. 2022, 14, 5355 22 of 27

Remote Sens. 2022, 14, x FOR PEER REVIEW 22 of 28 
 

 

was stable and lowest. When the temperature decreased and soil froze, soil moisture be-
came solid and nearly no rainfall compensated the soil moisture, and evapotranspiration 
was low, the SM was lowest and stable. 

Table 2. Statistics of SM data in 2014. 

Month Range (m3/m3) Median (m3/m3) Mean (m3/m3) Std (m3/m3) CV 
1 0.036–0.045 0.04 0.04 0.002 0.05 
2 0.035–0.052 0.044 0.043 0.005 0.105 
3 0.043–0.131 0.083 0.079 0.028 0.349 
4 0.104–0.333 0.274 0.241 0.081 0.335 
5 0.282–0.371 0.338 0.326 0.029 0.09 
6 0.343–0.453 0.384 0.382 0.023 0.061 
7 0.309–0.449 0.368 0.372 0.041 0.11 
8 0.292–0.389 0.363 0.354 0.024 0.067 
9 0.323–0.381 0.358 0.356 0.017 0.049 

10 0.232–0.341 0.321 0.308 0.032 0.102 
11 0.077–0.261 0.135 0.153 0.053 0.346 
12 0.04–0.038 0.05 0.05 0.01 0.158 

Annual 0.035–0.453 0.308 0.241 0.135 0.561 

Figures 14 and 15 showed the linear regression between coefficient of variation of 
soil moisture content CV and its mean daily value in different soil and land cover condi-
tions. In all conditions, as the SM increased, CV decreased. In the silty loam and range 
shrubland conditions, the CV corresponds well with the mean of SM; therefore, the spatial 
variations of SM can be presented more regularly in the silty loam and range shrubland 
conditions. Corresponding to the rainfall event, the rainfall product has higher accuracy 
when the underlying surface consists of silty loam soil or range shrubland (Table 1). 

 
Figure 14. The linear regression between the coefficient of variation of soil moisture content CV and 
its mean daily value in different soil conditions. 

 
Figure 15. The linear regression between the coefficient of variation of soil moisture content CV and 
its mean daily value in different land cover types. 
Figure 15. The linear regression between the coefficient of variation of soil moisture content CV and
its mean daily value in different land cover types.

5. Discussion

In this study, a daily 0.25◦ resolution SM and rainfall product was developed by
integrating multiple sources of SM and rainfall data, inverted using the water balance
model and machine learning methods. The proposed SM and rainfall product can be
used for hydrological, meteorological, agricultural and disaster research and applications,
such as weather and flood forecasting, water resource management and climate change
analysis. The performance of SM2R was assessed by comparative analysis with in situ
observations and comparing the results with two state-of-the-art precipitation products
namely TMPA and CMD. In general, the overall results (Figure 13) revealed that the SM2R
product can effectively capture the precipitation compared with other product. Several
pieces of research have been performed in other parts of the world to provide timely and
preliminary evaluation reports of newly developed precipitation products [22,23]. They
concluded that the accuracy and reliability are mainly dependent on the climatic and
geographic condition of that specific region. Hence, this study used different performance
metrics to evaluate the accuracy and reliability of a novel product for different land cover
and soil conditions (Figures 14 and 15). The spatial variations of SM can be present high
linear dependence in the silty loam and range shrubland conditions. Corresponding to
the rainfall event, the rainfall product has higher accuracy when the underlying surface
consists of silty loam soil or range shrubland (Table 1).

Three machine learning methods, RF, CNN, and LSTM, were used to merge the
satellite-derived (SMAP, SMOS, and ASCAT) SM datasets and ground-based SM obser-
vations. In extreme (storm) precipitation, all SM datasets have low accuracy. In most
microwave SM datasets, when there is heavy rain, the SM value is either invalid or the
SM saturation value [68]. Such errors can be diminished through land surface data assim-
ilation based on multiple SM products [4,69,70]. The merged SM dataset is also affected
by the characteristics of the underlying surface. Desert steppe areas have low accuracies
attributable to the fragile soil texture. Overall, the spatiotemporal resolution and the accu-
racy of the merged SM dataset were improved in comparison with those of a single SM
dataset. More satellite data can also be integrated, such as AMSR2 soil moisture data or
GPM rainfall data. More ground-based SM data can be integrated, such as the International
Soil Moisture Network (ISMN). More machine learning methods, especially deep learning
methods, such as generative adversarial network (GAN), deep belief networks (DBN) and
autoencoders (AE) can be integrated into our framework [71].

