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Abstract: Forest fires may have devastating consequences for the environment and for human lives.
The prediction of forest fires is vital for preventing their occurrence. Currently, there are fewer
studies on the prediction of forest fires over longer time scales in China. This is due to the difficulty
of forecasting forest fires. There are many factors that have an impact on the occurrence of forest
fires. The specific contribution of each factor to the occurrence of forest fires is not clear when using
conventional analyses. In this study, we leveraged the excellent performance of artificial intelligence
algorithms in fusing data from multiple sources (e.g., fire hotspots, meteorological conditions, terrain,
vegetation, and socioeconomic data collected from 2003 to 2016). We have tested several algorithms
and, finally, four algorithms were selected for formal data processing. There were an artificial
neural network, a radial basis function network, a support-vector machine, and a random forest to
identify thirteen major drivers of forest fires in China. The models were evaluated using the five
performance indicators of accuracy, precision, recall, f1 value, and area under the curve. We obtained
the probability of forest fire occurrence in each province of China using the optimal model. Moreover,
the spatial distribution of high-to-low forest fire-prone areas was mapped. The results showed that
the prediction accuracies of the four forest fire prediction models were between 75.8% and 89.2%,
and the area under the curve (AUC) values were between 0.840 and 0.960. The random forest model
had the highest accuracy (89.2%) and AUC value (0.96). It was determined as the best performance
model in this study. The prediction results indicate that the areas with high incidences of forest fires
are mainly concentrated in north-eastern China (Heilongjiang Province and northern Inner Mongolia
Autonomous Region) and south-eastern China (including Fujian Province and Jiangxi Province). In
areas at high risk of forest fire, management departments should improve forest fire prevention and
control by establishing watch towers and using other monitoring equipment. This study helped in
understanding the main drivers of forest fires in China over the period between 2003 and 2016, and
determined the best performance model. The spatial distribution of high-to-low forest fire-prone
areas maps were produced in order to depict the comprehensive views of China’s forest fire risks
in each province. They were expected to form a scientific basis for helping the decision-making of
China’s forest fire prevention authorities.

Keywords: forest fire occurrence; feature selection; forest fire driving factors; machine learning;
prediction model

1. Introduction

Forest fire disaster is considered one of the leading causes of dramatic depletion
of forest ecosystems worldwide among either anthropogenic or natural processes [1,2].
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From 2003 to 2018 years, there were 111,446 forest fire disasters in China, and the total
area of forest fires nationwide was 3,289,500 hm2, with an average annual fire area of
205,600 hm2 [3]. Extreme fire weather conditions have become more common globally
due to global warming and extended fire weather seasons in recent decades, enhancing
the flammability of vegetation and preparing many landscapes for more frequent burning.
Forest fires are becoming even more pronounced within fire regimes in many regions, with
increasing impacts on human survival environment and ecosystem function processes [4].
Fire regimes are shaped by climate, landscape structure, and the frequency of ignitions
and vary globally across space, biogeographies, and environments. Fire regimes are also
strongly sensitive to human activities and global change drivers, and have strong impacts
on ecosystems, biodiversity and societies. Thus, forest fire prevention has become a key
research topic in forestry and ecology, development of reliable prediction models of forest fire
danger is important for public safety, forest management, and suppression planning [5–10].

By establishing a forest fire prediction model, we can predict the probability of the
occurrence of a forest fire and then manage the area where the fire is likely to occur.Various
models have been proposed for forest fire danger prediction, varying from simple statistical
techniques (i.e., Poisson regression, geographically weighted regression, logistic regression)
to more complex models (i.e., Pareto distribution, favorability functions, and approaches
based on numerical simulation) [11–20]. Liao et al. (2008) used the zero-inflated Poisson
model to predict the frequency of forest fires in Japan in 2000 [21]. Guo et al. (2010) used
ordinary least squares regression, zero-inflated negative binomial model to predict the
number of forest fires in the Greater Xing’an Mountains area of Heilongjiang Province,
China [22]. MAXENT has also been applied to various hazard risk assessments, such as
landslides, wildfires, and pandemics. Massada et al. (2013) argued that a presence–absence
modeling approach may be more suitable in areas with long-term fire records and where
only a small part of the area can sustain a fire. MaxEnt is able to cope well with sparsely,
irregularly sampled data and minor location errors [23–25]. However, a forest fire is typical
a nonlinear and complex process that is governed by many influencing factors [26–28].
Therefore, it is challenging to model and predict the occurrence of forest fires [29,30].

