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Abstract: In this paper, Feature Engineering (FE) was applied to Landslide Susceptibility Mapping
(LSM), while the most suitable conditioning feature dataset and analysis method were tested and
analyzed. Tianshui city was taken as the study area, three types of geohazard (collapse, landslide, and
unstable slopes) were used, while a total of twenty-three conditioning features were generated; two
dimensionless methods (normalization and standardization) were tested afterward. Four Random-
Forest-based (RF-based) feature selection methods using different indicators (Gini Impurity, GI; Out
of Bag Accuracy, OOBA) were proposed and tested separately. The LSMs of four models were
carried out under the guidance results of FE, namely Classification and Regression Tree (CART),
Random Forest (RF), Logistic Regression (LR), and Support Vector Machine for Classification (SVC).
For feature enhancement, standardization had significant advantages over normalization. All RF-
based methods were proven effective, lifting the AUC by 0.01~0.02. The RF model achieved the
highest LSM accuracies, respectively, 0.949 (landslide), 0.957, and 0.949 (unstable slopes), improved
by 0.008 (landslide), 0.005 (collapse), and 0.013 (unstable slopes). This proved that the FE helped to
improve LSM and can help to decide the dominant conditioning factors for regional geohazards.

Keywords: landslide; feature engineering; landslide susceptibility mapping; random forest algorithm

1. Introduction

Landslide is a natural phenomenon that includes mass down-slide movements of
rocks, soil, or debris flows under gravity [1], and it has become the most common geohazard
due to city expansion and climate change. Landslides can cause massive casualties and
economic losses. In the last century, landslides caused over 16,000 casualties [2]. From
2004 to 2010, the Durham Fatal Landslide Database (DFLD) recorded 2620 non-seismic
landslides and 32,322 related deaths [3]. China has long suffered from landslides and
correlated hazards [4,5]. Hence, research on landslides and other geohazards is of great
academic and social importance.

Landslide susceptibility represents the likelihood of landslide occurrence under a cer-
tain combination of geo-conditions [6]. In contrast, landslide susceptibility mapping (LSM)
refers to its visualization through techniques such as geographical information science (GIS)
and remote sensing (RS) [7]. LSM is the basis of geohazards prevention and mitigation
and has always been a hot-spot research topic. In the quantitative LSM process, landslides
are assumed to be the coupling results of multiple conditioning factors (also discussed as
conditioning features when using ML models). The most frequently used methods are
formula-based statistical methods and big-data-driven machine learning (ML) methods.
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The statistical methods involve a series of calculations, weighting, assignment, and buffer-
ing that estimate the contribution of each factor to the hazard by the mathematical statistics
and corresponding formulas, after which the relative rank of landslide susceptibility would
be derived [8,9]. Such methods have broad applications in large-scale rough LSM with
acceptable accuracy and interpretability. Statistical methods mainly include the binary
discriminant statistics method [8], the multivariate statistical method [10], the Weighted-
Certainty Factor method (WCF) [11], the Maximum Entropy method (MaxEnt) [12,13], and
the Information Value model (IV) [14,15]. In recent years, with the rapid development
of computer technology, various ML algorithms and deep learning (DL) algorithms have
been adapted to LSM, making the process more automated and intelligent. In ML-based
methods, samples and prior knowledge are used to pre-train the model, and the results are
generated through complex non-linear models [16]. The most popular methods have been
the Logistic Regression model (LR) [17], the Naïve Bayes model (NB) [18], the Decision Tree
model (DT) and its boosting models [19], the Random Forest model (RF) [20,21], Rotation
Forest model (ROF) [22,23], the Support Vector Machine model (SVM) [24,25], the Artificial
Neural Network (ANN) [26], and the Convolutional Neural Network (CNN) [27–29]. Some
researchers compared the differences between ML models [30–34], and some combined
statistical criteria with it to further improve the model performance.

These LSM works focused chiefly on model tests and modification as researchers have
attempted to make the best performance of different models. However, the commonly
used conditioning factors are mainly selected by experience, and whether selection and
combination would affect the model performance has not been fully discussed. The DT
and its related models (such as CART, RF, ROF, and boosting DT) use criteria to calculate
the input factors’ weight in the model constructing process, thus estimating each factor’s
importance in LSM. Youssef et al. [33] compared the RF, boosted regression tree (BRT),
classification and regression tree (CART), and general linear (GLM). The results showed
that for the four models, aspect, altitude, and distance to faults have been of the highest
importance. Hong et al. [35] joined the RF with three bivariate statistical models, namely
Evidential Belief Function (EBF), Frequency Ratio (FR), and Multivariate Logistic Regression
(MLR). The RF was used for feature importance calculation, and the results showed that
distance to rivers, distance to roads, and slope gradient had been the dominant factors of
landslides in the Lianhua area. Pham et al. [36] proposed a Random Subspace (RSS) and
Classification And Regression Trees (CART) hybrid approach. They discovered that the
rainfall, distance to road, and slope gradient had contributed the most to regional landslides.
Chen et al. [37] used Gradient Boosting DT (GBDT), RF, and IV models to perform LSM and
estimate each factor’s importance in the LSM process in the Three Gorges Reservoir region.
The results have shown that elevation was the dominant factor, followed by distance to
rivers, vegetation, slope, etc. Cheng et al. [38] used RF to estimate 36 conditioning factors
through the Gini index. The final LSM model used factors with a Gini value higher than
0.1 They found that the land cover, groundwater volume, and distance to rivers related the
most to geohazards in this region. Zhou et al. [39] proposed two hybrid models by applying
Geo-Detector and the Recursive Feature Elimination method (RFE) to RF to perform feature
optimization and LSM. The results showed that after feature optimization, the AUC arose
for both methods, proving the importance of feature optimization. These studies have
shown that the DT-based models, especially RF, could perform feature selection, which is
the most essential to the feature engineering (FE) process.

FE is a method that involves a series of data processions that transform raw data into
training data that best suit the model [36]. The FE helps to select the optimal solution by
the algorithm and the subset of features that best represent the dataset. This concept has
been applied to many computing engineering fields yet has seldom been mentioned in the
LSM. The FE helps to estimate the most suitable data pre-procession method and the best-
matched conditioning feature dataset, thus making the ML-based LSM more convincing
and explainable. Moreover, it helps to analyze the dominant conditioning factors of certain
kinds of geohazards and compare the in between differences in between. In recent years,
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some researchers have already used FE or feature selection to help analyze the LSM result,
yet they mainly focused on feature importance ranking [21,32,33,35]. Sun et al. [40] used a
simple feature importance ranking method, while Zhou et al. [35] used an iteration method;
both authors retrained the ML model accordingly and concluded that the feature selection
would improve the accuracy. However, whether the iteration method is superior has not
been fully discussed.