The SM2R product, generated through merging SM datasets and the TMPA satellite-
derived rainfall dataset, performed better than all other rainfall products (i.e., CMFD and
CMD). However, its accuracy is dramatically affected by the quality of the SM dataset.
The quality of the SM2R rainfall product matched well with the quality of the SM data,
although it is also affected by land use and soil texture. Similar conclusions can be drawn
regarding SM2R as well as the merged SM product. Owing to the disadvantages of using
the RMSE as a metric of SM2RAIN performance, the estimates might contain large biases
in extreme rainfall events. Therefore, improved estimates of extreme rainfall might be
obtained from SM2RAIN if it were calibrated using the Kling–Gupta efficiency index or
other appropriate metrics. A meta-analysis of the effects of grassland degradation on the
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plant and soil properties of alpine meadows on the Qinghai–Tibetan Plateau revealed that
alpine meadow SM decreases significantly (p < 0.05) at all depths and for all stages of
degradation of vegetation [72]. In comparison with areas with high coverage of grassland,
areas with low coverage of grassland have lower SM; consequently, the lower the coverage
of grassland, the lower the accuracy of SM2R rainfall data. The SM2R product can be
applied to hydrological forecasting in the Babaohe river basin and the method we proposed
can be applied for any regions with global available satellite products (SMOS, SMAP, TMPA,
etc.) and ground observations (ISMN, etc.).

The coverage of grass affects surface SM through evapotranspiration and root uptake,
especially in areas with low coverage. In such areas, SM fluctuations will not truly reflect
the rainfall effect, i.e., there will be large errors in the SM2RAIN rainfall estimates that
reflect the effects of evapotranspiration and root uptake. There are findings that present the
improvement of the rainfall estimates due to the inclusion of the evaporation dataset (ERA5)
in the south-western US and central western Australia. However, the evapotranspiration
dataset might be not available for the implementation of the processing algorithm in an
operational context. Therefore, evapotranspiration should be considered in SM2RAIN in
areas with high and rapidly changing evapotranspiration. However, the real-time actual
evapotranspiration estimation is still a changeling.

6. Conclusions

Using daily 0.25◦ resolution SM and rainfall datasets, this study developed a method
to integrate multiple sources of SM and rainfall data, inverted using the water balance
model and machine learning methods. The SM2R product, which merged multiple SM and
rainfall dataset, performed better than all other rainfall products (i.e., CMFD and CMD) in
Babaohe river basin. The errors of the SM2R are affected by ground conditions, including
land cover and soi types.

Using machine learning methods (RF, CNN, and LSTM), the multiple sources of SM
data were used to produce an improved SM product. The errors of the merged SM product
depend largely on land use, soil texture, and rainfall intensity. The largest errors occurred in
areas of sparse grassland and cropland or during storms. The proposed framework is offline
and can be implemented easily and efficiently. Additionally, the proposed framework can
also provide single or ensemble forecasting with single or multiple models and multiple
datasets. In our next work, we will test our method with more data in this study area and
immigrate our framework to other study areas with more satellite data and more machine
learning methods integrated, such as generative adversarial network (GAN), deep belief
networks (DBN) and autoencoders (AE).

Based on the merged SM products, the SM2R rainfall product derived from SM2RAIN
is considered a successful rainfall product with acceptably low spatiotemporal errors. The
errors of the SM2R product also depend largely on land-use type and soil properties.
The SM2R data have satisfactory quality for grassland areas with moderate vegetation
coverage. However, SM retrieval using either satellite or reanalysis technologies remains a
problem for farmland areas globally. There are a lot of SM2RAIN-derived rainfall products,
such as GPM-SM2RAIN, SM2RAIN-ASCAT and SM2RAIN-CCI. Notwithstanding this,
these datasets usually mask out regions characterized by high topographic complexity,
frozen soil and high snow probability. Though the SM2R has the same limitations with
SM2RAIN—rainfall estimated only over land, low accuracy in presence of dense vegetation
or complex topography and difficulties in estimating rainfall in case of soil saturation—the
performance of SM2R showed its advantages with the aid of machine learning methods by
merging multisource data compared with traditional SM2RAIN datasets.

The relationship between SM fluctuation and rainfall provides an opportunity to
retrieve rainfall from the soil moisture. Furthermore, the spatial and temporal variations of
the SM pattern also illustrate that the successes of retrieving rainfall largely depends on the
underlying characters, including soil types and land cover types. In our next work, we will
consider spending more effects to resolve the poor results due to heterogenous underly
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surface characters; for example, retrieving rainfall from soil moisture in the mix soil and
land cover types of pixels.

Future work should either explore other methods and new technologies or expand
existing models to better integrate multiple data sources data (i.e., ground/satellite-based
SM or rainfall) to produce rainfall products that have improved accuracy. The proposed
SM and rainfall product can be used for short-term and long-term forecasting of SM and
rainfall or provide reanalysis data for climate and hydrological research and applications
such as climate change analysis.
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