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Abstract: The Advanced Himawari Imager (AHI) and Advanced Baseline Imager (ABI), respectively
aboard Himawari-8 and GOES-R geostationary satellites, are two important instruments for the near-
real time monitoring of active volcanoes in the Eastern Asia/Western Pacific region and the Pacific
Ring of Fire. In this work, we use for the first time AHI and ABI data, at 10 min temporal resolution,
to assess the behavior of a Normalized Hotspot Index (NHI) in presence of active lava flows/lakes, at
Krakatau (Indonesia), Ambrym (Vanuatu) and Kilauea (HI, USA) volcanoes. Results show that the
index, which is used operationally to map hot targets through the Multispectral Instrument (MSI) and
the Operational Land Imager (OLI), is sensitive to high-temperature features even when short-wave
infrared (SWIR) data at 2 km spatial resolution are analyzed. On the other hand, thresholds should
be tailored to those data to better discriminate thermal anomalies from the background in daylight
conditions. In this context, the multi-temporal analysis of NHI may enable an efficient identification
of high-temperature targets without using fixed thresholds. This approach could be exported to
SWIR data from the Flexible Combined Imager (FCI) instrument aboard the next Meteosat Third
Generation (MTG) satellites.

Keywords: normalized hotspot indices; volcanoes; thermal anomalies; Himawari-8; GOES-R

1. Introduction

Several studies have shown the relevance of geostationary satellite observations in
detecting, monitoring and characterizing volcanic thermal features, thanks to the high
frequency of observation (10–30 min), and despite the low spatial resolution (2–4 km)
(e.g., [1–6]).

GOES (Geostationary Operational Environmental Satellite) Imager data were used to
investigate active volcanoes such as Kilauea (HI, USA), through time series analyses of the
MIR (medium infrared; 3–5 µm) radiance (e.g., [7]). SEVIRI (Spinning Enhanced Visible
and Infrared Imager), aboard MSG (Meteosat Second Generation) satellites, demonstrated a
high potential in promptly detecting eruption onsets, and in monitoring short-lived events
at the European/African volcanoes (e.g., [8–13]). MTSAT-1R/2 (Multifunctional Transport
Satellites) data contributed to the monitoring of active volcanoes located in Southern Asia
and Western Pacific region (e.g., [14–16]).

Monitoring capabilities of active volcanoes have been further improved with the
launch of Himawari-8 and GOES-R satellites.

Himawari-8 carries the AHI (Advanced Himawari Imager) instrument, which shows
better features, in terms of spatial, spectral, and temporal resolution, than prior images of
the MTSAT series (e.g., [17]).

GOES-R satellites, thanks to the ABI (Advanced Baseline Imager) instrument, offer
the opportunity of monitoring the volcanically active regions of the Pacific Ring of Fire
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(i.e., western regions of North and South America, East Asia, Indonesia, Micronesia, and
New Zealand) with increased performance [18].

Among the studies using Himawari-8 AHI data, time series analyses of the maximum
SWIR (short-wave infrared) radiance, and the pixel-integrated temperatures in the MIR and
TIR (thermal infrared) bands, corrected for atmospheric and emissivity effects, were per-
formed to investigate the different phases of the Mt. Raung (Indonesia) 2015 eruption [19].
A correction for pseudo-thermal anomalies was tested during a recent Nishinoshima (Japan)
eruption [20], while an empirical method was used to estimate the lava-effusion rate [21].
Other authors investigated thermal anomalies at the Ambrym (Vanuatu) volcano, before
and during the 15 December 2018 fissure eruption, by means of a normalized index analyz-
ing MIR and TIR brightness temperatures. The study revealed the start of the lava effusion,
and the drop of the lava lake level inside the craters [22].

An overview of the potential of GOES-R ABI observations in supporting the monitor-
ing of active volcanoes, also regarding the identification and characterization of different
phases of thermal activity, can be found in previous papers (e.g., [18,23,24]).

