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Abstract: Leaf area index (LAI), one of the most crucial vegetation biophysical variables, is required
to evaluate the structural characteristic of plant communities. This study, therefore, aimed to evaluate
the LAI of ecoregions in Iran obtained using Sentinel-2B, Landsat 8 (OLI), MODIS, and AVHRR data
in June and July 2020. A field survey was performed in different ecoregions throughout Ardabil
Province during June and July 2020 under the satellite image dates. A Laipen LP 100 (LP 100)
field-portable device was used to measure the LAI in 822 samples with different plant functional
types (PFTs) of shrubs, bushes, and trees. The LAI was estimated using the SNAPv7.0.4 (Sentinel
Application Platform) software for Sentinel-2B data and Google Earth Engine (GEE) system–based
EVI for Landsat 8. At the same time, for MODIS and AVHRR, the LAI products of GEE were
considered. The results of all satellite-based methods verified the LAI variations in space and time
for every PFT. Based on Sentinel-2B, Landsat 8, MODIS, and AVHRR application, the minimum and
maximum LAIs were respectively obtained at 0.14–1.78, 0.09–3.74, 0.82–4.69, and 0.35–2.73 for shrubs;
0.17–5.17, 0.3–2.3, 0.59–3.84, and 0.63–3.47 for bushes; and 0.3–4.4, 0.3–4.5, 0.7–4.3, and 0.5–3.3 for
trees. These estimated values were lower than the LAI values of LP 100 (i.e., 0.4–4.10 for shrubs,
1.6–7.7 for bushes, and 3.1–6.8 for trees). A significant correlation (p < 0.05) for almost all studied PFTs
between LP 100-LAI and estimated LAI from sensors was also observed in Sentinel-2B (|r| > 0.63
and R2 > 0.89), Landsat 8 (|r| > 0.50 and R2 > 0.72), MODIS (|r| > 0.65 and R2 > 0.88), and AVHRR
(|r| > 0.59 and R2 > 0.68). Due to its high spatial resolution and relatively significant correlation with
terrestrial data, Sentinel-2B was more suitable for calculating the LAI. The results obtained from this
study can be used in future studies on sustainable rangeland management and conservation.

Keywords: condition monitoring; multiresolution; spatial analysis; spectral data; woody species

1. Introduction

Leaf area index (LAI) is defined as a one-sided leaf area per unit area of land [1,2].
Knowledge of the LAI is used in many disciplines, including investigation of stresses
caused by environmental conditions, estimation of evapotranspiration, respiration, carbon
and nutrient cycle, net primary production, and rainfall interception by woody plants [3].
Direct and indirect methods estimate the vegetation LAI in the field [4]. Direct methods
are laborious and time-consuming; however, they provide reliable LAI estimations and
are used to validate indirect methods [5]. A common method of remote-sensing-based
(indirect) methods in estimating the LAI is to establish a physical relationship between
the LAI and various vegetation indices extracted from visible near-infrared (VNIR) and
short-wavelength infrared (SWIR) bands, including enhanced vegetation index (EVI), soil-
adjusted vegetation index (SAVI), and normalized difference vegetation index (NDVI) [6].
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These high multispectral- and hyperspectral-based indices significantly enhance the quality
of monitoring the health of natural ecosystems and detecting the changes in vegetation
biophysical characteristics [6,7].

Over the past decades, many efforts have focused on LAI estimation using ground-
based field measurements (direct method) and remote sensing data (indirect method) [8,9].
Remote sensing methods have unique advantages in estimating the LAI over a large
area. For example, the LAI obtained from optical remotely sensed data serves as a pivotal
variable to estimate the aboveground biomass of forest stands [10]. Recently, indirect optical
methods without contact with leaves, based on the radiation transmission and gap fraction
theory, an array of commercial optical instruments, such as Plant Canopy Analyzer (LI-
COR, Lincoln, NE, USA), DEMON (CISRO, Center for Environmental Mechanics, Canberra,
Australia), Ceptometer (Decagon Device, Pullman, WA, USA), and digital camera with a
fisheye lens, have been developed to estimate the effective LAI [6,7]. Due to the surface
heterogeneity (different types of mixed coatings in pixel images) and temporal variability
of plants in different growing seasons, the maximum accuracy of estimating the LAI by
remote sensing data can only reach about 50% [8]. Therefore, it is necessary to increase
the accuracy of estimating the LAI at different time–space scales. In estimating the LAI
using remote sensing methods, it is always assumed that the leaves are homogeneously
distributed, and the values obtained are known as the effective LAI [11].

