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Abstract: Forests are essential for global environmental well-being because of their rich provision of
ecosystem services and regulating factors. Global forests are under increasing pressure from climate
change, resource extraction, and anthropologically-driven disturbances. The results are dramatic
losses of habitats accompanied with the reduction of species diversity. There is the urgent need
for forest biodiversity monitoring comprising analysis on α, β, and γ scale to identify hotspots
of biodiversity. Remote sensing enables large-scale monitoring at multiple spatial and temporal
resolutions. Concepts of remotely sensed spectral diversity have been identified as promising
methodologies for the consistent and multi-temporal analysis of forest biodiversity. This review
provides a first time focus on the three spectral diversity concepts “vegetation indices”, “spectral
information content”, and “spectral species” for forest biodiversity monitoring based on airborne
and spaceborne remote sensing. In addition, the reviewed articles are analyzed regarding the
spatiotemporal distribution, remote sensing sensors, temporal scales and thematic foci. We identify
multispectral sensors as primary data source which underlines the focus on optical diversity as a
proxy for forest biodiversity. Moreover, there is a general conceptual focus on the analysis of spectral
information content. In recent years, the spectral species concept has raised attention and has been
applied to Sentinel-2 and MODIS data for the analysis from local spectral species to global spectral
communities. Novel remote sensing processing capacities and the provision of complementary
remote sensing data sets offer great potentials for large-scale biodiversity monitoring in the future.

Keywords: forest; biodiversity; alpha diversity; beta diversity; gamma diversity; spectral variation
hypothesis; spectral diversity; optical diversity; satellite data; remote sensing

1. Introduction
1.1. Relevance of Biodiversity Monitoring

Biodiversity encompasses taxonomic, functional, and structural diversity of species
and is therefore defined as the variety of life on Earth [1]. The interrelation of biodiversity
with species community composition, nutrient cycling and ecosystem productivity, high-
lights its importance in maintaining ecosystem integrity and resilience [2,3]. In general,
the global distribution of biodiversity can be classified into hotspots (tropical forests, coral
reefs) and coldspots (deserts, polar regions) [2,4]. Recently, monitoring of hotspots has
become more frequent on the one hand due to improvements in large-scale environmental
data acquisition (e.g., spaceborne remote sensing) accompanied by the development of
analytical tools, and on the other hand because of rising global concerns about the future
well-being due to climate change [2,5]. To face the challenges of global change, the concept
of planetary boundary has been introduced to support sustainable human development
by monitoring and preserving biodiversity: by proposing climate change and biosphere
integrity as the two core planetary boundaries, the dependency of the human well-being
on rich biodiversity is emphasized once more [2,6].
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The current extreme global losses in biodiversity due to climate change are understood
by many researchers as the early signs of the sixth mass extinction [4,7–9]. Key indicators of
global biodiversity loss are: the declining extent of forest, reduced coverage of protected
areas, dropping of the Living Plant Index (average drop of 68% since 1970), and the declining
Red List Index (28% of all assessed species are threatened with extinction) [10–14].

The inclusion of forest extent as a key indicator of global biodiversity [15,16] empha-
sizes the critical role of forests as terrestrial biodiversity hotspot [17]. Ecosystem services
provided by forests can be classified into provisioning (e.g., nutrition), regulating (e.g., me-
diation of toxics and flow) and cultural (e.g., recreation) [18]. Recent studies have revealed
that all high-risk hotspots are located in the tropics due the presence of over-proportionally
high species richness and increased rates of climate buffering. In addition, tropical forests
are the most relevant areas for conservation since currently only about 18% of the hotspots
are under protection [11,14]. Since the risk of population extinction is significantly higher
in intact forested regions, those areas should be prioritized for conservation [11]. Another
global study on the extent of intact forest landscapes reports a decline of 7.2% in area since
2000 [19]. Future projections of accelerated forest loss (1.5 times the current rate) underline
the need for large-scale conservation efforts of intact forests, since the number of threatened
species might increase from 121 to 219 [11].

To quantitatively monitor biodiversity in different spatial components, Whittaker [20,21]
developed the hierarchical concept of α, β, and γ diversity (Table 1). The within-community
diversity at local scale reflects abiotic and biotic habitat preferences for species and is called
α diversity. Commonly used metrics to estimate α diversity in field surveys are species
richness [22], Shannon–Wiener index [23], and Simpson index [24]. To analyze the difference
in species composition, i.e., species turnover (β diversity), (dis-)similarity measures such
as Jaccard index [25], Sørensen index [26] or Bray–Curtis dissimilarity [27] are calculated
between plot measures. β diversity can be summarized as the between community diversity
to identify gradients in species composition, highlight species complementary among sites,
and estimate high biodiversity areas [28,29]. Landscape diversity is defined as γ diversity
which consists of the sub-hierarchical structures α and β diversity. There is an ongoing
debate whether to partition γ diversity into additive or multiplicative terms of α and β

diversity [30–32].

Table 1. Explanation of α, β, and γ diversity with respective field measurement metrics.

Biodiversity Scale Explanation Exemplary Field
Measurement Metrics

Examples of
Publications

α diversity
within community diversity;

local scale; habitat preferences
species richness, Shannon–Wiener

index, Simpson index [22–24]

β diversity
between community diversity;

turn-over in species composition;
connection between local and regional scales

Jaccard index, Sørensen
index, Bray–Curtis dissimilarity [25–27]

γ diversity
landscape diversity; subdivided

into α and β diversity
total species richness

(true diversity) [33]

1.2. Forest Biodiversity Monitoring Based on Remote Sensing Data

The assessment of forest biodiversity has traditionally been conducted as field surveys
organized in plot units, which represent a small area from which general conclusions
about the overall environmental conditions should be drawn. This in situ field sampling
is considered to be time consuming and costly for large-scale analysis, and comes along
with sampling and identification biases, and is in most cases limited to mono-temporal
observations [34,35]. With the increasing publicly availability of remote sensing data
and provision of processing software, the application of remote sensing imagery for the
monitoring of land cover dynamics has gained in relevance and importance. Consistent
and repeatable measurements of remote sensing sensors offer cost-effective solutions for
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large-scale monitoring of biodiversity. Furthermore, spaceborne imagery allows to assess
vegetation conditions in inaccessible, remote areas [36,37].

For the assessment of vegetation diversity, optical sensors (multi- and hyperspectral
sensors, i.e., passive sensors) are often used to calculate spectral indices (e.g., Normal-
ized difference vegetation index (NDVI), which is correlated with Net-primary produc-
tivity [38]) [39,40]. Popular sensors at high to medium spatial resolution are Sentinel-2
(ESA Copernicus program) and sensors from the Landsat mission (USGS/NASA). The
combination of multiple sensors, e.g., Sentinel-2 and Landsat 8, offer the possibility of
generating high spatial and temporal data sets in order to track changes in the environment
based on spectral and temporal signatures [41,42]. In addition, the fusion of data sets from
complementary sensors can be another benefit, since reflectance information from optical
sensors can be supplemented by active sensors (e.g., Synthetic-Aperture Radar, SAR or
Light detection and ranging, LiDAR) [43–46]. The integration of structural information
from active sensors (e.g., from the Global Ecosystem Dynamics Investigation, GEDI) en-
ables a more comprehensive characterization of vegetation structure and its change [47–50].
Furthermore, an improved small-scale understanding is possible when remotely sensed
information from spaceborne sensors is correlated with airborne or drone imagery. Al-
though airborne and drone sensors can offer great potentials such as higher spatial and
radiometric resolution, clear drawbacks regarding the temporal resolution and spatial cov-
erage remain. Overall, the combination of aforementioned different spatial coverage and
sensor-specific characteristics enable the most comprehensive estimation and validation
of α, β, and γ diversity, when correlated with in situ measurements, e.g., species richness
sampling (Figure 1).