In this work, we analyze for the first time Himawari-8 AHI and GOES-R ABI data, at
10 min temporal resolution, by means of a Normalized Hotspot Index (NHI) defined in [25].
The NHI algorithm uses this index jointly with another one, analyzing SWIR (short-wave
infrared) and NIR (near-infrared) radiance, to map high-temperature features in daylight
conditions, through Sentinel-2 (S2) MSI (Multispectral Instruments) and Landsat-8 OLI
(Operational Land Imager) data, at mid-high spatial resolution (i.e., tens of meters). The
NHI tool [26], by implementing the algorithm, allows users to investigate active volcanoes
at a global scale under the Google Earth Engine (GEE) platform [27].

The aim of this study is to assess the NHI behavior, in the presence of active lava
flows/lakes, when satellite data at coarse spatial resolution are used.

Some recent eruptions of the Ambrym (Vanuatu), Krakatau (Indonesia), and Kilauea
(HI, USA) volcanoes (Figure 1) are investigated for this purpose.
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Figure 1. Geographic location of the Kilauea (HI, USA), Krakatau (Indonesia) and Ambrym (Vanuatu)
volcanoes analyzed in this study.

Results are shown and discussed in the next sections, through comparison with some
independent ground and satellite-based observations.

2. Data

Himawari-8/9 are geostationary weather satellites operated by the Japan Meteoro-
logical Agency (JMA). Himawari-8 was launched on 7 October 2014 and positioned at
140.7 degrees East. Himawari-9 was launched two years later and placed in a stand-by
orbit. The AHI is the primary instrument aboard the Himawari-8/9 platforms. This sensor
provides full disk 10-bit data in 16 spectral bands, from visible (VIS) to thermal infrared
(TIR), with a spatial resolution of 0.5–2 km (see Table 1), and a temporal resolution of
10 min (up to 2.5 min over Japan, and some selected targets) [17].
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Table 1. Main features of the AHI instrument aboard Himawari-8/9 satellites.

Spectral Bands Central Wavelength (µm) Spatial Resolution at the SSP (km)

1 0.47 1
2 0.51 1
3 0.64 0.5
4 0.86 1
5 1.6 2
6 2.3 2
7 3.9 2
8 6.2 2
9 6.9 2
10 7.3 2
11 8.6 2
12 9.6 2
13 10.4 2
14 11.2 2
15 12.4 2
16 13.3 2

The GOES-R Series is a four-satellite program (GOES-R/S/T/U), from the National
Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric
Administration (NOAA) [28]. GOES-16 satellite was launched in November 2016 and
positioned in a geostationary orbit over 75.2◦W, while GOES-17 (operational since February
2019) was positioned at the longitude of 137.2◦W [29,30].

The ABI is the main instrument of the GOES-R satellites; it delivers data in 16 spectral
bands, including two visible channels, four near-infrared channels, and ten infrared chan-
nels at the nominal spatial resolution of 2 km (see Table 2). Among those bands, the MIR
channel, thanks to a high saturation temperature (around 400 K), minimizes the saturation
effects in comparison with the previous GOES imagers [31]. Moreover, the instrument has
multiple scan modes; the default scan mode provides a full disk imagery every 10 min
(e.g., [28]).

Table 2. Main features of the ABI instrument aboard GOES-R satellites.

Spectral Bands Central Wavelength (µm) Spatial Resolution at the SSP (km)

1 0.47 1
2 0.64 0.5
3 0.86 1
4 1.37 2
5 1.6 1
6 2.2 2
7 3.9 2
8 6.2 2
9 6.9 2
10 7.3 2
11 8.4 2
12 9.6 2
13 10.3 2
14 11.2 2
15 12.3 2
16 13.3 2

Due to the aforementioned features, both AHI and ABI enable the near-real time
monitoring of rapidly evolving volcanic phenomena (e.g., [32,33]). Indeed, data from these
sensors may be used to identify, monitor and quantify ash and SO2 clouds (e.g., [18,34]). In
addition, they offer the opportunity to promptly detect changes in thermal volcanic activity
by satellite, as further assessed in this work.
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3. Methods
3.1. NHI Indices

The NHI indices are defined as:

NHISWIR =
L2.2 − L1.6

L2.2 + L1.6
(1)

NHISWNIR =
L1.6 − L0.8

L1.6 + L0.8
(2)

where, L0.8, L1.6, and L2.2 are the TOA (Top-Of-Atmosphere) radiances [W/m2 sr µm]
measured at 0.8 µm (NIR), 1.6 µm (SWIR1) and 2.2 µm (SWIR2) wavelengths.