In LAI values greater than 3, NDVI loses its sensitivity to changes in leaf green index or
becomes saturated [2,12]. Therefore, in high LAI values, it is recommended to use the EVI
instead the NDVI. The EVI affords thorough figures on spatial and temporal variations of
vegetation, and it reduces the problems of impurities that the NDVI causes [13]. According
to the remote sensing method in LAI estimation, vegetation includes all green factors, such
as under forest canopies, including subfloors [7]. The LAI estimated using the Laipen LP 100
(LP 100) device is pure. After considering the type of plant under study and determining a
coefficient in the obtained value, it becomes the effective LAI. Remote sensing observations
are sensitive to the effective LAI [14]. The difference between the actual and effective LAI
may be determined by the population index [15], which varies approximately between
0.5 (highly clustered canopies) and 1 (leaves with random distribution) [16].

In the remote sensing method, LAI retrieval has been achieved in medium-resolution
spatial satellite images such as Sentinel-2 (with a resolution of 10 m [17]) in the SNAPv7.0.4
(Sentinel Application Platform) software, Landsat 8 OLI (with a resolution of 30 m) with the
EVI in the Google Earth Engine (GEE) system [14], ready-made MODIS satellite products
(with a resolution of 500 m; [18–20]), and ready product of AVHRR (with a resolution of
5566 m [21]). For Sentinel-2B, an operational LAI product associated with a quality indicator
is provided through the SNAP toolbox and produced through a neural network trained
by simulated spectra generated from well-known radiative transfer models (RTMs) [22].
Chen et al. [23] found that the estimated LAI in images with a larger scale has an error of
about 25–50% due to surface heterogeneity. Liu et al. [24] also concluded that the LAI values
obtained from MODIS images are consistently underestimated. Claverie et al. [21] used
Sentinel-2B and Landsat 8 images to estimate the LAI and vegetation indices in the boreal
forests of Finland. Their results showed that the obtained values were significantly different.
They also showed the better performance of the Sentinel-2B image for the 705 nm red-edge
bands. Brown et al. [25] estimated the LAI and chlorophyll content of vegetation using
Sentinel-2 images. Chrysafis et al. [26] also concluded that the recovered LAI using Sentinel-
2 images in a mixed Mediterranean forest region in Greece showed that the model obtained
from the selection of spectral variables produced the most accurate LAI predictions with
a coefficient of determination (R2) of 0.85. Ovakoglou et al. [27] attempted to enhance
the spatial resolution of the MODIS LAI product to the Landsat 8 resolution level. The
estimated LAI values highly correlated with field-measured LAI during the dry period
(0.72 < r < 0.94).

The coarse spatial resolution of satellite-based products does not authorize distinctive
vegetation types within mixed pixels. Investigating only the prevailing type per pixel has
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two major shortcomings: (a) the LAI of the prevailing vegetation type is contaminated by a
spurious signal from other vegetation types, and (b) at the global scale, large regions of
discrete vegetation types are ignored. To accurately estimate the LAI with remote sensing,
spatial, temporal, and spectral resolutions at different scales must be carefully selected [9].
In this regard, the main purpose of this paper was to assess the performance of four sensors
with different resolutions (i.e., Sentinel–2B (10 m), Landsat 8 (30 m), MODIS (500 m), and
AVHRR (5566 m)) in estimating the LAI. LAI maps were plotted on all of these sensors
as a reference for remote sensing data analysis with field data. This study provides a
quantitative assessment of the quality of different sensors in estimating the LAI for the
different scientific communities and software users.

2. Materials and Methods
2.1. Studied Area

Ardabil Province (1.80 million km2) is located northwest of Iran (Figure 1). The studied
area has a mountainous texture with high elevation differences, and the rest is plain and
flat. The elevation varies from 20 to 4811 m above sea level (masl). Analysis of the Ard-
abil Province Meteorological Organization’s statistics attributed the highest mean annual
precipitation (between 400 and 500 mm) to Mt. Sabalan (western part of the province).
A moderate value of mean annual precipitation is also observed for southern regions
(350 mm), and its lowest allocated to the north of the province (210 to 240 mm). Moreover,
the mean minimum and maximum temperatures are 1.50 and 20.50 ◦C, respectively [28–30].
Mostafazadeh and Mehri [31] also reported two main regimes for the precipitation season-
ality of the province: a short dry season (seasonality index (SI) = 0.2–0.3) and a wet season
(SI = 0.6). The rivers and water bodies of this province include Aras, Qarasu, Balkhlychay,
Givichay, Shahrood, Qezelozen, Neur, and Shourabil lakes, which play a significant role
in the formation of the climate and the moisture source of the province. Moreover, the
Caspian Sea has a significant effect on its climatic regimes [16]. Given that the growing and
the rainy season is from late March at low altitudes to mid-September at high elevations,
the best time to collect data is June to July [32].