The most suitable data pre-procession method and feature selection method type, and
whether eliminating the unimportant features would improve the result, have not been
fully discussed. In detail, there are three aims listed:

(1) Explore the most suitable data-preprocessing principles.
(2) Determine whether using the elected features to retrain the model would improve

the accuracy.
(3) Compare the simple ranking feature selection idea and the iteration feature election idea.

Therefore, this paper presents a relatively comprehensive FE-guided LSM by setting
experiments upon all the steps in the FE to explore the most suitable combination, namely
feature extraction, feature enhancement, and feature selection.

2. Materials and Methods

Tianshui city was selected as the study area. The detailed workflow is shown in
Figure 1. First, 23 conditioning features were generated, and 4 RF-based FE methods were
proposed and tested. The LSM is performed with 4 ML models: the CART, RF, SVC (SVM
for classification), and LR. The results were evaluated through the Receiver Operating
Characteristic curve (ROC curve) and the Area Under Curve (AUC).
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2.1. Geological Conditions of the Study Area

Tianshui city, situated in the Gansu Province of western China, was selected as the
study area. It is one of the prefecture-level cities within the Gansu province; both urbaniza-
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tion and city expansion have been growing rapidly in recent years. Hence, the studies of
local geohazards are important for economic development and urban safety.

The study area covered 16.4 km2 in total, 104◦35′1′′~106◦42′24′′E (longitude), 34◦4′57′′~
35◦10′18′′N (latitude). Located at the eastern end of the Qilian orogenic belt, the transition
zone between the Guanzhong Plain and the Loess Plateau, the terrain is high in the west and
relatively low in the east [41], ranging from 736~3118 m. Fractures are distributed widely,
among which the most typical ones are the West Qinling North Rim Fault [42], the Tongwei
Fault, and the Qingshui Fault. As a result, tectonic activities take place frequently. Tianshui
city belongs to the semi-humid and semi-arid continental monsoon climate zone [41], and
the precipitation is strongly affected by seasons and terrain, ranging from 500 to 600 mm.
The annual temperature is from roughly 8 to 19 ◦C. The Wei River, the largest tributary
of the Great Yellow River, traverses the entire study area from west to east. The basin has
been covered with Quaternary deposits with loess covering 10 to 30 m at the top of the
strata, which is unstable [42]. Lithology is gneiss (Proterozoic), rocks (Triassic sedimentary
and metamorphic), and sandstone (Devonian and Cretaceous) [42].

2.2. Landslide Inventories

Where geohazards have occurred tend to have more significant potential to breed new
ones; hence, landslide inventories are required in LSM [1]. This study acquired the landslide
inventory by the geological field survey of hazards [42]. It contained 968 landslides,
183 collapses, and 243 unstable slopes. All the spatial attributes of the records were
verified manually. The accurate occurrence times were not logged due to the delayed
field investigations and historical hazard records that took place decades ago. In Tianshui
city, the most frequently occurring geohazards can be divided into three types: landslide,
collapse, and unstable slope. The landslides often move along the horizontal direction,
while collapses move along the tangential direction at a much higher speed. An unstable
slope refers to a slope that is prone to sliding. It may not have slid or collapsed but obtains
a high possibility of forming into a landslide or collapse.

Geological investigation results show that mudstone bedrock and overlying loess strata
have been strongly affected by historical earthquakes in the study area, causing densely
distributed geohazards [42]. Landslides aggregately distribute in river erosion zones and
valleys. The overlying lithology grouping is mostly very soft, while the depositions are
mainly loess, clayey, and debris, indicating that the landslides are typical mounded (earthy).
Collapses mainly distribute along faults and are mostly caused by earthen slope slumps,
metamorphic rock avalanches, and collapses.

The inventory contained 2027 records in total. Since the 0~10◦ slope covered area
is considered gentle, the records were more likely to be deposits or misclassified loess;
thus, this part of records was eliminated. Afterward, the remaining were 968 landslides,
183 collapses, and 243 unstable slopes. The detailed distributions are shown in Figure 2.

Table 1 shows the raw data resources of the conditioning feature extraction, while
the detailed description is in Section 2.3.1. The geodetic reference system is unified to
the WGS84 coordinate system using a Universal Transverse Mercator (UTM) projection
48 N band. Meanwhile, the spatial resolution is unified to 30 m. The raw data have a
spatial resolution of 0.05 degrees for groundwater volume and precipitation. A 5-year
mean value of each feature was calculated to reduce the impact of resampling errors.
The platforms pre-processed the data obtained with Google Earth Engine, and codes
completed the calculation.
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Table 1. Raw data resources for feature extractions and geohazard inventories, the obtaining resources
(platforms or websites) are listed as well.

Data Raw Data Resource Obtaining Resources

DEM ASTER GEM (30 m)
Geospatial Data Cloud

(http://www.gscloud.cn/, accessed on 28
October 2020)

Vegetation Landsat 8-OLT images
(2012~2017) Google Earth Engine

(https://explorer.earthengine.google.com/)
Building

Precipitation
CHIRPS (Climate Hazards Group InfraRed

Precipitation with Station data) data
(2012~2017)

Groundwater volume GRACE (Gravity Recovery and Climate
Experiment) data (2012~2017)

Roads, rivers, faults, and boundary Geographical vectors Geological surveys
Geological map Digital geological map

(1:250,000, public ver.)

Land cover Global 30 m land cover classification products
by the Chinese Academy of Sciences (2020)

http://data.casearth.cn/, accessed on 12
January 2021

Landslide inventories Ground survey sheet Geological field surveys

2.3. Feature Engineering

The FE process has 4 parts: feature extraction, feature enhancement, feature selection,
and evaluation. As feature extraction and feature enhancement should be completed
before model training, the two processes could be joined and described as feature pre-
processing. The evaluation was merged into the LSM validation process and will not be
discussed separately.

2.3.1. Feature Extraction

In quantitative analysis, LSM is a coupling result of multi-variables (conditioning
features). However, the features used for LSM vary from region, study area scale, geo-
hazard type, and evaluation model [39,43]. To generate a comprehensive analysis, the
selected features should cover all formation aspects (topography, lithology, hydrogeology,
vegetation, anthropogenic activity, and land cover). Finally, a total of 23 features were
constructed. Except for lithology, aspect, distance to faults, distance to rivers, distance to

http://www.gscloud.cn/
https://explorer.earthengine.google.com/
http://data.casearth.cn/
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roads, and land cover, other features have not been classified and reassigned, the values of
which are continuous. Table 2 is an aggregation of the classified features’ properties.