Figure 1. Overview figure depicting the different biodiversity scales (α, β, and γ diversity) and
earth observation sensors: Light detection and ranging (LiDAR) from airborne sensors; optical
(left) and radar imagery (right) from satellite remote sensing. Graphics are extracted from the
University of Maryland (https://ian.umces.edu/media-library/, accessed on 1 September 2022),
and NASA Science (https://science.nasa.gov/get-involved/toolkits/spacecraft-icons, accessed on 1
September 2022).

https://ian.umces.edu/media-library/
https://science.nasa.gov/get-involved/toolkits/spacecraft-icons
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According to the most recent review on biodiversity monitoring by remote sensing by
Wang & Gamon 2019 [51], a broad classification of the different approaches into the follow-
ing categories is presented: habitat mapping, species mapping, functional diversity analysis,
and spectral diversity estimation (Table 2). Previous reviews have introduced a classifica-
tion into direct (habitat and species mapping; i.e., identification of species) on the one hand,
and indirect approaches (functional diversity, spectral diversity; i.e., modelling of species
distributions and the spatial arrangement of diversity) on the other hand [36,37]. Another
subdivision of biodiversity monitoring categories was published in Lausch et al. 2016 [52],
who structured the different approaches into taxonomic (species detection, species distribu-
tion modelling), functional (quantification of biochemistry, functional types and biomass),
and structural diversity (structural composition, spectral heterogeneity, monitoring of
habitats and land use/cover classes). Since the focus of this review is on spectral diversity
related to the spectral variation hypothesis, the review of Wang & Gamon 2019 [51] serves
as structural foundation of biodiversity monitoring approaches because it also presented
the emerging concept of spectral diversity as a unique category for the first time. There
is an ongoing debate about the validity of the spectral variation hypothesis (SVH). On
the one hand, multiple studies have confirmed the link between spectral diversity and
biodiversity in different ecosystems [53–59]. In contrast, Schmidtlein & Fassnacht 2017 [60]
and Fassnacht et al. 2022 [61] highlighted the influence of multiple factors (e.g., scale and
temporal effects, habitat types, spectral variation metrics) on the spatial validity of the SVH.
In addition, there are challenges in change detection of biodiversity using spectral diversity
and the indirect, non-universal relationship between SVH and biodiversity. Concluding,
the authors highlight the need for more research on change detection/monitoring than on
mapping [61], and recommend a refinement of the SVH since there is an agreement on the
applicability of spectral diversity as a first proxy for identifying gradients in biodiversity to
support field work [61,62].

Table 2. Classification of categories for biodiversity monitoring from remote sensing imagery accord-
ing to Wang & Gamon 2019 [51].

Categories Concepts Exemplary Publications

Habitat mapping
Species area curve [63]

Habitat heterogeneity [64,65]

Species mapping Species distribution [66–68]

Functional diversity Plant functional traits [69–71]

Spectral diversity
Vegetation indices [53,72]

Spectral information content [73,74]

Spectral species [55,75]

In the early study by Palmer et al. 2002 [35], the SVH was formulated for the first
time, stating that the heterogeneity of remotely sensed spectral information can be linked
to the diversity in species, since the increase in spectral variation is associated to more
ecological niches and habitats available, thus promoting the presence of a greater diversity
in species [76–78]. In a recent study of Torresani et al. 2020 [79], the concept of the SVH
which is based on optical sensors (optical diversity) has been extended by the height
variation hypothesis (HVH). In contrast to the SVH, the HVH is based on information
derived from LiDAR, e.g., vertical structure information, and adds complementary value
to the SVH since a first study [79] presented the correlation of diversity in the vertical
structure of vegetation (height heterogeneity) with tree species diversity.

The category of spectral diversity can be further subdivided into the concepts veg-
etation indices, spectral information content, and spectral species [51]. The variation in
vegetation indices in the spatial and temporal dimension has introduced the first quan-
titative understanding of the link between spectral diversity (e.g., variability in NDVI)
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and in situ measurements of biodiversity (e.g., Shannon index as an estimate of tree
species diversity) [53,72]. The analysis of spectral information content, e.g., the calculation
of the coefficient of variation or the application of ordination techniques from spectral
information, has built up on the findings from vegetation indices, and integrated higher-
dimensional spectral data (e.g., from hyperspectral imagery) into the category of spectral
diversity [73,74,80]. The concept of spectral species as spectral surrogates for taxonomic
species or functional groups has been introduced by Féret & Asner 2014 [55] based on air-
borne hyperspectral data. The concept combines ordination techniques and unsupervised
clustering to estimate spectral species as α (Shannon index) and β diversity (Bray–Curtis
dissimilarity). Since the true identification of taxonomic species (e.g., tree species) is limited
by the sensors spatial and spectral resolution, assigned spectral species can also represent
more generalized spectrally distinct classes, such as rather homogeneous assemblages of
species, habitats or ecosystems [55,81].

Overall, remotely sensed monitoring of biodiversity offers great potentials due to
the consistent and repetitive measurements of various sensor types. The development of
spectral diversity based concepts for biodiversity estimation has gained increasing interest
in recent years [51,52,81] and might strengthen the collaboration between remote sensing
experts, biologist, and ecologists, since the in situ validation of remotely sensed biodiversity
products will improve the understanding of underlying relationships between spectral,
taxonomic, functional, and structural metrics [61,73,82].

1.3. The Objectives and Structure of This Review

This review aims to provide a comprehensive overview about biodiversity monitoring
in forests based on remotely sensed spectral diversity. More specifically, there is a focus on
studies incorporating spectral diversity according to the SVH for monitoring of diversity in
flora and fauna of forests. Furthermore, a broader understanding at larger-scale should be
given, which is why only studies based on airborne or spaceborne sensors are considered.

The general structure of the review is explained below:

• The introduction in Section 1 presents the relevance of forest biodiversity monitoring
and highlights the possibilities of concepts from remote sensing.

• The literature selection process is explained in Section 2 by giving an overview on the
literature databases and keywords used for identifying relevant articles for this review.

• The results section (Section 3) is structured into a general introduction on the number
of publications by year and main publishers and authors, followed by a spatial analysis
of the author affiliations and study areas. In addition, the sensors used and temporal
periods of remote sensing data are covered. The results chapter ends with a thematic
analysis by classifying the studies into the three concepts of spectral diversity and by
providing information on spectral diversity metrics and biodiversity scales.

• The concepts of spectral diversity, contrary findings and challenges are discussed in
Section 4.

• A conclusive statement on forest biodiversity monitoring from remotely sensed spec-
tral diversity based on airborne and spaceborne sensors is given in Section 5.

2. Materials and Methods

A structured literature search on forest biodiversity monitoring based on airborne or
spaceborne remotely sensed spectral diversity has been conducted in the platforms Web of
Science and Google Scholar. To derive an initial pool of relevant publications, a conditional
search string integrating the foci on spectral diversity and remote sensing was developed
in Web of Science (last access on 26 August 2022). Additionally, a keyword search on
the full text in Google Scholar added further relevant articles (last access on 26 August
2022). Figure 2 depicts the full literature search and subsequent filtering to identify the
final articles for review.
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Figure 2. Workflow chart of the literature search process to identify relevant scientific articles about
forest biodiversity monitoring from remotely sensed spectral diversity. An initial pool of publications
collected in Web of Science (n = 516) was supplemented by findings from a full text keyword search in
Google Scholar (n = 36). After screening the title, abstract and keywords of each article, 134 relevant
articles remained. In a next step, the remaining articles were carefully read and relevant attributes
extracted, excluding another 25 articles mostly because the study site did not cover forest areas.
The final number of relevant articles considered in this review amounts to 109 articles published
since 2002.