Some of the ecoregion covers contain geographically distinct sets of communities,
natural species, and sub-ecoregions, which are dominated by three plant functional types
(PFTs), including shrubs, bushes, and trees. A woody plant with a height of less than
50 cm and a size of small to medium is considered a shrub. Meanwhile, a woody plant
with a height of 50–7 m and plenty of branches growing from both the ground and stiff
stems is considered a bush. Finally, a woody plant with a height of more than 7 m, a
single elongated stem, and few or no branches on its lower part is considered a tree. These
PFTs were considered for the target ecoregions [14,32,33], distributed in Andabil, Bilesavar-
Khoroslo, Darband Hir, Germi, Hashtjin, Hatam Meshasi forests, Khalkhal forests, Kowsar,
Namin, and Neur Lake highlands (Figure 1).

2.2. Methodology
2.2.1. Field Data Collection (LP 100 Device)

The field-based observations were recorded using the LP 100 device (Figure 2) during
June and July 2020. The LP 100 device was applied to 160 shrubs, 117 bushes, and 455 trees
throughout the studied ecoregions (Table 1). Therefore, in total, 822 ground truth points
were sampled. Ecoregions that included only shrubs, bushes, and trees’ dominance were
selected (Figure 1) because of LP 100 limitation for LAI estimation for other PFTs (i.e.,
grasses, forbs, and dwarfs plant species). The LAI of the Hir, Neur, Kowsar, Meshginshahr,
and Namin ecoregions were estimated in June 2020, and the others were studied in July
2020. The collected samples were representative of each ecoregion. All recorded values
were transferred to the computer system. Then, the FluorPen software was applied to
obtain the final LAI. It is noteworthy to note that the mean LAI of those PFTs located in one
pixel was compared with the mean LAI estimated by different remote sensing methods of
the same pixel.
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Table 1. Sampling number for each plant functional type (PFT) at the studied ecoregions.

PFTs Number of Samples Ecoregion (Sub-Ecoregion) Sampling Month in
2020

Shrubs

13 Andabil July
13 Hashtjin (Aghdagh, Berandagh) July

28 Khalkhal (Isbo, Jafarabad, Majareh, Dilmadeh,
Shormineh, Chenarlagh) July

26 Kowsar (Mashkoul) June
15 Hatam Meshasi June
65 Namin Highlands June

Sum 160 samples

Bushes

48 Neur June
9 Bilesavar-Khoroslo July

13 Germi July
13 Andabil July
10 Hashtjin (Aghdagh, Berandagh) July

10 Khalkhal (Isbo, Jafarabad, Majareh, Dilmadeh,
Shormineh, Chenarlagh) July

5 Hatam Meshasi June
9 Namin Highlands June

Sum 117 samples

Trees

55 Darband Hir June
10 Neur June
16 Germi July
49 Andabil July

121 Hashtjin (Aghdagh, Berandagh) July

73 Khalkhal (Isbo, Jafarabad, Majareh, Dilmadeh,
Shormineh, Chenarlagh) July

61 Kowsar (Mashkoul) June
70 Hatam Meshasi June
90 Namin Highlands June

Sum 545 samples

The ground sampling of three vegetation forms (shrubs, bushes, and trees) was con-
ducted, taking into account the large pixel size of the selected sensors. Accordingly, the
selected plants were first selected in large homogeneous areas; the size of these areas is
much larger than the pixels of the selected sensors. Second, the studied PFTs were also
tried to be selected at a distance from each other, so that they were representative of the
average of the large area, which was selected. However, in general, the other vegetative
forms (grasses and forbs) in the study area and the limitation of the device used (Laipen
LP 100) are still a problem, which has not been possible to cover due to the limitations of
this study.

Unlike other similar LAI measuring instruments, LP 100 is accurate in most daylight
conditions, and there is no need to cover the cloud or a specific angle of the sun (Laipen
LP 100 Manual [34]). Empirical law states the relationship between the intensity of light
absorbed by the passage of homogeneous objects without scattering and the properties
of matter modified by Monsi-Saeki. Therefore, the following equations are presented to
correct the estimated radiation intensity under the vegetation canopy [35]:

I = I0e(−KLAI) (1)

LAI = −Ln
(

I
I0

)
/K (2)

where I is the radiation intensity in the lower part of the vegetation, and I0 is the radiation
intensity in the upper part of the vegetation. K is the extinction factor depending on the
vegetation canopy shape, orientation, and position. Given that the radiation intensity
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decreases from top to bottom during its penetration, according to the Beer–Lambert law, it
is necessary to use a correction factor to estimate the LAI of certain species [1].