Table 2. The properties of features that have been classified.

Feature Name Types Classification Standard

Lithology 15 1. 1-I; 2. 1-II; 3. 1-III; 4. 2-I; 5. 2-II; 6. 2-III; 7. 3-I; 8. 3-II;
9. 3-III; 10. 4-I; 11. 4-II; 12. 4-III; 13. 5-I; 14. 5-II; 15. 5-III.

Aspect 9 1. 0~22.5 and 337.5~360◦; 2. 22.5~67.5◦; 3. 67.5~112.5◦;
4. 112.5~157.5◦; 5. 157.5~202.5◦; 6. 202.5~ 247.5◦.

Distance to faults 11
1. <2 km; 2. 2~4; 3. 4~6; 4. 6~8; 5. 8~10;
6. 10~12; 7. 12~14; 8. 14~16; 9. 16~18;

10. 18~20; 11. >20 km.

Distance to rivers 11
1. <0.2; 2. 0.2~0.4; 3. 0.4~0.6; 4. 0.6~0.8;
5. 0.8~1; 6. 1~1.2; 7. 1.2~1.4; 8. 1.4~1.6;

9. 1.6~1.8; 10. 1.8~2; 11. >2 km.

Distance to roads 11
1. <0.2; 2. 0.2~0.4; 3. 0.4~0.6; 4. 0.6~0.8;
5. 0.8~1; 6. 1~1.2; 7. 1.2~1.4; 8. 1.4~1.6;

9. 1.6~1.8 km.

Landcover 8 1. farmland; 2. forest land; 3. grassland; 4. shrubs;
5. wetlands.

Based on the previous work of authors [44], we have discovered that the factor clas-
sification principles have no specific impact on model training or accuracies, only the
distinctness in the LSM maps. This paper adopted the equal-interval classification method
by considering the geographical significance of distance decay. Each class in the reassigned
results of distances to faults, rivers, and roads represents a natural range. Within each
interval, the geological influence can be equally seen. The total distances to faults, roads,
and rivers were determined after a comprehensive analysis of the study area scale and its
natural impacts. As the influence declined with the distance, the contribution to LSM out
of the maximum distance could be neglected. Therefore, they were all reassigned to “11”.

1. Lithology feature:

Different lithology types would lead to differences in slope stability and chemical
properties. The study area is located at the eastern end of the Qilian orogenic belt. The
lithology mainly consists of Precambrian metamorphic rocks with a small amount of
magmatic rock [42]. Since the lithology feature in the study was mixed and complex, this
paper grouped it referring to hardness and reassigned values of 1~15. The approximate
lithology types included under each grouping are shown in Table 3.

2. Topographic features:

This paper selected elevation, slope, aspect, curvature, plan curvature, profile curva-
ture, Topographical Roughness Index (TRI), Topographical Wetness Index (TWI), distance
to faults, fault density, and cumulative solar radiation as topographic features.

Features such as elevation, slope gradient, aspect, and cumulative solar radiation
contribute to landslides indirectly, as they influence the catchment area and vegetation
coverage, thus affecting landslide susceptibility. Areas with a higher slope gradient tend to
be more unstable, as the gravitational potential energy gradually transforms into kinetic
energy along with the increasing slope gradient [33]. Curvature (the second-order deriva-
tive of slope gradient), profile curvature (the curvature in the maximum slope direction),
plan curvature (the curvature perpendicular to the maximum slope direction) [19] were all
calculated. The Topographic Wetness Index (TWI) and the Topographical Roughness Index
(TRI) are micro-geomorphic indices. TWI is a quantitative simulation of soil’s dry and wet
conditions in a watershed, while TRI describes regional topographic changes [45].
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Table 3. Detailed lithology types in the study area. The lithology types are divided into 5 primary
categories labeled 1 to 5. Category 1 is marked as the Very Hard (VH) rock group while category 5 is
the Very Soft (VS) rock group, each group is further divided with 3 sub-categories labeled I–III with
the same sorting standard.

Primary Category Secondary Category Representative Lithology Types Strata

1

I Diorite and granite Hercynian, Caledonian, Himalayan,
Upper Paleozoic, Mesozoic

II Acidic volcanic rocks, quartzite,
dacite, phyllite

Caledonian, Sinian,
Lower Paleozoic

III Quartz sandstone,
pebbled sandstone, siltstone Devonian, Permian

2

I Schist, gneiss,
mixed rock with volcanic rock

Caledonian, Pre-Sinian,
Upper Paleozoic

II Pegmatite, syenite, volcanic metamorphic rock, purple
and purple-red rhyolite porphyry

Hercynian, Caledonian,
Himalayan, Sinian

III Limestone, gray-green slate Permian, Upper Paleozoic

3

I Argillaceous purple-red siltstone, mudstone, sandy
shale, gray-green SLATE shale, pebbly sandstone

Devonian, Cenozoic,
Upper Paleozoic

II Conglomerate, glutenite, siltstone,
sandy mudstone

Cretaceous, Tertiary,
Triassic, Permian

III
Biotite calcarenite schist, bimica schist,

hornblende schist,
chlorite Muscovite schist

Lower Paleozoic

4

I Melaleite, metamorphosed siltstone, metamorphosed
fine sandstone

Sinian, Devonian,
Permian, Carboniferous

II Shale, siltstone, sandstone, sandy limestone, shell
limestone, oolitic limestone

Cretaceous, Permian,
Triassic, Upper Paleozoic

III
Conglomerate, sandy conglomerate, clay rock with
calcareous nodules, purplish-red sandy mudstone

with sandstone
Tertiary, Triassic

5

I
Red, purplish-red clay with gray matter nodules, red

sandstone,
conglomerate, conglomerate

Tertiary

II Alluvial secondary loess,
silty loess, gravel Quaternary

III
Riverbed alluvial gravel, sand, silt, boulders,

sub-sandy soil,
secondary alluvial loess and loam

Quaternary, modern

TWI can be calculated according to Equation (1),

TWI = ln
(

As

tanβ

)
(1)

where As refers to the catchment area that can be calculated by flow accumulation, and β

refers to slope gradient.
TRI can be calculated according to Equation (2),

TRI = Hmax − Hmin (2)

where H refers to the altitude of the calculation unit, and Hmax is the highest in the region,
while Hmin is the lowest.

These above features were generated using DEM with continuous values, except
for the aspect feature, which was divided into 9 directions and was further reassigned
accordingly to 1~9 [27] at 45◦ intervals. Table 2 shows the detailed sorting results.