By filtering for various keywords in the title, abstract or keywords of publications,
relevant studies can be identified. To match studies with a focus on spectral diversity,
the following keywords were used: “spectral variation hypothesis”, “spectral variability
hypothesis”, “spectral heterogeneity”, “spectral diversity”, “optical diversity”, “alpha
diversity”, “beta diversity”, “gamma diversity”, and “spectral species”. In addition, to filter
for publications with a focus on airborne and spaceborne remote sensing, a comprehensive
list of synonyms for remote sensing and sensor names was integrated: “remote sensing”,
“earth observation”, “satellite”, “IKONOS”, “Quickbird”, “WorldView”, “Pleiades”, “Rapid-
eye”, “GeoEye”, “Planet”, “Skysat”, “SPOT”, “Landsat”, “Sentinel”, “AVHRR”, “MODIS”,
“Envisat”, “Aster”, “ALOS”, “TanDEM-X”, “TerraSAR-X”, “DESIS”, “PRISMA”, “EnMAP”,
“Hyperion”, “GEDI”, “optical imagery”, “optical satellite”, “Synthetic Aperture Radar”,
“Radar”, “RadarSat”, “COSMO”, “SRTM”, “microwave satellite”, “multispectral satellite”,
“hyperspectral satellite”, “imaging spectroscopy”, “thermal satellite”, and “airborne laser
scanning”. After several trials, this comprehensive list of attributes from remote sensing
and spectral diversity resulted in the most complete pool of relevant publications. The
inclusion of “forest” or other synonyms for forested areas as a third thematic filter in the
search string has been tested extensively, but was considered as too exclusive since many
relevant publications did not include a detailed description of the study area in the title,
abstract or keywords. Further relevance criteria are that publications need to be of type
article and written in English. We selected an English language filter so that reviewed
articles can be found and understood by most researchers.

A total number of 516 overall relevant publications were found using the following
search string in Web of Science, where “TS” stands for topic (filtering in title, abstract,
keywords), “LA” for language, and “DT” for document type:

(((TS=(“spectral variation hypothesis” OR “spectral variability hypothesis” OR “spec-
tral heterogeneity” OR “spectral diversity” OR “optical diversity“ OR ”alpha diver-
sity“ OR ”beta diversity“ OR ”gamma diversity“ OR ”spectral species“)) AND
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TS=(“remote sensing” OR “earth observation” OR satellite OR IKONOS OR Quickbird
OR WorldView OR Pleiades OR Rapideye OR GeoEye OR Planet OR Skysat OR SPOT
OR Landsat OR Sentinel OR AVHRR OR MODIS OR Envisat OR Aster OR ALOS OR
“TanDEM-X” OR “TerraSAR-X” OR DESIS OR PRISMA OR EnMAP OR Hyperion
OR GEDI OR ”optical imagery“ OR ”optical satellite“ OR ”Synthetic Aperture Radar"
OR “Radar“ OR RadarSat OR COSMO OR SRTM OR “microwave satellite” OR
“multispectral satellite” OR “hyperspectral satellite” OR “imaging spectroscopy” OR
“thermal satellite” OR “airborne laser scanning”)) AND

LA=(English)) AND DT=(Article).

Aside from the generation of a general pool of relevant literature from Web of Science,
an additional literature search has been conducted in Google Scholar based on aforemen-
tioned keywords. In Google Scholar a keyword search can be run for the full text (default
setting), i.e., not only for the title, abstract and keywords. The literature search in Google
Scholar resulted in 36 relevant articles.

From the preliminary pool of relevant articles acquired from Web of Science and
Google Scholar (n = 552), metadata such as authors, article title, publisher, journal title,
year and Web of Science category was exported from Web of Science. After screening
the title, abstract and keywords of all articles from the preliminary pool, 134 relevant
articles remained. Those articles were read carefully by extracting for each study attributes
regarding general information, spatial information, sensor characteristics, temporal periods
of remote sensing and field data, and thematic information. After reading all remaining
articles, another 25 articles were considered to be irrelevant, mostly because the study area
did not cover forest areas. The final number of relevant articles that are considered in this
review amounts to 109 articles published since 2002.

3. Results of the Review

The following subsections present the findings from the reviewed articles on forest
biodiversity monitoring from remotely sensed spectral diversity:

• In a first step, general information about the number of publications based on re-
classified Web of Science categories, and main publishers, journals and authors are
presented (Section 3.1).

• The following chapter (Section 3.2) on spatial analysis, displays on the one hand the
countries of the first authors affiliations, and on the other hand, the spatial distribution
of study areas grouped by country as maps.

• To investigate sensors used in the studies and compare different spatial scales and
spatial resolutions, the third chapter serves as an overview on different sensor charac-
teristics (Section 3.3).

• The varying temporal periods of remote sensing data grouped by sensors, and the
proportions of mono-temporal, multi-temporal and time-series approaches in field
and remote sensing data are the focus of Section 3.4.

• As a final result, the thematic analysis (Section 3.5) covers the temporal distribution of
spectral diversity concepts and presents the most frequently used spectral indices. In
addition, the share of analyzed biodiversity scales (α, β, and γ diversity), and focus
on flora/fauna is presented.

3.1. General Information on the Research Interest over Time

As a general introduction to the number of studies per year classified in Web of Science
categories (Table S2, Supplementary Materials), Figure 3 displays an increasing trend of the
total number of publications per year from 2002 to 2022. With a maximum of 14 publications
in 2021, the increasing popularity of spectral diversity as a remote sensing proxy for forest
biodiversity is also highlighted by more than 10 publications each for the years 2019 to 2021.
Overall, about 41% of the reviewed studies are categorized as “Environmental Sciences”,
followed by a combination of “Environmental Sciences and Remote Sensing” (about 32%).
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Studies that have a strong focus on either “Ecology” (15%) or “Remote Sensing” (12%)
present similar shares. Early studies (2003–2006) are solely classified as “Environmental
Sciences”, whereas recent years present a greater mix of categories. In 2021 the combination
of “Environmental Sciences and Remote Sensing” amounts to 8 publications, which is the
second highest total number of a single category, only dominated by the year 2019 with
10 publications for “Environmental Sciences”. The increasing number of recent publications
is underlined by the fact that more than 56% of all studies have been published since 2016,
although the year 2022 did not end until the last access of the literature databases (26 August
2022). In other words, less than 44% of all studies have been published in about 2/3 of the
investigated time period (2002 to 2015).

Figure 3. Temporal distribution of publications subdivided into reclassified Web of Science categories.
Overall, there is an increasing number of publications from 2002 to 2022 with more than 56% of all
studies being published since 2016. About 41% of all studies can be classified as research in “Environ-
mental Sciences”, followed by “Environmental Sciences and Remote Sensing” (about 32%). Studies
classified as “Ecology” (about 15%) or “Remote Sensing” (about 12%) present similar proportions.

Figure 4 depicts the number of publications per publisher, journal, and most frequent
first authors. Most studies are published in Wiley, with a total number of 25 publications
(Figure 4b). Because Elsevier Science Inc., Elsevier, and Elsevier Science Bv. are defined as
unique publishers in the Web of Science database, they have not been aggregated. When
combined the total number amounts to 40 publications.

When aggregating all journals with a single publication (class “Others”), the total
number amounts to 24 publications (Figure 4a). Interestingly, the journals with the second
(Remote Sensing of Environment, Elsevier, 18 publications) and third highest number
of publications (Remote Sensing, MDPI, 10 publications) both have a strong focus on
remote sensing. The journals Ecological Applications (Wiley, 8 publications) and Ecological
Indicators (Elsevier, 7 publications) come in fourth and fifth position, respectively.
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The statistics about the number of publications in Figure 4c) based on the first author
shows very different total numbers. About 15% of all reviewed articles (16 publications)
are first authored by Duccio Rocchini (BIOME Lab, Department of Biological, Geological
and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna,
Italy; Department of Spatial Sciences, Czech University of Life Sciences Prague, Faculty of
Environmental Sciences, Praha, Czech Republic). Furthermore, there are 13 first authors
with more than one publication, who together contribute by about 41% (45 publications) to
all reviewed articles.

Figure 4. This figure combines information about journals (a), publishers (b), and most frequent au-
thors (c). In the plots about publishers and journals, the class “Others” aggregates publishers/journals
with a single publication. Similarly, in the plot about the most frequent authors, only first authors
with more than one publication are listed.

3.2. Spatial Analysis on Affiliations and Study Areas

The spatial analysis of the countries from the first author affiliations is depicted
in Figure 5. Overall, the first authors included in this review come from 25 different
countries. The country holding the most affiliations from first authors are the United States
(24 publications), followed by Italy (21 publications). When aggregating all countries from
the affiliations of first authors with a single publication, the total number amounts to
12 countries; Finland (8 publications), India (8 publications), and Germany (7 publications)
present similar numbers of publications.
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Figure 5. Map of the spatial distribution of the first author affiliations by country. The bar on the
right is at categorical scale and presents five frequency classes. About 44% of all studies are from first
authors with an affiliation in Europe, followed by North America (27%) and Asia (17%). At country
level, most first authors have their affiliation in the United States (24 publications), followed by Italy
(21 publications). The class “Others” aggregates all countries with a single publication.