In recent years, machine learning has been employed for deep analysis and mining of
information in environmental variables for forest fire prediction such as neural networks,
support vector machines, random forests, logistic regression classifiers with kernel function,
and neural fuzzy models [31–35]. The common conclusion from the above researches is
that machine learning models have proven abilities to deliver better results [36,37]. In
those machine learning models, artificial neural networks (ANNs) consist of neurons with
adjustable connection weights. Unlike traditional multiple linear or parametric regression
models, neural networks have better self-organization and self-learning capabilities, and
they have been widely used in forest fire prediction [38,39]. For example, Maeda et al.
(2009) used ANNs and multitemporal images from MODIS/Terra-Aqua sensors to detect
areas at high risk of forest fires in Brazil’s Amazon region [40]. The results showed that
the error was small, and the predictions were accurate. Sakr et al. (2011) predicted the
occurrence of forest fires in developing countries through two meteorological factors using
artificial neural networks [41]. A radial basis function (RBF) neural network is a three-layer
neural network, a particular case of a back-propagation neural network. Little research
has used RBF neural networks for forest fire prediction. Samaher (2018) used an RBF
neural network to predict the forest fire risk in natural parks in Portugal [26]. Support-
vector machines (SVMs) are most suitable for the binary classification of data in the form
of supervised learning. SVMs apply the principle of structural risk minimization and
have good learning abilities. Researchers have recently started using SVMs to predict
forest fires [42–44]. Samaher (2018) used five different soft computing (SC) technologies,
including an SVM algorithm, to predict areas at risk of forest fires [26]. He determined
that the SVM algorithm provides more accurate predictions than the other four. Cortez
et al. (2007) used five different data mining (DM) algorithms to predict the area at risk
of forest fires in the north-eastern region of Portugal [8]. Their results showed that the
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prediction effect of the model was good. Based on Cortez’s research, Xu et al. (2012) used
the semidefinite programming model to select the optimal kernel function of the SVM to
establish an SVM model for forest fire prediction [7]. The mean square error was small, and
the model effect was good. The random forest (RF) algorithm is a well-known integrated
learning algorithm that can provide higher accuracy than other algorithms. Currently
the use of RFs to predict forest fires is relatively established [45–47]. Liang et al. (2016)
used an RF model to predict the occurrence of forest fires in Fujian Province, China, with
an accuracy rate of 85% [48]. Pourtaghi et al. (2016) used an RF algorithm to study the
sensitivity of forest fires in Golestan Province, Iran, and their results showed that the model
achieved the desired accuracy [49]. It is debated which method or technique is the best for
modeling forest fires. Therefore, comparison of methods and techniques is highly necessary
to gather reasonable conclusions for forest fire prediction [44].

Most of the current studies have focused on some specific regions, while few studies
have been conducted to forecast and analyze the whole range of long time scales in China.
Many studies have concentrated on the temporal and spatial changes and influencing
factors of forest fires in specific years [50–53]. The results of previous research are therefore
localized and limited, and there is a lack of studies investigating the most suitable and
high-precision forest fire prediction model on the national scale.

Compared to studies on the local level, we performed a national-scale forest fire
occurrence prediction in China, while considering the problem of forest fires over longer
time scales. We selected a variety of forest fire drivers, built four prediction models based
on machine learning algorithms, and evaluated the models using Chinese forest fire data
collected from satellite remote sensing monitoring for a total of 14 years from 2003 to 2016.
The study has three objectives: (1) identify the primary central forest fire driving factors
and their impacts in China; (2) select the most suitable model for forest fire prediction in
China by creating four models and comparing and analysing the fitting results; and (3) use
the model that offers the most accurate predictions to create a forest fire probability map
for China and put forward recommendations for forest fire prevention.

2. Materials and Methods
2.1. Study Area and Data Resources

China is located in East Asia on the west coast of the Pacific Ocean and has a vast
territory with a total land area of about 9.6 million square kilometers. The topography
is high in the west and low in the east, with large mountainous areas and plateaus. The
distance between the east and west of the country is about 5000 km, the continent has
a coastline of more than 18,000 km, and a variety of temperatures and precipitation that
create a variety of climates. China’s forest resources are unevenly distributed, mainly in
Northeast, South China, and Southwest China. The forest land area is 220 million hectares,
and the forest coverage rate is 22.96%.

The research data had six parts: fire ignition data, meteorological data, terrain data,
vegetation data, infrastructure data, and socioeconomic data [5]. The fire points data
were derived from NASA’s Global Fire Atlas with Characteristics of Individual Fires,
2003–2016 (https://daac.ornl.gov/ (accessed on 1 January 2021)). The Global Fire Atlas
is a global dataset that tracks the daily dynamics of single fires. For each fire, the dataset
provides information about the fire’s timing and location, scale, perimeter, duration, speed,
and direction of spread. These unique fire characteristics are based on the Global Fire
Atlas algorithms and estimated combustion day information from a 500-m resolution
product of the six MCD64A1 combustion zone products of the Medium Resolution Imaging
Spectroradiometer (MODIS) collection.

This study used fire point data for forest land in China from 2003 to 2016. The fi-
nal number of fire points was 32,746 (excluding Taiwan). The meteorological data were
derived from the 14-day daily value dataset of the China Meteorological Data Network
(http://data.cma.cn/dataService/ (accessed on 7 January 2021). The dataset includes eight
elements, such as barometric pressure, temperature, relative humidity, and precipitation at

https://daac.ornl.gov/
http://data.cma.cn/dataService/
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the station. Digital elevation model (DEM) data were obtained through Data Center for Re-
sources and Environmental Sciences, Chinese Academy of Sciences (https://www.resdc.cn/
(accessed on 10 January 2021)). Vegetation data were represented by the normalized dif-
ference vegetation index (NDVI), and the spatial distribution dataset of China’s Quar-
terly Vegetation Index came from the Resource and Environment Data Cloud Platform
(http://www.resdc.cn/ (accessed on 10 January 2021). The primary geographic data were
taken from the “National Basic Geographic Database of 1:1 Million” website of the National
Geographic Information Resources Directory System (http://www.webmap.cn (accessed
on 13 January 2021)). The data include the locations of railways, highways, water sys-
tems, and residential areas. The socioeconomic data include population density and GDP
per capita, and the grid data of the spatial distribution of population and GDP were ob-
tained from the Resource and Environment Data Cloud Platform (https://www.resdc.cn/
(accessed on 15 January 2021)). Figure 1 shows the map of the study area.
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2.2. Data Pre-Processing
2.2.1. Variable Handling