Distance to faults and fault density factor reflect the influence of tectonic fractures,
which reduce the strength of the rock mass, causing geological activities. These two features
were generated by the faults vector. For distance to fault, a total of 10 ring buffers were
generated at an interval of 2 km; for the fault density, the analysis radius was set to 5 km.
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3. Vegetation feature:

In this paper, the Normalized Differences Vegetation Index (NDVI) is used as a
vegetation feature [32]. Landsat 8-OLT images are applied to calculate a 5-year mean NDVI
value (2012~2017), the calculation is shown in Equation (3):

NDVI =
BandNIR − BandRed
BandNIR + BandRed

(3)

for Landsat 8-OLT images, the BandRed is the 4th band, while the BandNIR is the 5th band.

4. Hydrologic features:

The erosive force directly affects the slope foot and the river incision, while precip-
itation and groundwater jointly affect the infiltration, thereby affecting the stability of
the slope. Precipitation and groundwater can reduce the shear strength and change the
lithology composition through chemical interaction [46]. In this paper, the selected hydro-
logic features were precipitation [47], groundwater volume, Normalized Difference Water
Index (NDWI), Normalized Difference Water Index (MNDWI), distance to rivers [32], and
river density.

Five-year mean (2012~2017) precipitation and groundwater volume features were
generated. Both NDWI and MNDWI [48] can be representative of waterbody distribu-
tion. To test whether either feature would contribute more to landslides, both features
at the 5-year mean (2012~2017) value were generated. The calculations are shown in
Equations (4) and (5)

NDWI =
BandGreen − BandNIR
BandGreen + BandNIR

(4)

MNDWI =
BandGreen − BandSWIR1

BandGreen + BandSWIR1
(5)

For Landsat 8-OLT images, the BandGreen is the 3rd band, the BandNIR is the 5th band,
while the BandSWIR1 is the 6th band.

Rivers have an important influence on landslides, especially seismic-induced geo-
logical hazard development [49]. In this study, distance to rivers and river density were
generated to estimate the influence upon landslide of rivers. Considering that evapotran-
spiration would cause a decrease in the influence of rivers, for distance to rivers, a total of
10 ring buffers were generated at an interval of 200 m; for the river density, the analysis
radius was set to 0.5 km.

5. Anthropogenic activity and land cover features:

Anthropogenic activities (unreasonable artificial slope cutting, soil and water damage
due to road construction, mining deposits, water storage, and drainage purposes [1,22])
lead to a decrease in slope stability. This study used land cover, distance to roads, road
density, and Normalized Difference Building Index (NDBI) [22,40,46].

The land cover feature used in this paper is the global 30 m land cover classification
products that were released in 2020, provided by the Institute of Air and Space Information
Innovation, Chinese Academy of Sciences (http://data.casearth.cn/, accessed on 12 January
2021). For distance to roads, a total of 10 ring buffers were generated at an interval of 200 m;
for the road density, the analysis radius was set to 0.1 km.

The NDBI is applied as a quantitative estimator of buildings in the study area. This
paper calculated the mean NDBI of 2012~2017, while the calculation formula is shown
in Equation (6).

NDBI =
BandSWIR2 − BandNIR
BandSWIR2 + BandNIR

(6)

For Landsat 8-OLT images, the BandNIR is the 5th band, while the BandSWIR2 is the
7th band.

http://data.casearth.cn/
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2.3.2. Feature Enhancement

The commonly used feature enhancement methodology is dimensionless, i.e., data
with different ranges or distributions converted into a uniform format. Linear methods
are commonly used, such as valorization, centralization, normalization (Min–Max scaling),
standardization (Z-score scaling), weighting, log function conversion [4], and inverse
tangent function conversion. For ML, normalization and standardization are the most used
methods. In this study, both methods were tested.

1. Normalization (Min–Max scaling):

The normalization [39,40] (Min–Max scaling) is the extreme difference scaling. The
process is to scale the data between [0, 1], with the formula shown as Equation (7). For each
column, xmin is the minimum value in the dataset, while xmax is the maximum.

x∗ =
x− xmin

xmax − xmin
(7)

2. Standardization:

Data standardization refers to scaling the data distribution to a normal distribution
with 0 as the mean and 1 as the standard deviation (i.e., the standard normal). The formula
is shown in Equation (8). For each column, µ is the mean value of the data, while σ is the
standard deviation.

x∗ =
x− µ

σ
(8)

2.3.3. Feature Selection

Generally, the feature selection methods can be sorted into filter, wrapper, and embed-
ded methods. The filter methods use statistical metric calculation results (such as variance,
correlation coefficient, chi-square index, maximum information, etc.) by setting a threshold
to eliminate features with lower importance and more noise [50–53]. While the wrapper
methods are also known as recursive elimination feature selection methods, in each round,
features that do not meet the evaluation threshold are eliminated, and the remaining fea-
tures are used as input for the next round of training [54,55]. With the development of ML
models, the embedded methods have been popular. Methods are usually algorithmically
built in, such as the feature importance ranking for DT-based models and penalty term
ranking for LR models.

This study selected the RF, the integrated algorithm of the DT, as the basis of the
feature selection method. By combining 2 indictors, a total of 4 feature selection methods
were built.

1. Random Forest algorithm:

The RF is a typical bagging ensemble ML algorithm [56]. An RF is constructed
using several decision trees, and each tree obtains its classification result using individual
classification. The modeling operates in parallel while the output of the whole forest is
obtained by voting on all judgment results. Figure 3 shows the workflow of the RF-based
classification algorithm using random bootstrap sample selection.

The basic process of RF-based classification is as follows:

(1) Construct the original training sample dataset for DTs, the number of cases is N while
the number of input variables is M.

(2) Generate sub-training datasets by sampling with the replacement bootstrap method
for n times, meaning that the generated RF has n trees in total.

(3) To select the features for each non-leaf node (internal node), the model first randomly
selects a certain number of features from all features and uses them as split features
and then selects the best-performing one for node splits.

(4) The classifier output is determined by a majority vote of by each tree in the RF.
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Gini Impurity (GI) and Entropy are both commonly used in the RF algorithm. After
repeated training processes, the model scores and accuracies using GI were always higher
than using Entropy; therefore, this paper adopted GI as the indicator. The calculation is
shown in Equation (9), where IGini( f ) represent the GI of each feature f , m is the total
number of samples, and fi is the probability each sample’s occurrence.

IGini( f ) = 1−
m

∑
i=1

fi
2 (9)

GI should be at a maximum when a node is equally divided among all classes, which
means that the split uses the least helpful information. The split is kept until the terminal
nodes have a few cases or are all pure. Therefore, the RF forms according to Equation (10),
and the multiple independent DT classifiers can be written as {h(X, θk), n = 1, 2, . . . N}.