Almost half of all publications are from first author affiliations situated in Europe
(44%). The proportion of publications from first author affiliations from the United States
amounts to 27%, followed by Asia with 17%. Continents with a share of lower than 10%
are South America (6%), Africa (5%), and Australia and Oceania (1%).

The spatial analysis of study areas is displayed in Figure 6. From all reviewed pub-
lications (n = 109), 105 studies are conducted at country level or smaller scale. Only four
studies [62,83–85] are analyzing biodiversity based on spectral diversity from remote sens-
ing at continental scale (Europe: three studies, North America: one study). Overall, most
studies are from Europe (34 publications), followed by Asia and North America (both
25 publications). The countries of study areas holding more than 10 publications are India
(12 publications) and the United States (15 publications). In Europe, Germany (7 publica-
tions) and Italy (9 publications) are the two countries with more than five publications each.

In addition to the spatial analysis of the study areas at country and continent level,
study areas have been classified into four different forest types (tropical, subtropical,
temperate, sub-frigid) according to the publication of Xu et al. 2022 [86]. Key climatic
criteria for the classification of forest types are annual temperature and annual precipitation:
tropical forests are characterized by annual temperatures greater than 20 °C and annual
precipitation of greater than 2000 mm. Sub-tropical forests hold annual temperatures
between 10 to 20 °C and annual precipitation in the range from 1200 to 2000 mm. In
contrast, temperate forests present lower annual temperature (0 to 10 °C) and annual
precipitation (800 to 1200 mm). Sub-frigid forests are characterized by lowest annual
temperature (−5 to 0 °C) and annual precipitation (400 to 800 mm) [86].

Most studies are conducted in subtropical forests (40 publications), followed by tropi-
cal (38 publications) and temperate forests (30 publications). Therefore, more than 72% of
all studies are focused on subtropical or tropical forests. Temperate forests hold a share of
about 28%. From all reviewed studies, there is only one publication [87] that investigates
biodiversity in sub-frigid forests based on remotely sensed spectral diversity.
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Figure 6. Map of the spatial distribution of study areas at country level, which is why three studies at
European coverage and one study covering North America are not displayed in the map. Europe is
the continent with the highest number of publications (34 publications, including the three studies
with the study area being Europe). Asia and North America present the same number of publications
(25 publications, including one study with the study area being North America). Additionally, the
study areas have been classified according to the forest types assessed in Xu et al. 2022 [86]: temperate
(30 publications), tropical (38 publications) and subtropical forests (40 publications) present rather
close publication numbers compared to only one study on sub-frigid forests [87]. The color bar on
the right displays the number of publications in five categorical classes.

When comparing the spatial analysis of the countries from first author affiliations with
the countries of the study areas, strong discrepancies can be observed. At continental scale,
the strongest differences are that only 6% of the first authors affiliations are from South
America, although about 14% of all study areas are located in South America. Similarly,
about 23% of all study sites are in Asia, but only a share of 17% of the first author affiliations
are situated in Asia. At country level, Italy presents strong discrepancies since about 19%
of all reviewed studies are from first authors with an affiliation in Italy, but only about
8% of the study sites are in Italy. Furthermore, there are opposing findings for Finland
(eight first authors, one study area) and Peru (one first author, eight study areas). Overall,
in 57.8% of all reviewed articles the country of the first author’s affiliation is equal to the
investigated country.

3.3. Analysis on Remote Sensing Sensors

The analysis of spectral diversity from remote sensing sensors in the reviewed articles
shows a wide range of sensors that have been used (Figure 7). In general, the different
sensors can be categorized into active (LiDAR, SAR, topographic radar) and passive sensors
(multispectral, hyperspectral). In comparison to active sensors, passive remote sensing
sensors do not have their own energy source, i.e., they do not emit radiation. Moreover,
passive sensors are measuring solar radiation that has been reflected by objects on the
Earth’s surface, e.g., vegetation. The measured radiation is commonly detected in band
lengths ranging from the visible light to shortwave infrared. In addition, passive sensors
are specifically sensitive to atmospheric effects (e.g., clouds, haze), whereas active sensors
emit radiation which is measured again once returned from an object. Active radar sensors
which are most commonly operating in X- (2.5 to 3.75 cm wavelength), C- (5.43 to 5.66 cm
wavelength), L- (20 to 60 cm wavelength), and P-band (60 to 120 cm wavelength) are rather
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insensitive towards atmospheric influences. In contrast, LiDAR sensors which are often
emitting green or near-infrared light can not penetrate clouds [88–90].

Figure 7. Overview of the different remote sensing sensors used in the reviewed articles. A strong
dominance of multispectral sensors (about 70% of all integrated sensors) is emphasized by the fact
that sensors from the Landsat mission contribute by about 34% to the total number of sensors used
(n = 145). Abbreviations: AIRSAR = Airborne Synthetic Aperture Radar; ALS = Airborne Laser Scan-
ning; ASTER = Advanced Spaceborne Thermal Emission and Reflection Radiometer; AVHRR = Ad-
vanced Very High Resolution Radiometer; AVIRIS = Airborne Visible/Infrared Imaging Spectrometer;
CAO = Carnegie Airborne Observatory; G-LiHT = Goddard’s LiDAR, Hyperspectral & Thermal
Imager; MODIS = Moderate-resolution Imaging Spectroradiometer; SRTM = Shuttle Radar Topogra-
phy Mission.

From all sensors used in the reviewed studies, about 70% are multispectral remote
sensing sensors from which spectral metrics have been generated for the analysis of forest
biodiversity based on spectral diversity concepts. Hyperspectral sensors hold a share
of about 10%, followed by LiDAR (9.7%). Overall, more than 80% of all the sensors
used are passive remote sensing sensors highlighting the focus on optical diversity to
estimate forest biodiversity. The least commonly used sensors are topographic radar
(5.5%), multisensor platforms (3.4%; airborne platform that consists of combinations of
multispectral, hyperspectral, and LiDAR sensors which are operating simultaneously), and
SAR sensors (1.4%).
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The most frequently used sensor is Landsat 7 which was integrated in 24 publications,
although data gaps occurred since 2003 because of errors with the scan line corrector [91,92].
Other commonly used passive sensors are Sentinel-2 (15 publications), Landsat 8 (13 publi-
cations), Moderate-resolution Imaging Spectroradiometer (MODIS, 13 publications), and
Landsat 5 (11 publications). The statistics highlight the applicability of the continuous time-
series from sensors of the Landsat mission (NASA, 1972 to today) since the total number
of publications amounts to 49 publications, i.e., about 34% of the total number of remote
sensing sensors used (n = 145) are from the Landsat mission. The class “ALS” (airborne
laser scanning) aggregates different airborne LiDAR sensors and is the most commonly
used non-optical sensor type (11 publications). In contrast, the total number of integrated
SAR sensors (Sentinel-1, AIRSAR) in the reviewed articles amounts to two publications.

To better understand the contribution of airborne and satellite remote sensing, but also
of field work for validation of remotely sensed products, Figure 8 provides an overview on
the spatial scales and spatial resolutions. In more than 80 studies, satellite remote sensing
(n = 85) and field work data (n = 94) were obtained. Therefore, in only 15 studies the airborne
or spaceborne remotely sensed products were not validated by field data. Airborne remote
sensing data were integrated in 33 reviewed articles.

The analysis on the spatial resolution of remote sensing data highlights that there are
two major spatial resolutions preferred for investigating forest biodiversity using spectral
diversity concepts: very high (≤5 m, 46 publications) and medium spatial resolution data
(10− ≤30 m, 58 publications). Very high spatial resolution remote sensing data comprises,
for example, airborne laser scanning data, AVIRIS hyperspectral imagery, or multispectral
sensors such as Quickbird, RapidEye, IKONOS or WorldView-2. The group of medium
spatial resolution sensors mainly consists of Landsat 5, 7 and 8. High (21 publications,
e.g., Sentinel-2) or coarse spatial resolution sensor (19 publications, e.g., MODIS) are less
frequently integrated in the reviewed studies.