The dependent variable was a binary variable (i.e., whether or not a forest fire occurs).
Thus, we used ArcGIS 10.4 to create a certain percentage of random points (non-fire points)
and assigned a value of 1 to fire points and a value of 0 to non-fire points [54]. To ensure
that the data were not over dispersed, random points were selected according to experience
in a ratio of 1:1 [55]; in principle, randomness in space and time should be followed [56].
We used ArcGIS 10.4 software to create random points to ensure that fall on forest land, so
the national land use data (http://www.dsac.cn/ (accessed on 10 January 2021) from 2003
to 2015 is used as the basis for the range of forest land extracted and the random points are
created within that range to exclude random points located in bodies of water or urban
land. We obtained a total of 65,492 fire points and random points.

https://www.resdc.cn/
http://www.resdc.cn/
http://www.webmap.cn
https://www.resdc.cn/
http://www.dsac.cn/
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For the meteorological data, we first used ArcGIS 10.4 to match the sample points
with the nearest meteorological station. We then extracted the corresponding sample point
weather data and used an SQL server database to match the daily weather data. For
the terrain data, we used the spatial analysis tool in ArcGIS 10.4 to extract the slope and
aspect of the obtained DEM data [57–59]. Seasonal climatic differences have an impact
on vegetation status, we divided the year into spring (March, April, May), summer (June,
July, August), autumn (September, October, November), and winter (December, January,
February) [60]. We used the extraction and analysis tools of ArcGIS to extract the NDVI
data for the sample points on an annual basis and quarterly basis.

Similarly, from the infrastructure data and socioeconomic data, we extracted the
information corresponding to the sample points. We set the aspect and unique festivals as
categorical variables and the others as continuous variables. Table 1 shows the classification
of aspect. During specific traditional celebrations in China, people burn the paper to
commemorate their loved ones, increasing the probability of a forest fire. We classified
(value 1) the following dates of these events as special festivals: Chinese New Year’s Eve,
the first day of the first lunar month, the second day of the first lunar month, the fifteenth
day of the first lunar month, and Qingming Festival and Zhongyuan Festival (15th July of
the lunar calendar). Non-special festivals were set to 0.

Table 1. Descriptions of aspect classifications.

Aspect Azimuth (Degree) Classification

Gentle Slope −1 0
Shady Slope 0~67.5, 337.5~360 1

Semi-shady Slope 67.5~112.5, 292.5~337.5 2
Sunny Slope 157.5~247.5 3

Semi-sunny Slope 112.5~157.5, 247.5~292.5 4

After processing, we obtained 20 independent variables and their possible values (see
Table 2). Finally, we performed data cleaning on the sample points and the various types
of data extracted to remove abnormal samples from the original dataset (including some
samples with missing data and models with observations that were significantly outside
the normal range).

Table 2. Descriptions of independent variables.

Category Independent Variable Symbol Variable Type Source Resolution,
Units

Location
Longitude (◦) Lon Continuous Variable https://daac.ornl.gov/

(accessed on 1 January 2021) -

Latitude (◦) Lat Continuous Variable https://daac.ornl.gov/
(accessed on 1 January 2021) -

Topographic

Altitude (m) Alt Continuous Variable https://www.resdc.cn
(accessed on 10 January 2021) 1 km

Slope (◦) Slo Continuous Variable https://www.resdc.cn
(accessed on 10 January 2021) 1 km

Aspect Asp Categorical Variable https://www.resdc.cn
(accessed on 10 January 2021) 1 km

Climatic

Average Surface Temperature (◦C) Avst Continuous Variable

China Ground Climate Da ta(V3.0) Daily
Dataset, National Meteorological

Information Centre
(https://data.cma.cn

(accessed on 7 January 2021)

0.1 ◦C
Daily Maximum Surface temperature (◦C) Mast Continuous Variable 0.1 ◦C
Cumulative Precipitation at 20–20 (mm) Pre Continuous Variable 0.1 mm

Average Relative Humidity (%) Arh Continuous Variable 1%
Hours of Sunshine (h) Suh Continuous Variable 0.1 h

Average Temperature (◦C) Ate Continuous Variable 0.1 ◦C
Daily Maximum Temperature (◦C) Mate Continuous Variable 0.1 ◦C

Average Wind Speed (m/s) Aws Continuous Variable 0.1 m/s
Maximum Wind Speed (m/s) Mws Continuous Variable 0.1 m/s

Infrastructure
Distance from Fire Point to Highway (m) Hig Continuous Variable https://www.webmap.cn

(accessed on 13 January 2021) 1:1,000,000

Closest Distance from Fire Point to
Residential Area (m) Set Continuous Variable https://www.webmap.cn

(accessed on 13 January 2021) 1:1,000,000

https://daac.ornl.gov/
https://daac.ornl.gov/
https://www.resdc.cn
https://www.resdc.cn
https://www.resdc.cn
https://data.cma.cn
https://www.webmap.cn
https://www.webmap.cn
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Table 2. Cont.