As shown in Figure 2, the LP 100 device is placed in the plant’s shade and under the
leaf due to the measurement of the LAI under heterogeneous cover with direct sunlight.
To estimate the LAI in each ecoregion, all PFTs were also considered. As the angle of view
of the LAI sensor is open (112◦ on the horizontal axis), it is necessary to prevent direct
light entering into the restriction cup. In other words, overexposure to an LAI sensor can
misinterpret actual light conditions. Therefore, before each measurement, it is essential to
place the device, as shown in Figure 2, to follow the standard principles. It is noteworthy
that the results of LP 100 validation were already verified through the VitiCanopy app
(r > 0.91; R2 > 0.83; RMSE < 0.51) [14].

2.2.2. Image Selection and Image Preprocessing

The Sentinel-2B satellite has visible, near-infrared, and shortwave infrared (SWIR)
sensors [36]. One of the advantages of using Sentinel-2B and Landsat 8 images is the high
resolution of the images. In addition, the Sentinel-2B data are available for download from
the European Space Agency Copernicus Open Access Hub (https://scihub.copernicus.
eu/dhus/#/home; accessed on 28 November 2020). Using Sentinel-2B images with high
revision time and images with a spatial resolution up to 10 m at no cost increases the
accuracy of analysis of biophysical variables, such as the LAI.

The Sentinel-2B images were obtained from the Copernicus Open Access Hub (https:
//scihub.copernicus.eu; accessed on 28 November 2020) concurrent with the growth time
of the PFTs and the field survey (June and July 2020, Table 2). At the same time, Landsat
8 images were taken from the USGS website and the GEE system. Landsat 8 images
corrected in the GEE system are free [36]. Preprocessing was considered to extract the
information from the images used accurately. To this end, atmospheric correction due
to the effect of the atmosphere on the reflection of surface phenomena and its effect on
the obtained result was considered [35]. Radiometric corrections also must be made to
check for changes in the landscape, exposure, geometric visibility, weather conditions, and
sensor noise [34].

Table 2. Selected satellite images and products.

Satellite/Sensor Date Website/Products

Sentinel-2B

June–July 2020

http://scihub.copernicus.eu (accessed on 28
November 2020) Level-1C

Landsat 8 OLI https://earthexplorer.usgs.gov/ (accessed
on 28 November 2020) -

MODIS * Terra + Aqua-4-Day L4Global 500 m MCD15A3H
AVHRR (LAI_PAL_BU_V3) 5566 m LAI_FAPAR/V5′

* The LAI product has reached stage 2 validation. More details on MODIS land product validation for LAI/FPAR
data products are available on the MODIS land team validation site. MCD15A3H Version 6 (MODIS) Level 4
Medium Resolution Imaging Spectrometer, Combined Fraction of Photosynthetic Active Radiation (FPAR), and
LAI are a combined 4-day dataset of 500 m pixels.

For Sentinel-2B images, radiometric corrections, such as the calculation of radiance
and atmospheric correction, were performed using the software. The Sen2Cor processor
algorithm is a combination of the most advanced methods for modifying the Sentinel-2B
atmosphere and comes with a module that fits the category. Images or products provided
by GEE do not require preprocessing, such as geometric or radiometric correction, which is
its advantage [36].

The SNAPv7.0.4 software was used to estimate the LAI from Sentinel-2B images after
calling the images and atmospheric correction in the Sen2Cor plugin and then resampling
it to an image with an accuracy of 10 m. Furthermore, for the Landsat 8 image, the EVI was
selected to calculate the LAI in the GEE system. After calling the Landsat 8 images with

https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu
https://scihub.copernicus.eu
http://scihub.copernicus.eu
https://earthexplorer.usgs.gov/
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clouds less than 45% in Google Earth Engine, the EVI was calculated using the following
formula [37]:

EVI =
2.5× (NIR − RED)

(NIR + 6.5× RED− 7.5× BLUE + 1)
(3)

LAI = 3.618 × EVI − 0.118 (4)

where EVI, NIR, RED, and BLUE are respectively indicated as the enhanced vegetation
index, near-infrared band, red band, and blue band.