As shown in [25], while positive values of the index in Equation (1) indicate the
occurrence of a moderate thermal activity, those of the index in Equation (2) suggest the
presence of more intense thermal anomalies, frequently saturating the SWIR2 channel of
MSI and OLI [25,26]. By searching for positive values of the indices, the NHI algorithm is
capable of performing an accurate mapping of high-temperature targets [25,26].

This detection scheme, although designed for S2-MSI and L8-OLI data at 20 m and
30 m spatial resolution, was tested with success also on Terra-ASTER (Advanced Space-
borne Thermal Emission and Reflection Radiometer) images acquired before the failure of
the SWIR subsystem [35]. Moreover, it was applied to TM (Thematic Mapper) and ETM+
(Enhanced Thematic Mapper Plus) data of the prior Landsat series [26].

In a recent study, we used the NHI algorithm to investigate gas-flaring sources, having
temperatures between 1600–2200 K (e.g., [36]), in both offshore and onshore conditions [37].
The study showed that both normalized indices described above (which may be in principle
computed also from SWIR and NIR reflectance) are sensitive to gas flaring sources even
when SLSTR (Sea and Land Surface Temperature Radiometer) data, at 500 m spatial
resolution, are analyzed [37].

In this work, we assess for the first time the NHISWIR index behavior on AHI and
ABI data, at 2 km spatial resolution, in both daylight and night-time conditions. Indeed,
although the index was proposed for daytime data, it may be used also in night-time, as
demonstrated in previous studies [35,38].

3.2. NHI Implementation on Himawari-8 AHI and GOES-R ABI Data

To investigate thermal anomalies at Ambrym and Krakatau volcanoes, we used the
Himawari-8 AHI data provided by the Center for Environmental Remote Sensing (CEReS)
of the Chiba University (Japan). After extracting two Regions of Interest (ROIs) from the full
disk data, we converted data, acquired in bands 5 (1.6 µm) and 6 (2.2 µm), from reflectance
to radiance using the coefficients reported in each file header [39]. We computed only
the index in Equation (1), due to the different spatial resolution of SWIR and NIR bands
(see Table 1). Additionally, we filtered out pixels showing low SWIR radiance values on
night-time scenes, because ascribable to the instrumental noise.

The NHI implementation on GOES-R ABI data was performed by analyzing the Level 2
Cloud and Moisture Imagery Products (CMIP), at 2 km spatial resolution in all the bands,
available under the Google Earth Engine Platform (e.g., [40,41]). In particular, we computed
the NHISWIR index starting from the formulation used to convert from reflectance to
radiance, and the irradiance values (for the SWIR1 and SWIR2 bands) reported in [42].

4. Results
4.1. Ambrym (Indonesia) 14–15 December 2018 Eruption

Ambrym (16◦15′00′′S, 168◦07′00′′E) is an active volcano, located in the Vanuatu
archipelago, characterized by a large caldera (12 km in diameter) and two active craters,
i.e., Marum and Benbow, which were the site of active lava lakes.

This highly degassing volcano had some major eruptions in 1820, 1894, 1913 and 1929;
more recent eruptive events occurred in 1988, 2015 and 2018 [43].
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The 14–15 December 2018 eruption took place at the summit caldera [22,44]. During
the eruption, a lava flow, accompanied by lava fountaining, originated from the SE flank
of the Marum crater [45–47]. Thermal anomaly at the craters progressively disappeared
within 12 hours of the start of the eruption, suggesting the drop in the lava lake level [22],
confirmed by the outputs of the NHI tool [48].