Category Independent Variable Symbol Variable Type Source Resolution,
Units

Socioeconomic

Population Pop Continuous Variable https://www.resdc.cn
(accessed on 15 January 2021) 1 km

GDP GDP Continuous Variable https://www.resdc.cn
(accessed on 15 January 2021) 1 km

Special Festival Sfe Categorical Variable - -

Vegetation NDVI NDVI Continuous Variable https://www.resdc.cn
(accessed on 10 January 2021) 1 km

2.2.2. Data Normalization

Given the different dimensions and magnitudes of the factors above, the data were
normalized to eliminate the variation in dimensions, avoid significant differences in the
volumes of the input and output data, and balance the contributions of various factors. All
data were converted to values between 0 and 1. Table 3 shows the normalized formulas
and specific interpretations of the independent variables.

Table 3. Normalized formulas and explanations.

No. Formula Explanation Variables Using This Formula

(1) xi
∗ = xi−xmin

xmax−xmin

xi and xi
∗ are the values before and after data normalization,

respectively; xmax and xmin are the maximum and minimum
values of the full sample data, respectively.

Lon, Lat, Alt, Avst, Mast, Pre, Suh, Ate, Mate,
Aws, Mws, Hig, Set, Pop, GDP

(2) xα = sinα α is the slope value. Slo

(3) xγ = γ
100 γ is the humidity value. Arh

2.3. Method

In this study, we used the MATLAB and R Studio programming languages to imple-
ment the algorithms. We used MATLAB to build the ANN, RBFNN, and SVM models and
used R Studio to build the RF models.

This study provides a methodological framework for predicting the occurrence of
forest fires in China, as shown in Figure 2. First, all of the forest fire correlation factors are
selected by feature selection to obtain the forest fire driving factors that have significant
influence on fires. These factors are then used as input data of the forest fire prediction
model, and machine learning models (ANNs, RBF neural networks, SVMs and RFs) are
applied to obtain corresponding results. Finally, the model accuracy is obtained through
evaluation indexes such as the AUC value.

2.3.1. Artificial Neural Networks

ANNs have become widely used in feedforward networks due to their clear structure,
fast operation, easy implementation, and abilities for self-learning and adaption to the
environment [57,58]. ANNs consist of three parts: an input layer, an output layer, and
a hidden layer. The hidden layer may be a topological structure of one or more layers.
The input layer does not perform any calculations; rather, it is used to receive data, that
is, to transfer data to the adjacent hidden layer with different weights. The hidden layer
processes the data through a nonlinear activation function and then passes it to the output
layer. The final result is obtained from the output layer. The mathematical principle is
as follows: {

h(1) = ϕ(1)(∑n
i=1 xi·ωj

(1) + b(1)

y = ϕ(2)(∑n
j=1 hi

(1)·ωj
(2) + b(2) (1)

In the formula, the input layer is x ∈ Rm, the hidden layer output is h ∈ Rn, the
output layer is y ∈ RK, the input layer to the hidden layer weight confourection matrix

https://www.resdc.cn
https://www.resdc.cn
https://www.resdc.cn
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is ω(1) ∈ Rm×n, the weight connection bias from the input layer to the hidden layer is
b(1) ∈ Rn, and the weight connection matrix and the bias from the hidden layer to the
output layer areω(2) ∈ Rn×K and b(2) ∈ Rn×K, respectively.
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2.3.2. Radial Basis Function Neural Network

The RBF neural network structure is a feedforward structure with an input layer,
a single hidden layer, and an output layer. Its advantages are concise training and fast
learning convergence speed, which can approximate any nonlinear function. This method
has been widely used in time-series forecasting, nonlinear control systems, and the graphics-
processing field. The basic idea of an RBF neural network is as follows. The RBF is used as
the “base” of the hidden unit to form the hidden layer space. The hidden layer transforms
the input vector and the low-dimensional pattern input data into the high-dimensional
space. The result is that the data are linearly separable in the high-dimensional area. The
output of the RBF neural network is as follows:

yi = ∑h
i=1ωij exp

(
− 1

2σ2 ‖xp − ci‖2
)

j = 1, 2, · · · , n (2)
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where xp = (x1
p, x2

p, · · · , xm
p)T is the pth input sample (p = 1,2,3, . . . ,P), P is the total

number of samples, ci is the centre of the hidden layer node of the network, ωij is the
connection weight from the hidden layer to the output layer, i = 1,2,3, . . . ,h is the number
of hidden layer nodes, and yi is the actual output of the jth output node of the network
corresponding to the input sample [59].