The algorithm selects the best available pixels from the four MODIS sensors on NASA’s
Terra and Aqua satellites every 4 days. To convert the MODIS data scale, a correction factor
of 0.1 was considered according to the information in its product (https://modis-land.gsfc.
nasa.gov; accessed on 1 December 2020).

The methodological flowchart of the current research is shown in Figure 3.
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2.2.3. Statistical Analysis and Validation

For the accuracy assessment, the mean LAI extracted from LP 100 in each homoge-
neous pixel size of 30 m was compared with the mean LAI extracted from remote sensing.
The results were initially evaluated to investigate the degree of agreement between esti-
mated LAI using remote sensing methods and field measurements (LP 100) by calculating
the correlation coefficient (r). The Pearson and Spearman tests were respectively used
to investigate the correlation state for the normal and non-normal data. The data were
examined for normality at a significance level of p < 0.05 using the Shapiro–Wilk test
(IBM SPSS, Version 26). The LAI data extracted from all sensors in the shrub and Landsat 8
and MODIS in the bush were normally distributed. Besides, the LAI data extracted from
Sentinel-2B and AVHRR in the bush and the LAI data extracted from all sensors in the tree
were non-normal. The LAI data for June were normally distributed except for MODIS-LAI,
and all LAI data extracted from all sensors in July were non-normal.

The coefficient of determination (R2) and five error evaluation criteria were also
calculated to achieve the accuracy of the methods used ([38,39]; Equations (5)–(9)). In
general, a higher R2 (near one) indicates more accuracy and a lower error [26]. MAE (mean
absolute error) (Equation (5)) gives the mean magnitude of estimation errors, and MBE

https://modis-land.gsfc.nasa.gov
https://modis-land.gsfc.nasa.gov
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(mean bias error) (Equation (4)) is the mean estimation error representing the systematic
error of an estimation method under or over the LP 100 measurement. RMSE (root mean
square error) is also calculated according to Formula (9).

In situations where MAE and MBE are equal or close to zero, it shows that the method
used simulates reality well, and by moving away from zero, it shows a small quantity of
accuracy or much deviation [40].

MAE = ∑N
i=1|(LAIRS − LAILP)|/n (5)

MBE = ∑N
i=1(LAIRS − LAILP)/n) (6)

MBias (Equation (7)) is expressed as the ratio of LAI remote sensing to the LAI of the
LP 100 device. MBias equal to 1, less than 1, and more than 1, respectively, indicate perfect,
low, and high estimates. MBias equal to 1 dedicates the closer estimation to the LP 100
values, thereby reflecting the high reliability of the estimates.

MBias =
N

∑
i=1

LAIRS/
N

∑
i=1

LAILP (7)

The RBias (Equation (8)) checks for systematic LAI errors obtained using remote
sensing methods.

RBias = (
N

∑
i=1

(LAIRS − LAILP)/
N

∑
i=1

(LAILP)) (8)

RMSE stands for root mean square error. The RMSE represents the mean of the errors
available. It can be used as an essential indicator when our goal is to assess the accuracy of
the entire data. Being lower (close to zero) means lower error.

RMSE =

√√√√ n

∑
i=1

N

∑
i=1

(LAIRS − LAILP)

2

/n (9)

In these equations, n represents the total number of data, LAIRS is the LAI obtained
from remote sensing sensors, and LAILP is the LAI obtained from LP 100.

3. Results

The statistical description based on remote sensing methods for different sampling
months and different PFTs (shrubs, bushes, and trees) are presented in Tables 3 and 4.
In addition, the maps of LAI calculation using different sensors are shown in Figure 4.
The scatter plot of sensor-based LAI values according to field-based values for different
PFTs and months is respectively shown in Figures 5 and 6. The results of the accuracy
assessment for each studied PFT and month are summarized in Table 5 and Figure 7. The
results confirmed the spatial and temporal changes of the LAI in Ardabil Province. The
lowest LAI has spread from the north to the center and a small part of the province’s south.

The lowest and highest mean LAIs obtained in June using Landsat 8 images and
Sentinel-2B were 0.67 and 3.13, respectively. In addition, in July, the lowest and highest
mean LAIs were estimated to be 0.09 and 3.13, respectively, using Landsat 8 and Sentinel-2B.
The lowest and highest mean LAIs based on the PFTs of shrubs using Sentinel-2B were
0.09 and 3.74, respectively. The lowest and highest mean LAIs in bushes using Sentinel-2B,
respectively, were 0.21 and 4.40, and in trees using the Sentinel-2B and AVHRR images,
they were estimated at 0.3 and 4.40, respectively. The correlation between the LAI obtained
from the LP 100 device and the Sentinel-2B images in the shrubs and bushes showed a
relatively high correlation coefficient (|r| > 0.63) with a corresponding RMSE < 1.37.
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Table 3. Descriptive statistics of estimated LAI using LP 100 and different sensors extracted for
sampling points in different months.