H(x) = argmax
z

N

∑
i=1

hi(x) (10)

where N represents the number of DTs, and hi(x) is the classifier result of DTi.

2. Feature selection methods:

While the RF is applied as the base feature selection model, this paper constructed
the filter-embedded method and the wrapper-embedded method accordingly. RF uses
2 indicators to measure feature importance: GI and Out of Bag Accuracy (OOBA). The
method using GI is sorted as the Mean Decrease Impurity method (MDI), while the method
using OOBA is the Mean Decrease Accuracy (MDA) method. By combining the MDI and
MDA with filter and wrapper thoughts, a total of 4 methods were proposed: filter-MDI,
filter-MDA, wrapper-MDI, and wrapper-MDA.

In the RF training process, after n sampling rounds, a subset of n samples equal in size
to the original training set is obtained, and the possibility p of each sample being selected
is calculated after Equation (11). Since the sampling process is put back, while n is large
enough, p would converge to 1−

(
1
e

)
. Therefore, approximately 37% of the training data

would never be involved in the modeling; these data are called the Out of Bag Data (OOB),
and OOBA can also be used as an evaluating criterion for model accuracy [57].

p = 1−
(

1− 1
n

)n
(11)
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In both the MDI and MDA processes, an RF model is first built, and the criterion is
calculated accordingly. For MDI, the features are ranked referring to GI, while for MDA,
the features are ranked referring to the change of OOBA. By replacing each feature with
noise data and calculating the variance, the change of OOBA is measured. More significant
variance indicates the higher feature importance.

For the filter-MDI, the feature selection is performed by setting a threshold of feature
remanence. It took only one round of training with the lowest time complexity. The
threshold is set at 17, which refers to 70% of total features, equally in both filter-MDI
and filter-MDA. The wrapper-MDI recursively performed the feature selection. In each
round, the RF model is re-trained, the feature of the lowest GI is eliminated, and the
remaining features forms into new subsets for model training. To determine how many
features remained that would make out the highest LSM accuracy, we drew an AUC-
changing curve that ranked the relative feature importance by the order in which features
are eliminated. The same is the wrapper-MDA, while the metrics switched from GI to
OOBA. The wrapper-MDA had the highest time complexity for its two-tier iteration.

2.4. Landslide Susceptibility Modeling

To explore the FE’s effect on different ML models except for RF, another 3 ML models
were used, namely LR, SVC (SVM for classification), and CART. Python 3.7 was used for
modeling; all ML models (including RF) were built according to the scikit-learn module.
These models are all the most-used models in binary classification. The CART is compared
to the integrated method (the RF), while the LR and SVM are selected to compare whether
the tree-based model or functional model performs better in LSM.

2.4.1. Logistic Regression Model

The LR is a generalized linear regression analysis model commonly used for dichoto-
mous classification. This method has the advantages of simplicity, parallelizability, and
strong interpretability [31,58,59]. This paper chose the “L2” penalty to avoid overfit. “C”
(the hyperparameter controlling regularization degree) was set as 0.04. The “lib linear”
solver was set accordingly. As the LSM was a binary classification process, the “multi_class”
was set as “ovr”.

2.4.2. Classification and Regression Tree Model

The CART model is one typical model using DT as the base estimator. It is a non-
parametric supervised ML method that generates tree-formed decision rules to complete
the tasks. It consists of a Root Node, a series of Internal Nodes, and Leaf Nodes; each
Internal Node represents an attribute judgment, each branch represents a judgment re-
sult output, and each Leaf Node represents a classification result [32,36]. In the CART
modeling procession, the hyperparameters were set as 15 (max_depth), “gini” (criterion),
30 (min_samples_leaf), and 15 (min_sample_split).

2.4.3. Support Vector Machine (for Classification)

The SVC model is a supervised generalized classifier for binary classification. It
is a nonlinear learning algorithm developed from pairwise theory using certain kernel
functions to calculate a margin hyperplane that can maximize the heterogeneity between
samples [24,59]. In the SVC modeling procession, “rbf”, representing the Gauss kernel
function, was selected. The Gamma hyperparameter was set as 0.07.

2.5. Validation

In binary classification processes, samples can be divided into positive or negative sam-
ples [6,60]. The results are sorted into 4: positive samples that are predicted to be positive
(true positive, TP); negative samples that re-predicted to be positive (false positive, FP);
negative samples that are predicted to be negative (true negative, TN); positive samples
that are predicted to be negative (false negative, FN). The ROC curve is drawn with the



Remote Sens. 2022, 14, 5658 12 of 27

True Positive Rate (TPR) on the Y-axis and the False Positive Rate (FPR) on the X-axis. The
closer the curve is to the upper left corner, the more accurate the model is. TPR and FPR
can be calculated according to Equations (12) and (13).

TPR =
TP
P

=
TP

TP + FN
(12)

FPR =
FP
P

=
FP

FP + TN
(13)

where P is the number of positive samples in the original dataset,FN can be calculated by
P− TP, while TN can be calculated by P− FN.

The AUC refers to the area under the ROC curve, with a range of [0.5, 1]. This paper
evaluated the FE by comparing the AUC of LSM before and after the FE process. The ROC
curve was plotted using python, while the AUC was also calculated.

3. Results

In this section, the detailed experimental procedure and the corresponding results are
presented in the order of sampling construction, FE and LSM. As there are three types of
geohazards in the study area, the experiments and results were constructed separately.

3.1. Sampling Dataset Preparations and Feature Extraction

As the quantitative LSM can be regarded as a binary classification process, landslide
inventories were used to construct the sampling dataset, which contained positive sam-
ples (landslide points) and negative samples (non-landslide points). In this study, three
geohazard sampling datasets were built separately. Considering the scale of Tianshui city,
the landslide inventories are relatively small. Thus, it is necessary to enhance the sampling
dataset size to avoid overfitting. The differences between positive and negative sample
numbers should not be too large, while the total should not be too small. For negative
samples, the spatial distribution should be homogeneous. After a comprehensive analysis,
the ratio of positive and negative samples was set to 1:3 (landslide sampling dataset),
1:4 (collapse sampling dataset), and 1:4 (unstable slope sampling set). The sample number
within each dataset is shown in Table 4.

Table 4. Sample number within each sampling dataset.

Geohazards Positive Samples Negative Samples Total

Landslide 968 2958 3926
Collapse 183 732 915

Unstable slope 243 972 1215

While Figure 4 shows the points’ distribution of each dataset, to ensure the sample
purity and thus improve the separability, the negative sample points were separated from
the positive sample points in spatial location by at least 2 km.