2.3.3. Support-Vector Machines

SVMs are mainly used for pattern classification and nonlinear regression. They are
general learning algorithms based on the principle of structural risk minimization. The
core idea of an SVM is to establish a classification hyperplane as a decision surface to
maximize the isolation edge between the positive and negative examples, thereby provid-
ing a high generalization performance [60]. SVMs can improve the ability to transform
data from high-dimensional spaces by flexibly using kernel functions when dealing with
various nonlinear problems. Taking a two-class SVM as an example, given a training set
T = {(x1, y1), · · · (xl , yl)} ∈ (X×Y)l , where xi ∈ X = Rn, yi ∈ {1,−1}(i = 1, 2, · · · l), xi
is the feature vector. The penalty parameter C and the kernel function K(x, x′) are first
selected, and the optimization problem is then constructed and solved as follows [59]:

min
α

1
2 ∑j

i=1 ∑l
j=1 yiyjaiajK

(
x, x′

)
−∑l

j=1 αj (3)

s.t. ∑l
i=1 yiαi = 0, 0 ≤ αi ≤ C, i = 1, · · · , l (4)

The optimal solution is then obtained: α∗ = (α1
∗, · · · , αl

∗)T . A positive component of
α∗: 0 ≤ αj

∗ ≤ C is then selected, and the threshold is calculated as follows:

b∗ = yj −∑l
i=1 yiαi

·K
(
xi − xj

)
(5)

Finally, the decision function is constructed:

f (x) = sgn(∑l
i=1 αi

∗yiK(x, xi) + b∗ (6)

2.3.4. Feature Selection and Random Forest

Feature selection refers to the choice of subsets from the original feature set to opti-
mize a certain evaluation criterion so that the model established with the optimal feature
subset can achieve a prediction accuracy similar to or better than that of the model shown
without feature selection [61,62]. RFs have been demonstrated to have a high prediction
accuracy high tolerance to outliers and ’noise’ [63]. This method can be used to evaluate
the relationship between covariates and dependent variables and calculate the relative
importance of covariates [64,65]. RF has been applied in various fields, including medicine,
genetics, ecology, and remote sensing. In recent years, it has been widely used in forest fire
prediction and has demonstrated good predictive abilities [2,4]. The order of importance of
variables can be obtained by a random forest algorithm. In previous studies, the variables
screened by this method have been proved to have high reliability [4,23,66–69]. Therefore,
the random forest algorithm is selected as the method of feature selection in this study. The
basic idea of feature selection using RF is as follows: for the jth variable (Xj), the OOB error
(errOOBj

t) of each tree t is calculated, and then the value of the jth variable (Xj) is permuted
while all others are left unchanged among OOB data, and the OOB error (errOOBj

t) is
again recalculated on this permuted dataset. RF estimates the importance of a variable by
evaluating how much the prediction error increases when the OOB data for that variable
are permuted. The importance score of Xj is as follows:

VI
(

X j
)
=

1
ntree ∑t

(
err′OOBj

t − errOOBt

)
(7)
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where R is the summation of all of the trees, and ntree is the number of trees in the RF [70,71].
For classification, the OOB is the misclassification probability.

An RF is a highly flexible machine learning algorithm with broad application prospects.
An RF is a classifier consisting of multiple DTs formed by random methods. These trees are
not related, hence its alternative name: “random decision tree”. When the test data enter
the RF, each DT is classified, and the category with the most classification results among all
of the DTs is taken as the final result.

The basic principle of the RF algorithm is as follows. Let N be the number of attributes
of the sample. n is an integer greater than 0 and less than N. First, the bootstrap method is
used for resampling, randomly generating M training sets S1, S2, . . . SM. DTs A1, A2,. . . AM
corresponding to each training set is then generated. Before selecting the attribute in each
non-leaf node, n attributes are randomly chosen from the N attributes as the split attribute
set of the current node, and the node is split in the best split mode among the n attributes.
Each tree grows intact without pruning. For the test set sample X, each DT is used to
test and obtain the corresponding categories: C1(X), C2(X),. . . , CM(X). Finally, the voting
method is adopted, and the category with the most output among the M DTs is regarded as
the category to which the test set sample X belongs [59].

2.3.5. Model Performance Evaluation

In this study, we used five performance indicators (accuracy, precision, recall, f1 value,
and AUC) to evaluate the performance of the models. Descriptions of the five indicators
are given below.

1. Accuracy: the proportion of the number of samples (TP and TN) that are correctly
predicted to the total number of samples. The formula is as follows:

P =
TP + TN

TP + FP + TN + FN
(8)

2. Precision: characterizes the classification effect of the classifier, which is the correct
frequency value predicted in the instance of the positive sample:

T =
TP

TP + FP
(9)

3. Recall: characterizes the recall effect of a particular class. It is the correct frequency
of prediction in the instance of the label as the positive sample:

R =
TP

TP + FN
(10)

4. f1 value: the value used to measure precision and recall. It is the harmonic mean of
these two values:

f1 =
2TP

2TP + FP + FN
(11)

5. A receiver operating characteristic (ROC) curve is a method used to judge the
prediction effect of the model [60]. The prediction accuracy of the model is judged by the
value of the AUC, which ranges from 0.5 to 1. The larger the value, the closer the model’s
fit is.

Note: TP, FN, FP, and TN in the formulas are the labels of the confusion matrix form
of the output result.

3. Results

To evaluate feature factors and model performance issues, the dataset was divided
into two parts by randomly selecting 70% of the pre-processed sample data as the training
set and 30% as the test set [58].
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3.1. Feature Selection

We used the RF algorithm to select the features of all variables after pre-treatment and
select the subset of features that had the most significant impact on the dependent variables
for the next model construction process. We divided the whole sample according to the
above proportion (70% to the training set and 30% to the test set) and repeated this process
five times in order to obtain five training samples [5]. Then, the varSelRF package in the R
language was used to select and calculate the characteristic variables of the five training
samples to obtain the variable subsets of the five intermediate models, and the variables
appearing more than three times in the five variable quantum sets were selected as the
variables after screening. The results are shown in Table 4. All variables and variables
filtered by feature selection were used as input data for RF modeling, and the out-of-pocket
error rate (OOB) and confusion matrix were obtained, as shown in Table 5 below.