Figure 8. Comparison of the spatial scales (field work, spaceborne, airborne remote sensing) and
spatial resolutions of remote sensing data of the reviewed articles.

3.4. Temporal Analysis on Remote Sensing and Field Data

In the following, the temporal periods of remote sensing data per reviewed article are
analyzed. Furthermore, the different temporal scales of field (mono-temporal, bi-temporal)
and remote sensing data (mono-temporal, multi-temporal, time series) are explained.

Figure 9 depicts the investigated time period of the remote sensing data in comparison
to the publication dates of the reviewed articles. Per study, the remote sensing data
are categorized into the classes hyperspectral imagery, LiDAR observations, data from
multiple sensors (combination of different remote sensing sensors in a study), multispectral
imagery, or data from a multisensor platform (simultaneous acquisition of different remote
sensing sensors from a single airborne platform). The time periods of remote sensing data
are grouped into mono-temporal (one time step), multi-temporal (two to 11 time steps
monitored), and time series approaches (more than 12 time steps monitored). It is important
to note that the remotely sensed data of some studies are actually a composite of multi-
temporal imagery, e.g., to cover the complete study area. Since the scenes of the composite
are treated as mono-temporal imagery, i.e., no analytical comparisons are made between the
acquisition dates, those remote sensing data sets are classified as mono-temporal approach.
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Since there was no information about the temporal period of the remote sensing data in
the original article or the Supplementary Material of the study by Chi et al. 2019 [93], this
study could not be included in the temporal analysis.

Figure 9. Analysis on the investigation periods of remote sensing data in comparison to the publica-
tion year of all reviewed studies. Remote sensing data sets are classified per study into hyperspectral
imagery, LiDAR observations, data from multiple sensors (combination of different remote sens-
ing sensors in a study), multispectral imagery, or data from a multisensor platform (simultaneous
acquisition of different remote sensing sensors from a single airborne platform). In some cases,
mono-temporal approaches are displayed over a time period (dotted line) since multi-temporal
remote sensing data sets were combined, e.g., for a complete coverage of the study area.

Overall, there are great benefits of multi-temporal or time series remote sensing
approaches, since long term dynamics can be monitored and changes can be identified [42].
With the opening of the Landsat archive in 2008, the freely available continuous time series
from Landsat 1 to nowadays Landsat 9 enables tracking changes of land surface dynamics
at a novel temporal scale [94]. In addition, the launch of the Sentinel satellites from ESA
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(e.g., Sentinel-1 in 2014 and Sentinel-2 in 2015) [95,96] complements the imagery derived
from Landsat and offers the generation of fusion products. Therefore, harmonized high
temporal resolution data sets of surface reflectance information can be generated based on
the combined multispectral sensors from Landsat and Sentinel-2 [41].

Figure 9 shows that all time series analysis of the reviewed articles are based on
spaceborne multispectral sensors (about 13%) or multiple sensors (combination of multi-
spectral sensors and others, about 9%). Early multispectral time series approaches were
published by Oindo 2002 [97] and Oindo & Skidmore 2002 [77] based on AVHRR data
to investigate the species richness in Kenya. Since the year 2009, more and more studies
integrated remote sensing time series data for the analysis of forest biodiversity using
spectral diversity concepts [54,62,85,98–116]. Studies that are solely based on LiDAR data
have become specifically popular since the year 2020: on the one hand, all studies are
based on mono-temporal remote sensing data, and on the other hand, the LiDAR data was
derived from an airborne sensor [79,117–120]. Another finding is that studies integrating
multiple sensors have greatly increased in recent years: more than 55% of all reviewed
studies based on remote sensing data from multiple sensors have been published since
2018 [54,105–107,109,113,114,121–127].

To better understand the different temporal scales of field and remote sensing data,
Figure 10 provides an overview on the contribution rates. About two thirds of all reviewed
studies (66%) integrate mono-temporal remote sensing data. Aforementioned time series
approaches only amount to about 22%, and the smallest share (12%) hold multi-temporal
studies. In comparison, the proportion of mono-temporal field data to validate remotely
sensed products makes up 84% of all reviewed studies. In 15% of all reviewed articles
no field data was collected. The collection of bi-temporal field data only amounts to a
minor fraction of 1% and highlights the challenges that come along with the bi-temporal
field sampling which was stressed extensively in the early studies of Palmer 1995 [34] and
Palmer et al. 2002 [35].

Figure 10. Comparison of the different temporal scales of field and remote sensing data.

3.5. Review of Thematic Foci

In the following, the results of a thematic analysis are presented in separate
sections covering the temporal development of the three spectral diversity concepts
(Section 3.5.1), modelling responses (biodiversity scales) and environmental foci (flora/fauna)
(Section 3.5.2), and spectral indices used as a measure of forest richness and heterogeneity
(Section 3.5.3).

3.5.1. Comparison of the Different Spectral Diversity Concepts: Vegetation Indices, Spectral
Information Content, and Spectral Species

Spectral Diversity is not an isolated concept of remote sensing to monitor biodiversity.
Moreover, different approaches such as habitat mapping, species mapping or functional
diversity estimation can be combined with spectral diversity methods for a comprehensive
picture of biodiversity [51] (Table 2). In the introduction of this review in Section 1.2,
a brief overview on the different concepts of spectral diversity was given according to
Wang & Gamon 2019, namely vegetation indices, spectral information content, and spectral
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species. In the following, those concepts are presented more in detail by highlighting
exemplary studies.

The calculation of vegetation indices is an essential part of optical remote sensing
to generate spectral proxies that are specifically sensitive towards the object of interest
or the investigated phenomena. The pixel-based estimation of optical vegetation indices
can be classified according to the combined spectral wavelengths [40]. As an early spec-
tral diversity concept, spatial and temporal variation of vegetation indices (e.g., mean
or standard deviation of NDVI) was assessed and linked to field plot measurements of
biodiversity. The calculated spectral variation based on a vegetation index is defined
as a spectral diversity index which can be related to taxonomic, functional, and genetic
diversity [51]. More than 79% of the reviewed studies based on spectral diversity from
vegetation indices are based on multispectral imagery [44,54,72,83,87,93,103,107,123,128–137],
while about 74% of those studies are integrating data from Landsat
sensors [44,54,72,87,93,103,107,128,129,132–136].

The second concept of spectral diversity is called spectral information content [51].
Spectral diversity analysis based on spectral information content can be grouped into metrics
based on information theory in original and transformed spectral space: an example of the
original spectral space is the calculation of the coefficient of variation from NDVI [77,97],
whereas transformed spectral space refers for example to ordination methods such as
the convex hull volume in principal component analysis (PCA) space [73]. From all
reviewed studies that analyze forest biodiversity based on spectral diversity from spectral
information content, more than 78% of those studies are based on multispectral imagery.
Furthermore, about 51% of aforementioned studies integrated Landsat data, while only
about 19% obtained Sentinel-2 data for their analysis.

The spectral species concept was introduced by Féret & Asner 2014 [55] linking tax-
onomic species and remotely sensed spectral species in an unsupervised classification
approach. Based on airborne hyperspectral imagery, estimates of α (Shannon diversity) and
β diversity (Bray–Curtis dissimilarity) are derived from a workflow combining ordination
techniques (PCA) and k-means clustering. To compress the high-dimensional spectral data
from airborne imaging spectroscopy, PCA and subsequent feature selection are applied,
followed by the definition of spectral species using the k-means clustering algorithm. In
an iterative process, maps of α and β diversity (projection in RGB space using nonmetric
multidimensional scaling, NMDS) are generated to identify richness in local communities
and gradients of different species compositions [55,81,138]. Initially, the spectral species
concept was developed based on high spatial resolution hyperspectral imagery to match
the increased variability, species richness and spectral similarity of species in tropical
forests [55,138,139]. In recent studies, the spectral species concept was applied to other for-
est types and different remote sensing sensors, such as Sentinel-2 [140–142] or MODIS [85].
As an example, the study of Gastauer et al. 2022 [142] applied the spectral species concept
in Eastern Amazon, Brazil, to monitor forest regeneration in an iron mining complex using
Sentinel-2 imagery and bi-temporal field sampling of vegetation and soil characteristics.