Figure 5 shows the graphics for all feature layers after the pre-procession.

3.2. Results and Comparison of Feature Enhancement Methods

This paper compared the model score and AUC under different ML methods to
decide whether the Min–Max scaling or the Z-score scaling is superior. The results are
shown in Table 5.

Comparing the data in Table 5, it is evident that in most cases, the standardization-
processed results are better than normalization-processed ones, the maximum improvement
in model score was 12.54, while the maximum improvement in AUC is 0.095. Moreover,
the improvement was more obvious for models with higher data requirements, such as
SVC and LR. Thus, the following feature selection and LSM results were all based on data
that used the standardization method.



Remote Sens. 2022, 14, 5658 13 of 27

3.3. Results and Comparison of Feature Selection Methods

Four feature selection methods were separately performed, referring to Section 2.3.3.
The multicollinearity test was first performed using the SPSS platform (ver. 2021). The
multi-correlation between features is also an indicator of FE’s effectiveness, for features
with a high correlation may cause model instability. We compared the numbers of features
with multi-correlation before and after the FE to add extra validation to the experiment. In
multicollinearity analysis, the Variance Inflation Factor (VIF) has been a standard evaluation
index. The pre-multicollinearity analysis suggested that high correlations existed among the
condition factor dataset, with a high VIF up to over 2000; multi-correlations are specifically
high among NDVI, NDWI, and MNDWI; as well as curvature, plane curvature, and profile
curvature features.

The ratio of the training dataset to the testing dataset was set to 7:3. To control the vari-
ables, the other hyperparameters of RF were set to the same value, namely 600 (n_estimators),
“gini” (criterion), 80 (random_state), and 20 (max_depth). Since the sample set in this study
was small, the results converged under this parameter combination.
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For filter methods, the elimination threshold should first be settled. Commonly
used methods are setting fixed thresholds, while for RF-based FE methods, the threshold
could also be settled by drawing a learning curve of hyperparameters (max_features).
However, the RF model had certain randomness that led to max_feature values varied
from datasets, causing low stability in threshold selection based on the learning curve;
thus, this paper adopted a fixed threshold instead. In most of the LSM processions, the
number of factors ranges from 2 to 22, with an average of 9 [43]. This paper calculated
the GI differences according to the feature ranking result as Equation (14) to decide the
most suitable threshold that would bring the most minor information loss and the most
representative of the feature dataset.
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DGI = GIk − GIk−1(k = 1, 2, 3, . . . , n) (14)

where GIk is the related GI of feature k, and Figure 6 shows the result.

Table 5. Results of model scores and AUCs using normalization and standardization as feature
enhancement method; standardization made for a better performance in model scores in all cases
except for CART.

Geohazards ML Model
Normalization Standardization Range

Model Score AUC Model Score AUC Model Score AUC

Landslide

CART 79.17 0.827 81.24 0.845 2.07 0.018
RF 85.97 0.927 87.52 0.932 1.55 0.005
LR 76.08 0.794 78.31 0.826 2.24 0.032

SVC 74.1 0.818 83.13 0.878 9.04 0.06

Collapse

CART 86.91 0.858 84.36 0.917 −2.55 0.059
RF 89.82 0.946 91.27 0.97 1.45 0.025
LR 78.91 0.816 84.36 0.911 5.45 0.095

SVC 78.91 0.868 87.27 0.929 8.36 0.061

Unstable slope

CART 81.48 0.805 84.05 0.848 2.56 0.042
RF 85.75 0.919 92.31 0.938 6.55 0.019
LR 76.35 0.845 84.33 0.881 7.98 0.036

SVC 75.5 0.862 88.03 0.886 12.54 0.023
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After repeated experiments, the last peak always appeared in the range of 16~20 (feature
numbers), indicating that when the remaining features are appropriately 70% (i.e., 17 features) re-
maining, the GI is relatively low and will not vary dramatically. Therefore, 70% (i.e., 17 features)
was finally selected as the threshold.

3.3.1. Results of Filter-MDI

In the filter-MDI procession, the Gini impurity value for each feature was output
through the interface feature_importance. Figure 7 shows the ranking results.

The changes in model score and AUC are shown in Table 6. Improvements can be
observed after the feature selection, where the most significant improvement appears in
the collapse dataset, up to 1.45 of model score and 0.018 of AUC.
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Table 6. Changes in model score and AUC after using filter-MDI feature selection method.

Geohazards
Before Feature Selection Before Feature Selection Range

Model Score AUC Model Score AUC Model Score AUC

Landslide 87.09 0.929 87.87 0.942 0.77 0.013
Collapse 88.36 0.951 89.82 0.969 1.45 0.018

Unstable slope 91.17 0.939 91.74 0.944 0.57 0.006

3.3.2. Results of Filter-MDA

For the filter-MDA procession, as the OOBA change is a relative value, its ranking
indicated the relative feature importance as well. The results are shown in Figure 8. Ranking
differed from the results processed by filter-MDA, such as NDBI, slope direction, lithology,
site type, geologic lithology, distance to rivers, distance to faults, and NDVI. However, the
features with the highest importance are still slope, elevation, and precipitation.
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The changes in model score and AUC are shown in Table 7. The most significant
improvement of model score appeared in the collapse dataset, up to 1.17, while the AUC
improvements were even.
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Table 7. Changes in model score and AUC after using filter-MDA feature selection method.

Geohazards
Before Feature Selection Before Feature Selection Range

Model Score AUC Model Score AUC Model Score AUC

Landslide 86.64 0.936 87.69 0.948 1.05 0.012
Collapse 89.38 0.955 90.55 0.965 1.17 0.011

Unstable slope 89.01 0.935 89.17 0.947 0.16 0.012

3.3.3. Results of Wrapper-MDI

In the wrapper-MDI procession, the feature importance is ranked in the order of
iterated elimination. By continuously eliminating features, the model was rebuilt, and AUC
also changed. The number of remaining features corresponding with the highest AUC
determined the feature selection threshold. Figure 9 shows the detailed AUC changing
curve during the procession.
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different numbers of remaining features in the dataset while the model obtained the highest AUCs.
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To be noted, the optimal number of features is not a fixed value but varies with the
dataset division. In the wrapper-MDI feature selection procession, the impurity is only a
rejection indicator and would not be shown in the final ranking. The feature importance
results are shown in Table 8.

Table 8. Relative ranking results of feature importance using the wrapper-MDI feature selection method.