To investigate these features through Himawari-8 AHI data, we computed the mean
value of the NHISWIR index, at 10 min time interval, over three different areas marked in
Figure 2a, in both daytime and night-time conditions. Figure 2b displays the results of
this analysis, showing that at the Benbow (area #1) and Marum (area #2) craters values of
−0.5 < NHISWIR < 0.5 were mostly recorded (see blue and black curve). The index was
however not always computed over the SE flank of the Marum crater, due to the low
SWIR radiance values recorded in night-time before eruption, for the reasons mentioned in
Section 3.2, and when clouds masked the emitted lava flows (see red curve).
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In more detail, positive values of the index mostly characterized the night-time scenes,
with a comparable magnitude at the craters. Those values of the index recorded before the
eruption were associated with the active lava lakes (areas #1 and #2). Similar values of the
index were also recorded, a few hours later the eruption start, over the SE flank of Marum
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crater (area #3), because of lava effusion. By contrast, the index was mostly negative
in daytime, especially at the Marum crater (blue curve), regardless of cloud coverage.
Negative values of the index (below −0.5) were retrieved also on SE flank of the Marum
crater before the eruption start (see red curve). The latter, based on information inferred
from Himawari-8 AHI data, took place on 14 December, in between 23:20–23:40 UTC
(15 December at 10:20–10:40 LT) [22]. In this time interval, the NHISWIR index showed a
sudden variation, analyzed in Figure 3.
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Figure 3. Time series of the NHISWIR index retrieved, at 10 min time interval, over the Benbow
(black line) and Marum (blue line) crater, and the area affected by intra-caldera eruption (red curve),
from Himawari-8 AHI data of 15 December 2018 at 09:00–12:00 LT. On the bottom, NHISWIR image
overlapped on the map of Ambrym volcano; light grey pixels indicate higher values of the used
index. The dotted black lines indicate the time interval associated with the start of the lava effusion.

The figure shows that the NHISWIR index abruptly increased (up to values of about
−0.18), over the SE flank of Marum crater, in between 10:20–10:30 LT (see red curve),
marking the exact time of eruption onset (AHI data at 20 min time interval were analyzed
in [22]). The bottom panels display the pixel associated with higher values of the used
index on satellite scenes of 07:00 LT, 10:20 LT and 10:30 LT, overlapped on a static very-high
resolution imagery of the Ambrym volcano available in GEE. It is worth noting that while
at Marum crater a hot pixel was evident until 07:00 LT (blue panel) because of clouds, at
Benbow crater the lava lakes were potentially detectable until 10:20 LT, when values of the
index above −0.4 were recorded (black panel). Ten minutes later, when a thermal anomaly
affected the SE flank of the Marum crater (red panel), the index decreased under values of
−0.5, probably because of the drop in the lava lake level.

These results show that the NHISWIR index is sensitive to the high-temperature fea-
tures also when daytime satellite data at coarse spatial resolution are used. This behavior
of the index is further assessed in the following section, by investigating high-temperature
features at Krakatau (which is not covered by GOES-R data such as Ambrym) and Ki-
lauea volcanoes.
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4.2. Krakatau (Indonesia) September 2018 Eruption

Krakatau (6◦06′07.2′′S, 105◦25′22.8′′E) is a volcanic complex, located in the Sunda
Strait (Indonesia), in between Java and Sumatra (see Figure 1). The catastrophic Krakatau
eruption of 1883 caused the caldera collapse, destroying most of the previous island. At
least 36,000 peoples died because of the induced tsunami waves. The volcano emerged
above sea level in 1927, showing frequent eruptions [49].

In more recent years, ash and lava flow emission occurred during the second half of
February 2017; thermal activity resumed in late June 2018 [50]. Lava flows affected the S
and SE flanks of the volcano, and were accompanied by a Strombolian activity, increasing
throughout September 2018. In the following two months, lava effusion continued, and on
22 December 2018, a large explosion occurred [50]. Tsunami waves, generated by the flank
collapse, destroyed most of the island, causing more than 400 fatalities. Eruption confirmed
the dangerousness of the Krakatau volcano for the neighbors’ densely populated coastal
regions of the Java and Sumatra islands (e.g., [51]).