The temporal distribution of all reviewed articles on spectral diversity grouped by the
three concepts vegetation indices, spectral information content, and spectral species is de-
picted in Figure 11. Overall, there are 24 publications on vegetation indices
(22.0%) [44,53,54,72,74,83,87,93,103,107,119,123,128–137,143,144], 76 reviewed articles on
spectral information content (69.7%) [45,46,56,58–62,73,76,77,79,80,82,84,97–102,104–106,
108–118,120–122,124–127,145–178], and 9 studies about the spectral species concept
(8.3%) [55,75,85,138,140–142,179,180]. From 2002 to 2013 there are only studies based on veg-
etation indices or spectral information content. With the publication of the spectral species
concept in 2014 [55,138], there were additional studies in 2016 [75], 2019 [179,180], 2020 [141],
2021 [85,140], and 2022 [142]. Especially since 2017 there was an increasing number of
reviewed studies using spectral information content to assess forest biodiversity, contribut-
ing by over 55% to all studies about spectral information content. When referring to the
aforementioned studies (n = 42), the ratio of Landsat based studies (about 29%) compared
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to studies integrating Sentinel-2 data (about 26%) is much closer since there was the launch
of Sentinel-2B in 2017 (Sentinel-2A was launched in 2015).

Figure 11. Temporal distribution of the reviewed articles grouped by the spectral diversity concepts
vegetation indices, spectral information content, and spectral species.

Sensors from the Landsat mission, Sentinel-2, and MODIS are the most frequently
used sensors in the reviewed articles (Figure 7). When grouping those sensors by spectral
diversity concept, there are strong differences: about 58% of all studies based on vegetation
indices are integrating Landsat data (14 publications), while there are only about 4% based
on Sentinel-2 or MODIS data respectively (one study each). Studies based on spectral
information content hold a share of 39% for Landsat data (30 studies), 14% for Sentinel-
2 (11 studies), and 14% for MODIS (11 studies). From the nine studies about spectral
species, none of them are based on Landsat data, three studies are integrating Sentinel-2
data [140–142], and there is one study using MODIS data [85]. From all reviewed studies,
there are only two studies combining Sentinel-2 and Landsat data: Farwell et al. 2021 [54]
(vegetation indices) and Torresani et al. 2019 [106] (spectral information content). The study
of Silveira et al. 2021 [114] is the only study combining MODIS and Landsat data (spectral
information content).

3.5.2. Model Responses and Environmental Foci

Figure 12 depicts the number of publications for different biodiversity scales (α, β,
and γ diversity) and environmental foci (flora, fauna). Most of the studies are analyz-
ing α diversity (93 publications), followed by β diversity (50 publications). There are
34 studies that conducted a combined analysis of α and β diversity. Landscape biodi-
versity (γ diversity) is explicitly estimated in only two studies [117,127]. The analysis
on environmental foci reveals that the majority (92.7%) of all reviewed studies analyzed
floristic information to assess forest biodiversity. Only a small number of studies solely
investigated fauna data (4.6%), and less than 3% of all reviewed studies conducted a
combined analysis of flora and fauna. Most floristic studies estimated tree species diver-
sity, e.g., [44,75,106,129,148,149,157], as a proxy of forest biodiversity. In contrast, some
studies sampled understory vegetation (e.g., pterophytes) which are used as proxies for
local tree species diversity since canopy building tree species are more challenging to
identify [59,149,173].
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Figure 12. Analysis of the different model responses (α, β, γ diversity) and environmental foci
(flora, fauna).

3.5.3. Spectral Indices for the Analysis of Optical Diversity

Since the majority of reviewed articles integrated optical imagery from which spectral
indices can be calculated, the following paragraph focuses on the different spectral indices
used. Based on all reviewed studies using optical imagery (n = 103), 28 studies did not
use spectral indices, while 75 studies calculated spectral indices (Figure 13a). In total,
58 different spectral indices have been calculated. Moreover, the proportion from all
reviewed articles integrating spectral indices that were used at least twice amounts to
about 76%. Those most commonly used spectral indices were classified according to
Zeng et al. 2022 [40] (Figure 13b) to better understand the contribution rates of different
wavelength ranges.

When focusing on the classified wavelength classes (Figure 13b, inner circle), spectral
indices in the red to near-infrared (NIR) make up about 71%. All other categories hold
shares lower than 10%, with spectral indices in the visible to NIR holding the highest share
(about 9%) of this group. The NDVI is the most commonly used spectral index in the
reviewed articles (56.7%), followed by the Enhanced vegetation index (EVI, 8.7%) being the
only spectral index in the visible to NIR.

The applications of NDVI range from the analysis of spatial patterns, over temporal
variability, to the correlation of NDVI with other spectral indices or remotely sensed
proxies of forest biodiversity. Statistical relationships of spatial patterns in NDVI with in
situ measurements of species richness were found in the Western Ghats, India based on
multispectral imagery from Resourcesat-1 LISS-III [107,130], and other biodiversity hotspots
in India (Himalaya, Indo-Burma) using Landsat 5 data [107]. Studies on the tropical forests
in Florida, United States [72,132] also highlighted the applicability of spatial statistics of
mean NDVI to explain tree species richness, but identified heterogeneity metrics (standard
deviation of NDVI) to be less suited for the forests of Florida due to low disturbance rates.
Furthermore, NDVI was significantly correlated with stand density [72]. The study of
Parviainen et al. 2009 [135] also stressed the applicability of NDVI derived metrics to
explain local and landscape species richness in boreal forests of Finland.



Remote Sens. 2022, 14, 5363 19 of 32

Figure 13. Statistics about calculated spectral indices which were integrated in 75 studies (a). Since a
large number of different vegetation indices were calculated in all reviewed articles (n = 58), only
spectral indices that were used in more than one reviewed study (n = 19) are considered in the
detailed analysis. The classification of the spectral indices into the different wavelength categories
was conducted according to Zeng et al. 2022 [40] (b). Abbreviations: CRI1 = Carotenoid Reflectance
Index 1, CRI2 = Carotenoid Reflectance Index 2, DVI = Difference Vegetation Index, EVI = Enhanced
Vegetation Index, IRI = Infrared Index, MIRI = Mid-Infrared Index, MSAVI2 = Modified Soil Adjusted
Vegetation Index 2, NDLI = Normalized Difference Lignin Index, NDNI = Normalized Difference
Nitrogen Index, NDVI = Normalized Difference Vegetation Index, NDWI = Normalized Difference
Water Index, PRI = Photochemical Reflectance Index, PSRI = Plant Senescence Reflectance Index,
SAVI = Soil Adjusted Vegetation Index, SRI = Simple Ratio Index, VARI = Visible Atmospherically
Resistant Index.

The analysis on the influence of biotic (e.g., forest productivity estimated by NDVI)
and abiotic factors on species richness in Hawaiian dry forests by Pau et al. 2012 [101]
found out that there is no direct effect of multi-temporal NDVI on species richness. Other
studies [46,54,98,131,158] also identified challenges and variability with NDVI to under-
stand temporal patterns in species richness. He et al. 2009 (analysis of plant species
diversity) and Ribeiro et al. 2019 (analysis of bird species diversity) both suggested the ap-
plicability of summer NDVI (vegetation growth maximum) for the correlation with species
richness. Limitations of NDVI are discussed in several studies because of saturation effects
in dense forests [54,130,153]. To overcome those limitations, multiple studies proposed
additional spectral indices for the assessment of biodiversity in dense, high biomass forests,
such as first and second order texture metrics based on EVI [54], the combination of multi-
ple spectral indices and metrics (e.g., DVI (Difference vegetation index), EVI (Enhanced
vegetation index), NDVI, VARI (Visible atmospherically resistant index), WDRVI (Wide
dynamic range vegetation index) and tasseled cap features, mean reflectance statistics, land
surface temperature) [100,103,114].
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To investigate the capability of SAR data to explain tree species richness, Gillespie
et al. 2009 [44] compared Landsat 7 derived NDVI with VV (vertical transmit, vertical
receive) polarization from C- and L-band airborne SAR (AIRSAR) metrics. The authors
found out that mean statistics are reaching higher correlations than statistics based on
standard deviation for both NDVI and SAR metrics. In addition, combined metrics of C-
and L-band SAR data could explain slightly more variance (50% variance explained) than
NDVI metrics (41% variance explained).