Geohazards Landslide Collapse Unstable Slope

Ranking

Precipitation Precipitation Precipitation
Slope Slope Elevation

Elevation Elevation Slope
NDVI Groundwater volume Groundwater volume

MNDWI Distance to faults Lithology
Ground water volume Lithology NDVI

Distance to roads Cumulative solar radiation Distance to faults
Lithology Distance to roads Cumulative solar radiation

Cumulative solar radiation NDVI MNDWI
Land cover MNDWI Road density

NDBI NDBI NDBI
Plan curvature Plan curvature NDWI

NDWI Profile curvature Profile curvature
Profile curvature Road density TRI

TRI TRI Plan curvature
Distance to faults NDWI Land cover

Road density Land cover Distance to roads
Curvature Curvature River density

River density River density Curvature
TWI TWI Aspect

Fault density Aspect Distance to rivers
Distance to rivers Distance to rivers TWI

Aspect Fault density Fault density
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The changes in AUC are shown in Table 9. To be noted, due to frequent iterations,
the results represent the improvement after feature selection; the highest AUC may not
correspond to the best model performance.

Table 9. Changes in AUC after using the filter-MDA feature selection method. As the models were
rebuilt in every iteration, the model scores are not logged.

Geohazards Before Feature Selection After Feature Selection Range

Landslide 0.926 0.943 0.017
Collapse 0.958 0.975 0.016

Unstable slope 0.939 0.952 0.013

3.3.4. Results of Wrapper-MDA

Figure 10 shows the detailed AUC changing curve during the wrapper-MDA procession.
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The ranking results are shown in Table 10.

Table 10. Relative ranking results of feature importance using the wrapper-MDA feature selection method.

Geohazards Landslide Collapse Unstable Slope

Ranking

NDBI TWI NDWI
River density Rainfall Lithology

NDVI Aspect Distance to roads
NDWI NDWI NDVI

Distance to faults Slope TRI
Rainfall Distance to roads Distance to faults

Slope Curvature Rainfall
Plan curvature Elevation NDBI

Ground water volume Distance to faults Plan curvature
Elevation Lithology Cumulative solar radiation

Land cover NDBI Ground water volume
Aspect Profile curvature Elevation

Road density Cumulative solar radiation Land cover
Distance to roads Fault density Slope
Distance to rivers NDVI Profile curvature

Curvature Distance to rivers Aspect
Profile curvature Land cover Fault density

TWI MNDWI Road density
Lithology TRI Distance to rivers
MNDWI Ground water volume TWI

TRI River density River density
Cumulative solar radiation Road density MNDWI

Fault density Plan curvature Curvature

Table 11 shows the changes in AUC. Compared with the filter-indicator methods, the
two wrapper-indicator methods achieved higher AUCs, and the wrapper-MDA performed
better than the wrapper-MDI.
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Table 11. Changes in AUC after using the filter-MDA feature selection method. The highest improve-
ment appeared in the Collapse and Unstable slope datasets, up to 0.022.

Geohazards Before Feature Selection After Feature Selection Range

Landslide 0.932 0.943 0.011
Collapse 0.948 0.970 0.022

Unstable slope 0.938 0.960 0.022

3.4. Landslide Susceptibility Mapping

By comparing the repeated experimental process and the results, this study finally
chose to retain 70% of the total number of features (i.e., 16). Seven features were eliminated
from each dataset. While deciding which feature to be eliminated, ones that ranked in the
bottom 40% under all four feature selection methods were first chosen. If the total did not
account for seven, then features ranked in the bottom 40% under three feature selection
methods were chosen. Table 12 shows the eliminated features for each dataset.

Table 12. Eliminated features in each dataset for final LSM, this table is in the order of feature
importance. Features at the top are ones that were eliminated first.

Geohazards Landslide Collapse Unstable Slope

Eliminated features

Fault density River density River density
TWI Aspect Curvature

Road density Land cover TWI
River density Distance to rivers Fault density

Curvature Fault density Distance to rivers
MNDWI Curvature Aspect
Aspect MNDWI MNDWI

In Section 3.3, this paper discussed the discovery of high multi-correlation, while the
VIF decreased significantly after the FE. The VIFs among the remaining features ranged
from 1 to 7. When the VIF value is less than 10, the multi-correlation among features is low
and acceptable, indicating that the FE has reduced data redundancy.

The remaining features were used to model the prediction. The LSMs were completed
by outputting the probability of “predicted landslide hazard”. Four ML models (CART,
RF, LR, and SVC) were prepared and used. This paper sliced the prediction dataset in the
order of county administrative boundaries. The results were divided into five classes: very
low, low, medium, high, and very high, with an interval of 0.2. The ranking represented
the susceptibility of geohazards. Figure 11 shows the LSM results.

To validate the results, this paper adopted the ROC curves and AUC. Figure 12 shows
the ROC curves.

In addition, we compared the AUC changes before and after the FE. The results are
shown in Table 13. For models with high data quality requirements (such as LR and SVC),
the AUC improvement after the FE can be more than 0.24.
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Table 13. Changes in AUC of different methods before and after FE procession.

Geohazards CART RF LR SVC

landslide
Before FE 0.844 0.933 0.836 0.877
After FE 0.854 0.941 0.85 0.896
Range 0.009 0.008 0.014 0.019

Collapse
Before FE 0.874 0.952 0.903 0.905
After FE 0.878 0.957 0.898 0.913
Range 0.004 0.005 −0.0056 0.008

Unstable
Slope

Before FE 0.854 0.936 0.881 0.901
After FE 0.878 0.949 0.901 0.912
Range 0.024 0.013 0.019 0.011

4. Discussion

In this section, discussions that reflect the experiments are proposed. This paper
summarizes the results and sorts the discourse into geohazards’ FE results, FE improvement
for different ML methods, and regional LSM.

1. Effectiveness of the FE:

As discussed in Section 3.4, the most suitable feature enhancement method is standard-
ization; the improvements are more evident for LR or SVC. Four RF-based methods were
proposed and tested for feature selection. As the RF modeling required parameter adjust-
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ment and the dataset needed to be shuffled and re-divided, the accuracy is not fixed. Both
wrapper-indicator methods appeared to be more unstable than the filter-indicator methods.

The filter-MDI feature selection method is the most stable, as it requires one-time
modeling, with the simplest structure and the highest time efficiency. While the wrapper-
MDA achieved the highest AUC improvement, the process is time-consuming and unstable.
In most cases, the AUC changing curve oscillated hard, affecting the results and leading to
apparent differences between the results obtained by other methods. This indicated that
the iteration algorithm might not be the most suitable for LSM. Although it achieved the
highest AUC improvement, the simple ranking filter methods are already enough to reach
the goal of FE.