LAIs

Months June 2020 July 2020

Min Mean Max Min Mean Max

LP 100 2.60 3.74 5.30 3.60 4.13 5.83

Sentinel-2B 1.53 1.92 3.13 0.09 1.24 3.13

Landsat 8 0.67 0.90 1.40 0.31 0.68 1.20

MODIS 0.76 1.29 2.71 0.40 0.60 1.40

AVHRR 0.92 2.55 2.80 0.35 0.71 1.17

Table 4. Descriptive statistics of estimated LAI using LP 100 and different sensors extracted for
sampling points in different PFTs.

LAIs

PFTs Shrubs Bushes Trees

Min Mean Max Min Mean Max Min Mean Max

LP 100 0.40 2.71 4.10 2.30 5.00 6.40 2.80 4.00 6.80

Sentinel-2B 0.09 1.11 3.74 0.21 2.07 4.40 0.30 1.70 4.40

Landsat 8 0.88 0.35 1.49 0.27 0.73 1.44 1.95 0.82 0.27

MODIS 0.20 0.99 2.13 0.29 1.14 3.43 0.70 2.40 4.30

AVHRR 0.35 1.12 2.73 0.63 1.35 3.47 0.30 0.90 2.70
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Figure 6. Comparison of LP 100 and estimated LAI using Sentinel-2, Landsat 8, MODIS, and AVHRR
in June (A) and July (B) 2020.

Table 5. Accuracy assessment results for sampling months, PFTs, and different sensors.

Error Statistics Sensors MAE MBE MBias RBias RMSE

Sentinel-2B 0.33 −0.24 0.51 −0.49 1.09

Sampling
Month

June
Landsat 8 0.36 −0.36 0.28 −0.72 1.21
MODIS 0.30 −0.28 0.43 −0.57 1.04
AVHRR 0.30 −0.28 0.44 −0.56 1.01

Sentinel-2B 0.48 −0.45 0.29 −0.71 1.34

July
Landsat 8 0.54 −0.54 0.15 −0.85 1.45
MODIS 0.54 −0.54 0.15 −0.85 1.45
AVHRR 0.57 −0.57 0.19 −0.80 1.47

Sentinel-2B 0.23 −0.16 0.36 −0.64 0.86

PFT

Shrub
Landsat 8 0.20 −0.18 0.27 −0.73 0.77
MODIS 0.20 −0.16 0.34 −0.66 0.78
AVHRR 0.19 −0.14 0.44 −0.56 0.72

Sentinel-2 0.44 −0.37 0.43 −0.57 1.37

Bush
Landsat 8 0.54 −0.54 0.18 −0.82 1.59
MODIS 0.49 −0.48 0.28 −0.72 1.48
AVHRR 0.48 −0.05 0.29 −0.71 1.45

Sentinel-2B 0.45 −0.40 0.37 −0.63 1.28

Tree
Landsat 8 0.50 −0.50 0.21 −0.79 1.39
MODIS 0.47 −0.46 0.27 −0.73 1.30
AVHRR 0.45 −0.45 0.30 −0.70 1.25



Remote Sens. 2022, 14, 5731 12 of 17Remote Sens. 2022, 14, 5731 14 of 20 
 

 

 

Figure 7. Accuracy assessment of studied sensors in different sampling months (A, B) and PFTs (C, D, E). 

4. Discussion 

Estimation and evaluation of LAI, one of the most important structural characteris-

tics of forest ecosystems, provides much information related to forest dynamics, photo-

synthesis rate, evaporation and transpiration, net primary production, energy, and car-

bon exchange coefficient between vegetation and atmosphere [24]. For the estimation of 

the LAI due to spatial and temporal changes in vegetation canopy, remote sensing 

methods are low-cost methods for calculating the LAI on a large scale. Despite the high 

accuracy of direct methods in estimating LAI, they are often time-consuming, costly, and 

destructive, especially if the level of the studied area is significant. Calculating the LAI 

based on remote sensing methods and some field methods (e.g., LP 100) is based on the 

relationship between the LAI and the radiation reflectance characteristics of the canopy 

measured by sensors. Therefore, sensor-derived data are affected by atmospheric dis-

turbances, sensor characteristics, and sensor accuracy [41–43]. The mean LAI in Landsat 8 

was 0.90 in June and 0.68 in July [14]. Overall, in June, the LAI values were estimated to 

be greater than in July. These results were attributed to the higher levels of vegetation 

greenness in June, as dedicated by Zhu et al. [44], who reported the special impacts of 

different seasons on LAI estimation (p < 0.001).  