Multiple studies used NDVI as input metrics to calculate spectral α and β diversity
(e.g., spectral Shannon index, spectral Simpson index, Rao’s Q index [181,182], spectral
information content) [62,83–85,99,108,115,116,121,124,126,157,159,167,170].

The findings based on NDVI statistics correlated with forest biodiversity metrics
suggest the combined analysis of NDVI with additional spectral indices. Furthermore,
Rao’s Q index has been proposed as an improved spectral estimate for the calculation of
α diversity and β diversity (spatial statistics using moving window approaches) because
it combines in its calculating the relative abundance and pair-wise distance of spectra
derived from an input metrics (e.g., NDVI) compared to spectral Shannon index which
does not consider the numerical magnitude of spectral values [79,84,115,116,124]. Further
benefits of Rao’s Q index are that multidimensional input metrics can be integrated, e.g., a
stack of various spectral indices for a more comprehensive characterization of vegetation
condition [84].

4. Discussion
4.1. Overall Discussion on the Validity of the Spectral Variation Hypothesis

An overall discussion on the validity of the SVH was introduced by several studies that
noted spatial scale dependencies, temporal effects, ecosystem biases, and influences from the
remotely sensed spectral diversity metrics and in situ measurement of biodiversity on the
analysis of forest biodiversity using spectral diversity concepts [51,60,61,74,153,162,163,168].
Many of those effects need to be considered in any analysis based on remote sensing data,
and are not only relevant for forest biodiversity estimation from remotely sensed spectral
diversity [61].

The influence of spatial resolution from remote sensing imagery on the capability to
detect a certain object or phenomena is well-known since a target of research can only
be identified if the pixel size of remote sensing data is at least the size or smaller than
the object [36,90]. Since forest biodiversity is a multifaceted phenomena of taxonomic,
functional, and structural diversity, there is not a single adequate spatial scale to identify a
direct relationship [99,121,153]. Moreover the concept of spectral diversity hypothesizes an
indirect, more generic link between heterogeneity in the remotely sensed signal and forest
biodiversity, compared to direct approaches of forest biodiversity assessment such as habitat
and species mapping [51,61]. Fassnacht et al. 2022 [61] highlighted the challenge of the
SVH to differentiate between the original SVH (spectral variation as a proxy of habitats or
vegetation types) and the species SVH (spectral variation from very high spatial resolution
imagery as a proxy of species). Besides the spatial resolution of the sensor, also the sampling
design and grain size of field plots influence the relationship of remotely sensed spectral
diversity with forest biodiversity [51,130,131]. Overall, there are different findings of studies
testing sensors with varying spatial resolutions: Nagendra et al. 2010 [134] found that an
increased spatial resolution of IKONOS data is not necessarily beneficial since it comes
along with shading effects and lower spectral resolution compared to publicly available
Landsat data. Rocchini et al. 2007 [162] suggested a distance decay approach to estimate
environmental gradients solely based on near infrared information from higher spatial
resolution imagery since mixed pixel effects might be reduced which is an opposing finding
to Nagendra et al. 2010 [134]. Similarly, Rocchini et al. 2004 [78] noted that higher spatial
resolution sensors can result in increased correlation of spectral heterogeneity and species
diversity which is aligned with the findings of higher correlations of Rao’s Q index based
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on NDVI using Sentinel-2 (10 m) compared to Landsat data (30 m) in an alpine coniferous
forest [106].

Besides spatial scale effects, the radiometric resolution plays an important part in the
delineation of different tree species. The study of Ferreira et al. 2016 [148] emphasized the
importance of the short wave infrared (SWIR) band since tree species discrimination based
on simulated WorldView-3 imagery benefited from additional bands in the longer optical
wavelengths. The trade-off of high spatial resolution and lower spectral resolution was
also discussed in other studies suggesting the combined use of e.g., Landsat, Sentinel-2 and
WorldView imagery to test the influence of different sensor characteristics [121,128].

Since previous results of the temporal periods of remote sensing data present a dom-
inating proportion of mono-temporal approaches (about 66%, Figure 10), it is important
to note that those studies are analyzing a static picture of a phenological snapshot. Afore-
mentioned sensitivity of the SVH towards temporal periods (e.g., phenological status of
vegetation), was a research focus of several studies integrating multi-temporal or time
series remote sensing data to test changes in spectral diversity at different phenological
stages [46,100,101,103,108,109,121,143,157], estimate long-term changes in ecosystem stabil-
ity [97], identify areas for protection and conservation management (biodiversity
hotspots) [114], monitor regeneration after disturbance [142], or aggregate time series remote
sensing data to have a more reliable estimate of an overall vegetation condition [54,107].

The species diversity estimate derived from in situ measurements is an important
influence on the relationship between spectral diversity and forest biodiversity [61]. In
the reviewed studies, a wide range of forest biodiversity estimates was assessed with a
major proportion (92.7%) focusing on floristic characteristics (Figure 12). Biodiversity es-
timates from vegetation can be grouped into community inventory [131], tree species
diversity [45,80,100,177], vascular plant species [162,164,166], and understory vegeta-
tion [59,149,173]. Forest biodiversity proxies based on animal data comprise multidiversity
estimates (birds, bats, and others) [105,119], bird species richness data [46,54], tick abun-
dance information [82], behavioural data of redtail monkeys [136], and mammal and
herbivore inventory [77,97].

Spectral diversity metrics to assess forest heterogeneity cover different statistics based on
spectral indices (mean, standard deviation, coefficient of variation) [77,97,107,130,131], texture
metrics based on spectral indices [46,54,110,114,125], heterogeneity/diversity
indices adapted to remote sensing (spectral Shannon and Simpson index, Rao’s Q
index) [79,84,115,116,124], metrics derived from self-organizing feature maps [80], and
estimates based on the spectral species concept [55,75,85,138,140,142,179,180].

4.2. Benefits and Limitations of the Three Spectral Diversity Concepts

Based on spectral diversity from vegetation indices, spectral information content, and
spectral species, an estimate of forest biodiversity can be derived. A general limitation of
vegetation indices are that those can only be calculated from optical sensors (optical diversity),
while spectral information content or spectral species metrics derived from optical sensors can
be supplemented by complementary metrics on forest biodiversity (e.g., LiDAR based forest
structure metrics) which might better assess overall forest biodiversity characteristics than
single estimates of vegetation indices [44–46,79,81,105,117–120,122,149,171]. Nevertheless,
the wide wavelength range covered by spectroscopic sensors (multispectral, hyperspectral)
and comprehensive stacks of derived vegetation indices and band statistics are valuable
input metrics for the calculation of spectral information content (e.g., PCA based on spectral
indices) [159] and spectral species (e.g., Sentinel-2 based analysis) [140–142].

Compared to vegetation indices and spectral information content, the spectral species
concept analyzes species diversity based on a globally collected spectra (complete scene
analyzed) which is clustered into a defined number of spectral species. In contrast, the
estimation of spectral diversity from vegetation indices and spectral information content
is calculated locally (local or focal operation), i.e., there is no consideration of a global
spectral distribution when spectral heterogeneity is estimated [55]. The calculation of forest
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biodiversity from spectral information content or spectral species is influenced by the
intra-class spectral variation since large within-class variations can lead to a subdivision of
taxonomic species into, for example, multiple separate spectral species. In general, there is
an ongoing discussion on the entity of a spectral species since local spectral species might
be generalized to global spectral communities when coarsening the spatial resolution [85].
On the other hand, the assignment of spectral species benefits from the clustering of
e.g., atmospheric artefacts or background conditions as separate spectral species, while
spectral diversity based on vegetation indices or spectral information content might be
more sensitive towards those influences.