Still, by comparing the accuracy change of LSM models before and after the FE, it
can be concluded that in most cases, the FE could bring a promised improvement upon
LSM, especially for the LR and the SVC. Repeated experiments have been carried out to
ensure that the FE would improve the results. For landslide, unstable slope, and most
cases of collapse, the AUC after the FE was always higher than the original, although
the increases sometimes seemed to be very tiny. For the CART and the RF, the accuracy
improvements are not much. The reason may be that the FE methods proposed in this
paper are all RF-based.

2. High susceptibility area distribution analysis and the correlated domain conditioning
features for different geohazards:

Referring to Section 3.4 and the previous work of [42], the geohazards in Tianshui city
mainly consist of loess-cutting and loess-plating forms. The high susceptibility areas are
mainly distributed on the riverbanks, where the soil structure is easily cut and eroded by
flowing water and rainfall. Since Tianshui is in the arid region of northwest China, the
rivers are mostly surrounded by residential areas, and human activities can also damage
the stability of the slopes.

The highest and lowest important conditioning features among the three hazards had
certain similarities. In the order of ranking results, the dominant features are shown as follows:

(1) Slope gradient, elevation, precipitation, NDVI, lithology, land cover, and groundwater
volume (landslide);

(2) Precipitation, elevation, slope gradient, distance to roads, distance to faults, ground-
water volume, and lithology (collapse);

(3) Precipitation, NDVI, lithology, slope gradient, elevation, distance to roads, distance to
faults, and road density (unstable slope).

By comparing the results for different hazards, the features most closely associated
with regional geohazards are slope gradient, elevation, and precipitation. Moreover, details
can be observed for different geohazards. Landslides and unstable slopes are more closely
associated with vegetation cover (i.e., the NDVI). Meanwhile, the collapse and unstable
slopes are related more to roads, reflecting that these two types of geohazards are highly
influenced by human activities such as artificial slope cutting during road works. Distance
to faults is another domain reason for collapse and unstable slopes, yet it is not equally im-
portant for landslides. Groundwater volume has been an important conditioning feature for
landslides and collapses but is not prominent for unstable slopes. Meanwhile, comparing
the eliminated features in Table 12, we can conclude that this aspect has a weak connection
between all types of geohazards. This is because the overall low vegetation cover of the
study area, collapse, and unstable slopes has little relation with rivers. However, they are
still affected by rainfall and groundwater.

These discussions show that the principles concluded by ML algorithms are somehow
consistent with the laws of geography and geology, thus proving the efficiency of the FE.
However, the results are subject to the study area due to the limited landslide inventory
and study area. The geohazard type in Tianshui city is simple (loess geohazard mainly),
while the triggering condition is mostly rainfall-flush of gravity. Multiple study areas
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should be involved for further studies to test the FE and to reveal the hazard formation
modes thoroughly.

3. Accuracy and validation of LSM:

From Table 13, the ML model with the best analysis results and highest AUC is
always the RF model. Considering the cartographic mapping results, the CART model
performed the worst with too many block patches and a clear slice boundary of the dataset.
However, this phenomenon appeared in both DT-based models due to the large spatial
resolution scale that caused homogeneous value distribution of some conditioning factors
(e.g., precipitation, groundwater volume, etc.).

The overall test dataset is sliced into the administrative boundary, as we aimed to give
clear advice for each county. All four ML models had short optimization in the boundaries.
The LR and SVC had more continuous mapping results; therefore, the administrative
boundaries are relatively insignificant. Regarding the zoning effect, the analysis results of
the RF model had the highest differentiation between the medium, high, and very high
susceptibility areas. The very high susceptibility area is the smallest, making it the best
differed in the susceptibility results in riverbanks and other low-flat areas. Above all, the
RF model outperformed the other three ML models, but the mapping results appeared to
be dispersed; thus, the result is slightly worse than the one obtained by the SVC.

4. The correlating mitigation advice:

For landslides, the high and very high susceptibility areas are located in Qinzhou
County, north Maiji County, west Zhangjiachuan County, and east Wushan County, mostly
in farming and wetland areas. Along the Shaoxing River, Weihe River, Baimao River,
and Qingshui River, with a slope gradient ranging mostly below 20◦, the corresponding
elevation is below 2 km. Lithology types are mostly sandy loess and clay. For collapses,
higher susceptibility to landslides is distributed in the central part of the study area, mainly
on both sides of the West Qinling-Beiyuan Faults and the Lixian-Luojiabao Faults. The
high and very high susceptibility areas of landslides and collapses overlapped, indicating
that the two types of geohazards have similar characteristics. Since unstable slopes can
be regarded as developing landslides or collapses, the high susceptibility area of unstable
slopes is small and located within the other two.

The high susceptibility areas of three geohazards in Tianshui city are generally dis-
tributed along the low and gentle terrain of rivers and plates that are used mostly for
farming and construction, indicating that the soil and water conservation capacity has been
damaged. In addition, all three geohazards show a strong tendency to be distributed along
both sides of the road, indicating that the stability decreases in rock–soil bodies due to
anthropogenic activities have been severe.

5. Conclusions

By summarizing Section 4, the conclusions are as follows:
The FE has been proven effective and can help improve the accuracy of LSM. The

wrapper-indicator methods performed better than the filter-indicator methods in accu-
racy yet appeared to be more unstable and time-consuming. However, the improvement
differences between feature selection methods are not significant enough to ignore the
time cost and the overfitting of iteration methods; the simplest filter-MDI method can
already meet the demand for efficient and accurate LSM. This paper recommends using
the simple method to balance the modeling complexity, accuracy, and robustness. What
matters the most is whether the FE is involved in the LSM, not which method is applied for
feature selection.

By analyzing the feature importance ranking results, this paper lists the features of the
most significant influence:

(1) Slope gradient, elevation, precipitation, NDVI, lithology, land cover, and groundwater
volume (landslide);
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(2) Precipitation, elevation, slope gradient, distance to roads, distance to faults, ground-
water volume, and lithology (collapse);

(3) Precipitation, NDVI, lithology, slope gradient, elevation, distance to roads, distance to
faults, and road density (unstable slope).

This paper jointly analyzed the high-susceptibility regions of each geohazard with
the dominant conditioning features and discovered that the geohazards in Tianshui city
are strongly influenced by hydrology and anthropogenic activities. It is recommended to
replan the farming areas and increase the protection of wetlands to enhance the soil water
conservation capacity, as well as carry out geotechnical reinforcement along the road to
avoid casualties and economic losses due to disasters.
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