To assess the NHI behavior at the Krakatau volcano, we analyzed the Himawari-8
AHI data of 10–20 September 2018. Figure 4 provides an overview of the effusive activity
identified and mapped by the NHI tool from S2-MSI observations. In more detail, the
figure displays some lava flows maps (left-middle panels), and the RGB (Red = SWIR2;
Green = SWIR1; Blue = NIR) images (right panels), showing also the presence of a vol-
canic plume.
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tion), retrieved from the MODVOLC [52] web site (http://modis.higp.hawaii.edu/; ac-
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and before the first increase in the lava effusion, values of −0.6 < NHISWIR < −0.2 were 
mostly recorded. Hence, the NHISWIR index reached positive values only during the wax-
ing phase of eruption, while it remained negative during the waning phase, and when 
clouds/plumes presumably affected the target area. 

To assess the behavior of the NHISWIR index also over some background areas, we 
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Figure 6 displays the results of this analysis, indicating that the NHISWIR index was always 
negative, and lower than −0.4 (see green, yellow, red and violet curves). On the other 
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Figure 4. Lava flow maps of the Krakatau (Indonesia) volcano, from S2-MSI data of 10 September 2018
at 03:27 UTC, 15 September 2018 at 03:24 UTC, 17 September 2018 at 03:18 UTC and 20 September 2018
at 03:28 UTC, generated through the NHI tool. On the right, the RGB (Red = SWIR2; Green = SWIR1;
Blue = NIR) images.

The NHI maps provide information about the space-time evolution of the emitted
lava flows (see red/yellow pixels overlapped on the relief map of the volcano), indicating
that these features covered an area of about 260,000 m2 on 17 September 2018.

Figure 5 displays the time series of the NHISWIR index retrieved from daytime AHI
observations, and the curves of the total SWIR radiances (at 1.6 and 2.2 µm) from MSI data.
It is worth noting that the two curves had almost the same temporal trend; obviously, the
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10 min temporal resolution of Himawari-8 AHI data allowed us to infer more continuous
information about changes of thermal volcanic activity.
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Figure 5. (a) RGB (Red = B7; Green = B6; Blue = B5) image from Himawari-8 AHI data of 17 September 2018
at 10:00 LT showing the Krakatau volcano and two hot pixels (see red and yellow ones); (b) Time
series of the NHISWIR index computed, from daytime Himawari-8 AHI data of 10–20 September
2018, over the pixel including the Krakatau crater area (top panel), and curves of the total SWIR1 and
SWIR2 radiance from S2-MSI data retrieved using the NHI tool.

In particular, a first abrupt increment of the used index, up to positive values, was
recorded on 11 September at 00:40 UTC (06:40 LT), marking the increase in the lava flow
emissions (bursts of incandescent material were reported during the night of 9–10 Septem-
ber [50]). The index then drastically decreased, remaining negative until 16 September at
00:40 UTC. In the following hours, when the lava flow appeared particularly extended (see
map of 17 September in Figure 4), the index increased once again up to positive values.
Independent estimates of the radiant flux from MODIS data (at 1 km spatial resolution),
retrieved from the MODVOLC [52] web site (http://modis.higp.hawaii.edu/; accessed
on 9 September 2022), revealed the increase in this parameter from less than 100 MW, on
14 September 2018, up to 1858 MW two days later. This increment corroborates the increase
in thermal activity, marked by positive values of the NHISWIR index. After 17 September
at 04:30 UTC, the index once again decreased to negative values; in that period, and be-

http://modis.higp.hawaii.edu/
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fore the first increase in the lava effusion, values of −0.6 < NHISWIR < −0.2 were mostly
recorded. Hence, the NHISWIR index reached positive values only during the waxing phase
of eruption, while it remained negative during the waning phase, and when clouds/plumes
presumably affected the target area.

To assess the behavior of the NHISWIR index also over some background areas, we
analyzed four image pixels (P1–P4) located far from the Krakatau caldera (see Figure 5a).
Figure 6 displays the results of this analysis, indicating that the NHISWIR index was always
negative, and lower than −0.4 (see green, yellow, red and violet curves). On the other hand,
values of the index higher than −0.4 were recorded both at Krakatau (see black curve)
and at the Ambrym volcano, in the presence of a documented thermal activity. Hence, a
negative threshold could enable a better identification of high-temperature features through
daytime Himawari-8 AHI data. This aspect is analyzed in detail in the discussion section.