Table 4. Results of variable selection based on RF.

No. Variable Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Frequency

1 Lat + + + + + 5
2 Lon + + + + + 5
3 Avst + + + + + 5
4 Mast + + + + 4
5 Pre + + + + 4
6 Arh + + + + + 5
7 Suh + + + + + 5
8 Ate + + + + + 5
9 Mate + + + + + 5
10 Aws 0
11 Mws 0
12 Alt + + + + + 5
13 Slo 0
14 Asp 0
15 Set 0
16 Hig 0
17 GDP + + + + 5
18 Pop + + + + + 5
19 NDVI + + + + + 5
20 Sfe 0

Table 5. The results of the OOB and confusion matrix of the two samples.

Total Variable Sample OOB Estimate of Error Rate 10.89%

Confusion matrix: 0 1 Classification error rate

0 20,224 2716 12.3%

1 2168 20,737 9.5%

Sample of screened variables OOB estimate of error rate 10.65%

Confusion matrix: 0 1 Classification error rate

0 20,038 2810 11.8%

1 2171 20,717 9.5%

It can be seen from Table 4 that the error rate outside the bag after using the whole
variable modeling is 10.89%. In comparison, the error rate outside the bag after using the
screened variable is 10.65%, which is lower than the result of the whole variable. After
feature filtering, the model’s performance is better, and the complexity of the model is
reduced, providing a simpler model. Finally, variables after feature screening were taken
as the main driving factors of forest fires and entered into the subsequent model fitting
processor [22].

The results show that the main influencing variables are longitude, latitude, average
surface temperature, daily maximum surface temperature, accumulated precipitation, aver-
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age relative humidity, sunshine hours, average temperature, daily maximum temperature,
altitude, population, GDP, and NDVI. These variables performed subsequent model fitting.
Then, the mean decrease in accuracy obtained by the RF algorithm was used to evaluate
the importance of the variable. The larger the value is, the greater the importance of the
variable is. Figure 3 shows the importance of each variable in the five random training
samples and the twenty feature subsets in the full sample.
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3.2. Model Fitting Results
3.2.1. Artificial Neural Network

The input layer of the ANN consists of 13 neurons after feature selection: Lat, Lon,
Avst, Mast, Pre, Arh, Suh, Ate, Mate, Alt, GDP, Pop, and NDVI. The output layer contains
two cells (1 or 0). We use the gradient descent method to optimize the algorithm. We
set the number of hidden layer cells between 1 and 50, automatically select the optimal
number of secret layer cells as the final result, and finally obtain the numsecret hidden layer
cells as 5. The comparison between the predictive value and the actual value in the test
dataset is shown in Figure 4. Note: Due to the large sample size, only a part of the sample
comparison chart is displayed. This is also the case for the following comparison charts.

3.2.2. Radial Basis Function Neural Network

The input and output layer variables of the RBF neural network were the same as
those of the ANN. The number of hidden layers and the number of cells contained are the
same as those in the MPNN model, which automatically selects the optimal results. After
training, we obtained a hidden layer containing ten units. The comparison charts of the
predictive and actual values of the test set are shown in Figure 5.

3.2.3. Support-Vector Machine

We used the LIBSVM package of MATLAB to construct the SVM. The model was
created using the RBF kernel function for processing nonlinear data. We used the grid
search method and 10-fold cross-validation to select the parameters and determine the
penalty parameter C and the kernel parameter g. Figure 6 shows a contour map and a 3D
view of the result of the SVC parameter selection. After calculation, the accuracy rate of the
grid search method reached 83.9%, and the accuracy rate of cross-validation reached 82.6%.
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It can be seen from the results that the optimal values of C and g are 1.74 and 3.03,
respectively. After setting the parameters to the optimal values, we performed SVM
modeling and obtained the predicted values. Figure 7 shows the comparison charts of
the actual and predicted values. After optimization, the total number of support vectors
was 19,460, and the number of support vectors at the boundary was 17,260. After model
training, the accuracy rate of the training set was 86.02%, the accuracy rate of the test set
was 84.27%, and the model’s performance was high.
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3.2.4. Random Forest

We used the random forest package in the R language to train the random training
samples. We adjust the ntree (number of DTs) and mtry (the node value of the trees)
parameters. We then used cross-validation to determine the optimal parameters of the
model. Finally, we obtained the number of trees and the accuracy of the test and training
data through cross-validation. As shown in Figure 8, when the number of DTs is 400, and
the node value of the trees is 2, the accuracy tends to be stable. We used the optimal number
of DTs to create comparison charts of the actual and predicted values of the test set (Figure 9)
and the average accuracy decline of 13 forest fire driving factors (Figure 10). Figure 8 shows
that among the main forest fire driving factors in China, the location variables that have
the greatest influence on the occurrence of forest fires are longitude and latitude. Rainfall is
the variable with the slightest influence on the occurrence of forest fires.
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3.3. Accuracy Evaluation

We used the prediction results of the four models to construct a confusion matrix to
obtain the accuracy, precision, recall, f1 value, and AUC value, as shown in Table 6. Figure 9
shows the ROC curves of the four models. As shown in Table 4, each model’s accuracy
and f1 values were more than 75%, and the AUC value was more than 0.80. Thus, the
performance of all four models was high. Among the four models, the RF model had the
highest predictive ability, with an accuracy rate of 89.2%, a f1 value of 89%, and the highest
AUC value, reaching 0.960. Compared with the other three models, the prediction ability of
the RBF neural network was the lowest, with an accuracy rate of 75.8% and an AUC value
of 0.840. As shown in Figure 11, the RF model outperformed the other three models. We
therefore considered the RF model to be the most suitable among the four models for forest
fire prediction in China.