The results showed a relatively high correlation between the LAI calculated using 

the LP 100 device and the remote sensing images in all three vegetation forms (Figure 5). 

According to the scatter plots in Figure 6, the correlation between LAI values obtained 

from LP 100 and Sentinel-2B, Landsat 8, and AVHRR images in June, which is the time to 

Figure 7. Accuracy assessment of studied sensors in different sampling months (A,B) and PFTs (C–E).

4. Discussion

Estimation and evaluation of LAI, one of the most important structural characteristics
of forest ecosystems, provides much information related to forest dynamics, photosynthesis
rate, evaporation and transpiration, net primary production, energy, and carbon exchange
coefficient between vegetation and atmosphere [24]. For the estimation of the LAI due to
spatial and temporal changes in vegetation canopy, remote sensing methods are low-cost
methods for calculating the LAI on a large scale. Despite the high accuracy of direct methods
in estimating LAI, they are often time-consuming, costly, and destructive, especially if
the level of the studied area is significant. Calculating the LAI based on remote sensing
methods and some field methods (e.g., LP 100) is based on the relationship between the LAI
and the radiation reflectance characteristics of the canopy measured by sensors. Therefore,
sensor-derived data are affected by atmospheric disturbances, sensor characteristics, and
sensor accuracy [41–43]. The mean LAI in Landsat 8 was 0.90 in June and 0.68 in July [14].
Overall, in June, the LAI values were estimated to be greater than in July. These results were
attributed to the higher levels of vegetation greenness in June, as dedicated by Zhu et al. [44],
who reported the special impacts of different seasons on LAI estimation (p < 0.001).

The results showed a relatively high correlation between the LAI calculated using
the LP 100 device and the remote sensing images in all three vegetation forms (Figure 5).
According to the scatter plots in Figure 6, the correlation between LAI values obtained
from LP 100 and Sentinel-2B, Landsat 8, and AVHRR images in June, which is the time to
examine the forms of shrubs and bushes, was negative. A positive correlation was also
reported with the trees collected in July.
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Since the pixel value of remote sensing images is averaged from adjacent pixels, it is
unlikely to be error-free, so the relationship between them was inversely estimated. The
vegetative forms registered in June were bushes and shrubs having leaves smaller than
those of trees. Then more light passes through them, and the amount of LAI obtained is
less than trees. In general, when the LP 100 device is placed under the leaves of the plants,
due to the smaller size and lower layers of the leaves, more light hits the device and is less
reflected. However, in trees, the upper layers of the leaves prevent more light from reaching
the device. The relationship between the obtained values between tree vegetation forms
and remote sensing images was to be reported positive, as trees act like remote sensing
images due to larger leaves and less light passing through them. These images estimate the
LAI from the top of the crown.

According to the literature [4], measuring the LAI using different tools leads to un-
derestimating about 15–25% of the actual value of the LAI. However, in this study, due
to the calibration of the LP 100 device, the accuracy of this device was measured to be
higher than the remote sensing methods. There was an underestimation in LAI values in
the remote sensing methods compared with LP 100. Myneni et al. [18] reported a nonsignif-
icant correlation between texture variables and effective LAI in evergreen stands through
mapping the LAI by linking the spectral, spatial, and temporal information of Landsat 8,
IKONOS, and MODIS. Lee et al. [10] also found higher importance of bands in the red-edge
and shortwave-infrared than near-infrared bands by comparing the hyperspectral and
multispectral data for LAI assessment.

Meyer et al. [45] showed that the vegetation indices created in the infrared bands are
more closely related to the LAI. In addition, the prediction models obtained from Landsat
8 data were slightly different from Sentinel-2, and most bands of Sentinel-2B are compatible
with Landsat 8 [46]. Sajadi et al. [47] used ETM+, OLI, MODIS, and AVHRR sensors to
compare and analyze the NDVI time series. According to the MAE and RMSE, the Landsat
8 sensor had better performance than other selected sensors. In addition, the AVHRR sensor
had similar results to Landsat 8, and the MODIS series had lower performance than other
sensors in all vegetation classes. Claverie et al. [21] also showed that Sentinel-2B imagery
outperformed Landsat 8. Chrysafis et al. [26], in a Mediterranean mixed-forest area in
Greece, concluded that the model obtained from the LAI retrieved using Sentinel-2B images
and the selection of spectral variables was the most accurate LAI prediction (R2 of 0.85).
Liu et al. [24] and Propastin and Erasmi [48] concluded that the LAI values obtained from
MODIS images are consistently underestimated. What is more, for wheat LAI retrieval,
Yi et al. [49] compared two MODIS land surface reflectance data collections. They found
the preferred ability of the 8-day composite data for LAI estimation, thanks to their reduced
cloud and aerosol impacts after composting. Therefore, the potential of MODIS data in LAI
assessment desires supplementary survey and analysis.