Overall, Féret & Asner 2014 [55] highlighted benefits in accuracy when calculating
α and β diversity in forests based on the spectral species concept compared to estimates
from vegetation indices or spectral information content. Correlation statistics of α diversity
from field measurements (Shannon index) and local diversity calculated based on spectral
species resulted in highly significant correlations (p < 0.001, r = 0.86). The analysis of
spectral information content using the mean distance from the spectral centroid (p < 0.05,
r = 0.26), and variation in NDVI as estimate of spectral diversity from vegetation indices
reached lower accuracies (p > 0.05, r = 0.06).

4.3. Future Research Directions

With the advance of remote sensing for biodiversity monitoring, global initiatives such
as the Group on Earth Observations Biodiversity Observation Network (GEO BON), the
Committee on Earth Observation Systems (CEOS) Biodiversity task, and the International
Geosphere Biosphere Programme (IGBP), have formed and strongly promote, among
others, the future capabilities of species diversity assessment based on earth observation
data to investigate the drivers of global change [183,184]. Recently, Skidmore et al. 2021
published an updated list of essential biophysical variables (EBVs) and categorized remote
sensing biodiversity products into ranked EBV classes for a more consistent framework of
biodiversity monitoring [185].

Forest biodiversity analysis is related to various fields of research. An exemplary
list are the identification of biological corridors [128], disease biogeography [82], analysis
on the impact of non-natural disturbances on forest regeneration [80,142], comprehensive
ecosystem understanding based on multidiversity data [105,119], identification of environ-
mental gradients using beta diversity information [170], and novel approaches correlating
spectral and taxonomic species for an increased understanding of spectral species and
communities [55,81,85].

The progress of remote sensing based on multi-scale and complementary sensors
in forest-related research is facilitated by open-code and open-data policies (shared
code [45,56,84,105], programming packages [141,186], data availability [94,95]). The ongo-
ing operation of multiple spaceborne high-resolution optical sensors (Sentinel-2A and -2B,
Landsat 8, Landsat 9) offer great resources for large-scale forest biodiversity monitoring
at improved temporal scales [41,42]. Furthermore, the recent launch of EnMAP (1 April
2022, [187]) will provide global hyperspectral imagery complemented by data of other
hyperspectral missions such as PRISMA [188]. Forest structure information derived from
GEDI for all tropical and temperate forests adds further value to the analysis of forest biodi-
versity since there are various data sets on biomass, vertical and horizontal canopy structure,
and foliage complexity derived from the full waveform LiDAR [189,190]. With the exten-
sion of the SVH on LiDAR data (HVH, [79]), the concept could be further expanded by the
integration of structural information derived from SAR data, e.g., Sentinel-1 and upcoming
missions (BIOMASS: P-band [191], NISAR: L- and S-band [192]). Overall, the combination
of research at multiple spatial scales (terrestrial, drones, airborne, spaceborne) using re-
mote sensing enables the understanding of biodiversity phenomena at larger-scale with
observations at multiple time steps from spaceborne sensors where field work reaches its
limitations [34,35,57]. Furthermore, bridging disciplines of remote sensing, ecology, and
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environmental sciences will improve the overall understanding of forest biodiversity and
create more trans-disciplinary research networks.

5. Conclusions

This review provides an overview on forest biodiversity monitoring using remotely
sensed spectral diversity concepts. In total 109 studies were analyzed to collect information
on the spatiotemporal distribution of the reviewed articles, airborne and spaceborne sensors
used in the analysis, temporal periods of remote sensing and field work data, and thematic
foci. The thematic analysis covers the temporal distribution and characteristics of the three
spectral diversity concepts, spectral indices derived from optical sensors, and biodiversity
scales. In the following, the main findings are summarized:

• In recent years there was an increasing number of studies on forest biodiversity
monitoring from remotely sensed spectral diversity. Since 2016, more than 56% of all
studies were published which underlines the increasing relevance of forest-related
research in the context of climate change.

• Several research hotspots were identified with most studies investigating forest bio-
diversity in the United States and India. Grouped by continent, about one third is
focusing on European forests, followed by Asia and North America (each continent
holds about one fourth). Overall, there is a strong focus on temperate, sub-tropical
and tropical forests, while other forest types (e.g., sub-frigid) are only investigated in
a single study. Strong discrepancies between the country of the first author affiliation
and the country or continent under study were identified: at continental scale, the
strongest discrepancy is found for South America which holds a share of about 6%
of all first authors and about 14% of all study sites. At country level, about 19%
of the affiliations of first authors are in Italy, while only about 8% of all studies are
investigating forest biodiversity in Italy.

• Research on forest biodiversity based on remotely sensed spectral diversity derived
from vegetation indices, spectral information content and spectral species has a strong
focus on optical sensors. About 70% of all reviewed articles are integrating multi-
spectral imagery, and about 10% are based on hyperspectral data. Most commonly
used multispectral sensors are Landsat 7 (24 applications), Sentinel-2 (15 applications),
Landsat 8 (13 publications), MODIS (13 publications), and Landsat 5 (11 publications).

• Most studies are integrating data from field work as estimate of in situ biodiver-
sity (94 articles). Remotely sensed spectral diversity is dominantly assessed using
spaceborne sensors (85 applications), while data from airborne sensors are applied in
33 reviewed articles. Furthermore, there is a tendency towards the integration of very
high (≤5 m, 46 applications) on the one hand, and medium spatial resolution imagery
(10− ≤30 m, 58 publications) on the other hand.

• The analysis of temporal scales of remote sensing and field data present a strong focus
on mono-temporal resolution. About 66% of all remote sensing data are from one
time step, while multi-temporal (about 12%) and time series approaches (about 22%)
hold much lower shares. Overall, all time series approaches are either based on
multispectral imagery (about 13%) or data from multiple sensors (about 9%). Mono-
temporal data from field work amount to 84%, 15% of all reviewed articles did not
use field data, and only a minor proportion of about 1% collected bi-temporal in situ
measurements of forest biodiversity.

• The comparative statistics of spectral diversity concepts show that most reviewed
articles are based on spectral information content (about 70%), followed by vegetation
indices (about 22%), and spectral species (about 8%). It is important to note that the
spectral species concept was introduced in 2014, whereas articles based on vegetation
indices or spectral information content were published since 2002. The promising
findings on forest biodiversity using spectral species are highlighted by the adaption
of the original concept using airborne hyperspectral data towards Sentinel-2 and
MODIS data.
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• Forest biodiversity was assessed at multiple scales: α, β, and γ diversity. Most of
the articles (n = 93) analyzed α diversity, followed by 50 articles on β diversity, and
a combined analysis of α and β diversity in 34 articles. An explicit estimate of γ
diversity was only calculated in two studies. The analysis on floristic characteristics
as in situ biodiversity measure amounts to more than 92%, while analysis solely on
fauna (about 5%), and combined analysis on flora and fauna (less than 3%) hold much
lower shares.

• Many studies integrating optical imagery (n = 103) calculated spectral indices (n = 75).
About 71% of those studies calculated spectral indices based on red to near-infrared
bands. The most often used spectral index is the NDVI (about 57%), followed by the
EVI (about 9%).

To summarize, this review presents a comprehensive analysis on forest biodiversity
based on spectral diversity from airborne and spaceborne remote sensing. Notable progress
was made regarding the development of statistical concepts and the growing number of
complementary sensors integrated. Future efforts on the multi-temporal monitoring of
forest biodiversity based on spectral diversity are necessary to complement findings on
EBVs from change detection analysis.
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IRI Infrared Index
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MSAVI2 Modified Soil Adjusted Vegetation Index 2
NASA National Aeronautics and Space Administration
NDLI Normalized Difference Lignin Index
NDNI Normalized Difference Nitrogen Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
NIR Near-Infrared
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PCA Principle Component Analysis
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SAVI Soil Adjusted Vegetation Index
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WDRVI Wide Dynamic Range Vegetation Index
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VARI Visible Atmospherically Resistant Index
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