Table 6. Evaluation results of the four models.

Model Accuracy (%) Precision (%) Recall (%) f1 Value (%) AUC

ANN 83.0 85.4 79.6 82.4 0.904
RBFNN 75.8 73.1 81.6 77.1 0.840

SVM 84.3 83.0 86.8 84.8 0.917
RF 89.2 90.2 87.9 89.0 0.960
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3.4. Forest Fire Risk Classification

After evaluating the accuracy of the four models, we used the RF model (highest
accuracy) to obtain the probability of forest fire occurrence for the full sample. We used
ArcGIS to draw a forest fire probability map (Figure 12) and a seasonal forest fire probability
map (Figure 13) for China. The numbers in the legends in Figures 12 and 13 indicate the
predicted value of the probability of forest fires in China. For example, the likelihood of
a forest fire is 1, which means that the probability of a forest fire is the greatest; the number
of red areas is 0.8–1, which indicates that the area is in a high-risk state, and forest fires
are very likely to occur. Figure 12 shows that the high incidence of forest fires in China is
mainly concentrated in the northeast (such as the Greater Xing’an Mountains region), the
southeast (such as Guangdong, Jiangxi, and Fujian), and the southwest (such as Yunnan
and Sichuan). Overall, the probability of forest fires in eastern China is higher than that in
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western regions, and the probability of forest fires in the north and south is higher than that
in Central China. Figure 13 shows that the seasonal order of the probability of forest fires in
China is, from highest to lowest, spring, winter, summer, and autumn. Spring and winter
are the seasons with a high incidence of forest fires, and the fires are mainly concentrated in
Northeast China (such as Heilongjiang Province) and south-eastern China (such as Fujian
Province and Guangdong Province).
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4. Discussion
4.1. Major Forest Fire Driving Factors in China and Their Impacts

In this study, twenty factors influencing the occurrence of forest fires were selected.
These factors could be divided into six categories: geographical location, meteorology,
climate, topography, society, and vegetation. Researchers have studied the influencing
factors of these forest fires [72,73]. The drivers of forest fires were obtained by feature
selection, such as longitude, latitude, mean surface temperature, daily maximum surface
temperature, cumulative precipitation, mean relative humidity, sunshine duration, mean
temperature, daily maximum temperature, elevation, population, GDP, and NDVI. In terms
of the importance of feature subsets, longitude and latitude had the greatest influence on
the occurrence of forest fires. This result is due to the uneven distribution of forest resources
and regional differences in forest resources in China. Generally, in terms of forest resources,
there are more forest areas in the south than in the north, and more forest areas in the east
than in the west, and there are large differences in forest types and forest classes in different
regions. In addition, for example, many eucalyptus trees are planted in south-eastern
provinces, such as Guangdong and Fujian, which are prone to cause fires. The planting of
flammable timber forests, such as eucalyptus (driven by economic interests) has changed
the forest stand structure to some extent and increased the risk of fires. Under the influence
of latitude and longitude factors, the differences in forest species and forest classes in the
vegetation communities of the regions are also considered.

Second, climatic factors have great impacts on forest fires, a result that is consistent
with previous research results [74–77]. Temperature is one of the three necessary conditions
for combustion. When the temperature reaches a certain level, forest fires are more likely to
occur. The longer the duration of daylight, the higher the temperature is and the greater the
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likelihood of forest fires is. Rainfall and average relative humidity are other main factors
affecting forest fires [53,78]; fires are likely to start when both rainfall and average relative
humidity are low. In addition, altitude and vegetation can affect the occurrence of forest
fires. Tian et al. (2013) believed that forest fires mainly occurred in low-altitude areas, fires
are more influenced by human activities at low altitudes [79]. Chuvieco et al. (2004) found
that the higher the NDVI value, the higher the vegetation cover and the more flammable
trees there are, and the more likely they are to cause problems related to forest fires [80].

Forest fires are also driven by social and human factors (e.g., population and GDP).
The larger the population is, the greater the human activity level in the area is, and the
greater the possibility of human-caused forest fires is. Catry et al. (2007) and Sepulveda
(2001) reached the same conclusion [81,82]. We believe that this difference may be due to
the different data selected and the different feature selection methods. In future studies,
multiple feature screening methods and analyses of different regions may be used to obtain
more comprehensive results.