Remote Sens. 2022, 14, 5481 10 of 16 
 

 

 
Figure 6. Time series of the NHISWIR index computed, from Himawari-8 AHI data of Figure 5b, over 
the Krakatau (black curve) and four background pixels (from P1 to P4) located far from the volcano 
(see Figure 5a). Note that values of the index higher than −0.4 were recorded only at Krakatau, in 
the presence of a documented lava effusion. 

4.3. Kilauea (HI, USA) December 2020−May 2021 Eruption 
Kīlauea (19°24′24.81″N, 155°17′0.18″W) is the youngest, and recently the most active, 

of the five shield volcanoes forming the island of Hawai’i [53]. 
After the intense eruption of May−August 2018, which was widely analyzed by 

means of satellite observations (e.g., [54]), a new eruptive activity started on 20 December 
2020 at around 21:30 LT (UTC-10), with the opening of three fissures on the inner walls of 
Halema‘uma‘u crater [55]. The eruption produced a vigorous steam plume and generated 
a new lava lake at the base of the crater. In the following days, lava lake continued to be 
fed by the N and W fissure vents, and some islands of cooler solidified lava formed inside 
the crater [55]. The eruptive activity continued in the following months, ending on 23 May 
2021; post-eruption analyses indicated that the lava lake eruption filled the base of 
Halema‘uma‘u to a depth of 223 m [56]. 

We previously investigated the December 2020–May 2021 Kilauea’s eruption 
through the NHI tool, and offline analysis of L8-OLI night-time data. After detecting hot 
pixels, and correcting daytime SWIR data for the solar irradiation, we estimated the radi-
ant flux. Results were consistent with estimates of this parameter independently per-
formed using MODIS and VIIRS (Visible Infrared Imaging Radiometer Suite) data [39]. 

Figure 7a displays the temporal trend of the NHISWIR index retrieved, over one of the 
Kilauea’s crater pixels, from daytime GOES-R ABI data of 18−23 December 2020 processed 
under the GEE platform. The plot shows that the NHISWIR index was always negative be-
fore the eruption, showing values generally lower than −0.4. During the eruption, the in-
dex significantly increased in magnitude up to positive values, apart from when steam 
plumes and clouds partially/completely obscured the Halema‘uma‘u crater (e.g., [39]). 

These outcomes demonstrate that the NHISWIR index may be used to infer information 
about hot targets (temperatures up to about 1100 K were retrieved at Kilauea during the 
analyzed eruption [39]) also through daytime GOES-R ABI data (see Figure 7b). However, 
as for Himawari-8 AHI observations, thresholds should be tailored to the coarse spatial 
resolution of those data to monitor volcanic thermal anomalies in a more continuous way 
from space (e.g., at the early stage and during the waning phase of eruptions). 

Figure 6. Time series of the NHISWIR index computed, from Himawari-8 AHI data of Figure 5b, over
the Krakatau (black curve) and four background pixels (from P1 to P4) located far from the volcano
(see Figure 5a). Note that values of the index higher than −0.4 were recorded only at Krakatau, in the
presence of a documented lava effusion.

4.3. Kilauea (HI, USA) December 2020–May 2021 Eruption

Kı̄lauea (19◦24′24.81′′N, 155◦17′0.18′′W) is the youngest, and recently the most active,
of the five shield volcanoes forming the island of Hawai’i [53].

After the intense eruption of May–August 2018, which was widely analyzed by means
of satellite observations (e.g., [54]), a new eruptive activity started on 20 December 2020
at around 21:30 LT (UTC-10), with the opening of three fissures on the inner walls of
Halema‘uma‘u crater [55]. The eruption produced a vigorous steam plume and generated
a new lava lake at the base of the crater. In the following days, lava lake continued to
be fed by the N and W fissure vents, and some islands of cooler solidified lava formed
inside the crater [55]. The eruptive activity continued in the following months, ending on
23 May 2021; post-eruption analyses indicated that the lava lake eruption filled the base of
Halema‘uma‘u to a depth of 223 m [56].