4.2. Optimal Choice of Forest Fire Prediction Model

We entered the forest fire driving factors selected by feature selection into the four models
(ANN, RBFNN, SVM, and RF) for training. We then evaluated them using five criteria:
accuracy, precision, recall rate, f1 value, and AUC value. We selected the RF model as the
optimal choice for forest fire prediction. The accuracies of all four models were above 75%,
which meant that they were all reliable. The results show that the RF model has the best
prediction effect, followed by the SVM model, ANN model, and the RBFNN model has
the worst performance. The RF algorithm can run quickly and with high accuracy on large
datasets with many predictor variables. In addition, RF has high accuracy, can handle
high-dimensional samples without factor screening, handles heterogeneous or missing
data, and has high training and prediction speed, and can effectively eliminate model
overfitting. The ANN and RBFNN models can be trained very quickly, and they can handle
samples with a large amount of data, but their accuracy in this experiment is relatively
low.The SVM model has a high predictive ability, but it also has certain shortcomings. The
higher the model complexity, the lower the calculation speed. It takes a longer time in this
model to obtain the optimal parameters when processing large amounts of sample data.

Samaher et al. (2018) used a cascade correlation network, multilayer perceptron neural
network, polynomial neural network, RBF, and SVM for forest fire prediction [26]. They
found that the prediction performance of the SVM was the highest, and the performance of
RBFNN was the lowest, which was consistent with our conclusion. Sakr et al. (2011) used
an SVM and an ANN to predict fire risk in Lebanon [41]. Their results showed that the
performance of the SVM model was higher than that of the ANN model. This finding was
similar to ours. Bisquert et al. (2012) used an ANN to establish a forest fire hazard model
with the highest accuracy rate of 76%, which was lower than the accuracy of our model
(83%) [83]. Hong (2018) used an SVM algorithm to analyse Dayu County in southwestern
Jiangxi Province, China [84]. The results showed that the AUC value of the SVM was 0.75,
which was lower than the value in our model (0.92). Pourtaghid et al. (2016) used an RF to
conduct forest fire sensitivity analysis with a prediction accuracy of 72.8% [49]. Our model
reached a prediction accuracy of 89.2%.

The four models we selected all exhibited high predictive capabilities. The main reason
for this result may be that appropriate multidimensional variables have been screened out
and the data sample size is large, which makes the training of each model more accurate
and reliable.

4.3. Recommendations for Forest Fire Prevention

We produced a probability map for forest fires in China that showed that the highest
incidences of forest fires were in the northeast (Heilongjiang Province and the northern
Inner Mongolia Autonomous Region), the southeast (Fujian Province, Guangdong Province,
and Jiangxi Province), and Yunnan Province. The pattern of forest fire points presented
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a spatial clustering distribution. Ma et al. obtained similar results [5]. For these high-
incidence areas, watch towers and monitoring equipment should be added for monitoring
and management. Moreover, the length of the forest fire barrier net should be increased
to reduce the spread of fires. In addition, the number of fire brigades and fire vehicles
should be increased to enhance the disaster-mitigation capabilities. Regarding seasonal
forest fire risks, forest fire prevention and control should be emphasized in spring and
winter. Strengthening fire-prevention management during these periods would mainly
involve strengthening the management of human activities to reduce human-made forest
fires and improving publicity and education, such as the addition of fire-prevention signs.
Voice propaganda poles and signs should be set up beside forest areas or roads where
people are active to remind people that it is forbidden to bring fire and flammable and
explosive materials into forest areas. forest patrols during high forest fire times should
be strengthened.

This study has some shortcomings, and there is room for improvement. One of the
three elements of fire is combustible fuel. For the selection of forest fire driving factors,
however, there is currently no way to obtain data on fuel load and other related factors.
Thus, this experiment lacked relevant data such as the combustible load, particle size of
combustible material, and combustible tree species. If possible, in future research, such
data could be added to the forest fire prediction model.This study selected four kinds of
machine learning algorithms for the forest fire prediction model. Other applicable machine
learning algorithms could be used in future experiments. In addition, the ability of these
machine learning algorithms to analyse spatial heterogeneity is relatively weak. Subsequent
research could use geographically weighted regression to build a high-precision forest fire
prediction model.

5. Conclusions

This study determined the main driving factors of forest fire occurrence in China
through feature selection. The main factors affecting forest fires’ occurrence were founded
as were meteorological, topographical, human and vegetation factors. Meanwhile, the
differences in latitude and longitude can have a significant impact on these factors. We
built four forest fire prediction models using the following machine learning algorithms:
ANN, RBFNN, SVM, and RF. The results of the evaluation showed that the accuracy of all
of the models was higher than 75%. Thus, these models can be used to build forest fire
prediction models. Among the four models, the RF model had the highest comprehensive
predictive ability, with an accuracy of 89.25%. It was therefore the optimal choice for
a forest fire prediction model in China. We used the RF model to predict the probabilities
of forest fires in China. Based on these probabilities, we drew a map of the probability of
forest fire occurrence in China and a map of the probability of forest fires in China by season
(spring, summer, autumn, and winter). Finally, based on these maps, we identified the
high-incidence areas and areas at risk of forest fires. We then put forward fire prevention
recommendations for the corresponding regions and seasons. This research helps to
understand the main forest fire driving factors in China and provides a reference for the
selection of high-precision forest fire prediction models. In future research, we will attempt
to integrate geographically weighted regression with RF. This integration was expected to
overcome the need to establish predefined areas to analyze forest fire drivers to address
these limitations.
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