We previously investigated the December 2020–May 2021 Kilauea’s eruption through
the NHI tool, and offline analysis of L8-OLI night-time data. After detecting hot pixels,
and correcting daytime SWIR data for the solar irradiation, we estimated the radiant flux.
Results were consistent with estimates of this parameter independently performed using
MODIS and VIIRS (Visible Infrared Imaging Radiometer Suite) data [39].

Figure 7a displays the temporal trend of the NHISWIR index retrieved, over one of the
Kilauea’s crater pixels, from daytime GOES-R ABI data of 18–23 December 2020 processed
under the GEE platform. The plot shows that the NHISWIR index was always negative
before the eruption, showing values generally lower than −0.4. During the eruption, the
index significantly increased in magnitude up to positive values, apart from when steam
plumes and clouds partially/completely obscured the Halema‘uma‘u crater (e.g., [39]).
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= band 1) image of 21 December at 17:00 UTC (21 December at 07:00 LT) showing, in red, the thermal 
anomaly at Kilauea (magnified on bottom right corner) leading to positive values of the NHISWIR 
index. 
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Figure 8 displays the two lava lakes at the Benbow crater, observed on S2-MSI scene 
of 25 November 2018 at 23:10 UTC (26 November 2018 at 10:10 LT) and the AHI pixel in 
green [52]. On that day, an increment of volcanic thermal emissions occurred, as indicated 
by NHI and MIROVA (Middle Infrared Observation of Volcanic Activity) [58], suggesting 
the increase in the lava lake level a few weeks before the 15 December 2018 eruption [52]. 
The hottest portion of the lava lakes, in yellow on the RGB image shown in background, 
having a temperature probably close to 1000 °C (e.g., [59]), affected about 1.1% of the AHI 
pixel area (≈ 4.7 km2 at the latitude of Ambrym volcano), increasing the NHISWIR index up 

Figure 7. (a) Time series of the NHISWIR index retrieved, from daytime GOES-17 ABI data
(06:00–17:00 LT), at 10 min time interval, of 18 December at 16:00 UTC–23 December at 23:50 UTC, over
the Kilauea (Hawaii, USA) crater area; (b) GOES-17 RGB (Red = band 6; Green = band 2; Blue = band 1)
image of 21 December at 17:00 UTC (21 December at 07:00 LT) showing, in red, the thermal anomaly
at Kilauea (magnified on bottom right corner) leading to positive values of the NHISWIR index.

These outcomes demonstrate that the NHISWIR index may be used to infer information
about hot targets (temperatures up to about 1100 K were retrieved at Kilauea during the
analyzed eruption [39]) also through daytime GOES-R ABI data (see Figure 7b). However,
as for Himawari-8 AHI observations, thresholds should be tailored to the coarse spatial
resolution of those data to monitor volcanic thermal anomalies in a more continuous way
from space (e.g., at the early stage and during the waning phase of eruptions).

5. Discussion

Daytime SWIR observations are significantly affected by the solar-reflected radiation
(e.g., [57]). Because of this component, high-temperature targets should increase the
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NHISWIR index, up to positive values, only when these features are particularly extended
within the AHI/ABI pixel area.

Figure 8 displays the two lava lakes at the Benbow crater, observed on S2-MSI scene
of 25 November 2018 at 23:10 UTC (26 November 2018 at 10:10 LT) and the AHI pixel in
green [52]. On that day, an increment of volcanic thermal emissions occurred, as indicated
by NHI and MIROVA (Middle Infrared Observation of Volcanic Activity) [58], suggesting
the increase in the lava lake level a few weeks before the 15 December 2018 eruption [52].
The hottest portion of the lava lakes, in yellow on the RGB image shown in background,
having a temperature probably close to 1000 ◦C (e.g., [59]), affected about 1.1% of the AHI
pixel area (≈ 4.7 km2 at the latitude of Ambrym volcano), increasing the NHISWIR index up
to slightly negative values (−0.13). Therefore, despite the increment of thermal emissions,
a negative threshold was required to identify the active lava lakes through Himawari-8
AHI data of the same day and hour.
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Figure 8. RGB (Red = Band 12: Green = Band 11; Blue = Band 8A) S2-MSI imagery of 25 November 2018
at 23:09 UTC and AHI pixel, in green, including the Benbow crater. The hottest portion of the lava
lakes (in yellow on the RGB with the lava lake borders marked in black) covered an area of about
55,650 m2 (≈ 1.1% of the AHI pixel area).

Small high-temperature features, well identified and mapped by the NHI algorithm on
S2-MSI and L8-OLI scenes (e.g., [60]), may remain then undetected when AHI and ABI data
are analyzed. In addition, although a negative threshold may enable a better identification
of these features in daylight conditions, it appears more difficult to set properly, as shown
in Figure 9. The latter displays the time series of the NHISWIR index computed, in daytime,
over two background pixels of the Hawaii and Alaska (USA) regions, in reference to the pe-
riod January 2020–2021. The figure shows that while values of −0.3 < NHISWIR < −0.8 char-
acterized the selected pixel of Hawaii (see blue curve), higher values of the same index (up
to about−0.1) were recorded in Alaska, in presence of a possible ice-covered surface (see or-
ange curve). Therefore, a negative fixed threshold tailored to Kilauea (e.g., NHISWIR >−0.4),
and potentially useful also at Ambrym and Krakatau volcanoes (see previous section),
may be less effective in discriminating thermal anomalies from the background at the
high-latitude regions.
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Figure 9. Time series analysis of the NHISWIR index retrieved from one year of daytime GOES-R
(GOES-17) observations (17:10 UTC–03:50 UTC) over the selected background pixels of Hawaii
(21.54 N, 157.99 W) (blue curve) and Alaska (60.07 N, 149.95 W) (orange curve).

To improve the identification of hot targets in the SWIR bands through AHI and ABI
data, without using fixed thresholds, self-adaptive detection methods are required. Some
authors recently used the NHISWIR and NHISWNIR indices as input to change detection
methods and machine learning techniques (e.g., [51,61]). Moreover, investigations currently
in progress indicate that accuracy in the lava flow mapping may be further increased by
analyzing those indices in the space-time domain, according to the RST (Robust Satellite
Techniques) detection scheme [62].

In this direction, a multi-temporal approach, focusing for instance on the short-
term variations of NHI devoted to minimizing the processing times, may allow for a
more effective identification of high-temperature features through SWIR data at low spa-
tial resolution. This approach, also thanks to the different NHISWIR index behavior ob-
served in the presence of clouds and hot targets, could integrate information provided
by systems using MIR data, that although suited to detect also subtle thermal anomalies
(e.g., [63]) which generally implements cloud-screening procedures in daylight conditions
(e.g., [64,65]).

6. Conclusions

In this study, we investigated the NHISWIR index behaviour, in the presence of high-
temperature targets, using satellite data at low spatial/high-temporal resolution.

Results achieved in three different volcanic areas (i.e., Ambrym, Krakatau and Kilauea)
indicate that the NHISWIR index may potentially be used to identify active lava flows/lakes
also through Himawari-8 AHI and GOES-R ABI observations. On the other hand, unlike
S2-MSI and L8-OLI data, a negative fixed threshold is required to better identify thermal
anomalies in daylight conditions. This threshold appears, however, more difficult to
set univocally.

In this context, the quite stable behavior of the NHISWIR index in the time domain (in
absence of hot targets) should favor its implementation within multi-temporal detection
schemes. The latter, thanks to a self-adaptive threshold setting, performed without using
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additional input parameters (e.g., [63,65]), may allow us to better exploit the index to
detect high-temperature features in daytime, through AHI and ABI data. Moreover, the
standard NHI algorithm could be used in nighttime, when hot targets are easier to identify
in the SWIR bands, developing a sort of hybrid approach capable of integrating MIR and
TIR observations.

This approach could be then exported to SWIR data, at 1 km spatial resolution, from
the FCI (Flexible Combined Imager), aboard the next MTG-I (Meteosat Third Generation)
geostationary satellite, which is scheduled to be launched at the end of 2022 [66].
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