AVHRR was widely used because of its high temporal and moderate spatial (1.1 × 1.1 km)
resolutions. Nevertheless, when we use a ready-made AVHRR sensor product, the resolution
of this product (LAI_FAPAR/V5′) in estimating the LAI reaches about 5.5 km. Moreover,
the prospect of LAI estimation in simple methods necessitating less ground truth points
was confirmed by Qi et al. [8] through combining the bidirectional reflectance distribution
function (BRDF) model and traditional LAI-VI empirical relation in the AVHRR imagery.
Sajadi et al. [47] also indicated that the AVHRR product has a higher temporal resolution.
However, its inherent characteristics, such as low spatial resolution, have led to exhibiting
noisy behavior in the dataset. Other features, such as design and the significant water vapor
absorption due to a broader bandwidth than other sensors, have exhibited noisy behavior
in the dataset. MODIS sensor products, including vegetation indices, LAI-photosynthetic
radiation fraction, and surface reflection at different spatial and temporal resolutions,
have high potential in estimating LAI [49]. Analysis of spectral surface reflectance from
Landsat 8 with changes in spatial resolution shows that pixel heterogeneity diminishes at a
coarser resolution, and the reflectance is comparable with the MODIS NBAR reflectance
product [50].
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In remote sensing methods in estimating the LAI, since light has a reciprocal rela-
tionship within the crown, satellite data are affected by atmospheric disturbances, the
accuracy and specifications of the sensor type, and the process of receiving signals [51].
The relationship between remote sensing and ground-based methods was linear in all
cases. In addition, the results showed a positive correlation between them in the trees
and a negative one in the shrubs and bushes. Moreover, an MAE of less than 0.54 and an
RMSE of less than 1.59 indicated reliable results for the studied months and PFTs. MBE
and RBias were calculated for LAI remote sensing (Sentinel-2B, Landsat 8, MODIS, and
AVHRR) per month and different PFTs (RBias < −5.60; −0.01 < MBE < −0.57). MBias
values between 0.94 and 0.19 indicate an acceptable agreement between remote-sensing-
and ground-based measurement data [39]. In addition, MAE less than 0.57 and RMSE less
than 1.47 showed reliable results for the studied months and different PFTs. Comparing
RMSE among Sentinel-2B, Landsat 8, MODIS, and AVHRR sensors, AVHRR products had
a more minor error (0.72) than other images.

5. Uncertainties, Limitations, and Future Work

Using satellite data at different temporal and spatial resolutions to estimate LAI may
lead to uncertainties and limitations. Spatial scaling issues in the context of validating
estimated LAI in this research need minute detail in the future. As Chen et al. [23] noted,
the validation of LAI products with different resolutions (moderate: 100–1000 m and
coarse: >1 km) is a challenging concern, and they inherently have significant uncertainties
owing to the miscellaneous nature of the earth’s surface. Comparisons of LAI values from
four studied sensors with those aggregated from LP 100 verified the feasibility of LAI
deriving, but a few errors still exist. Therefore, developing a model that combines the
advantages of both experimental and physical models has a high potential to improve the
accuracy of LAI estimation in different temporal–spatial scales for mixed ecosystems. It
is noteworthy that the geographic coordinates of the ground area and the pixel may be
formally the same. However, the real positions of the ground area may be slightly different
due to different approaches to geometric rectification and different geodetic models, sensor
peculiarities, solar position, relief, and so on. Besides, pixels from different bands are
almost the same, but commonly, they can differ slightly in their exact positions and areas.
In the present paper, these uncertainties were not resolved. Due to the large surface area of
pixels, slightly more unrealistic values were estimated from sensors, such as Landsat 8 and
Sentinel-2B with higher spatial resolution. Fensholt et al. [52] showed that there is around
a 2–15% overestimation within MODIS LAI standard products due to a moderate offset
unable to be explained by model or input uncertainties. Chen et al. [50] pointed out the
50% to 70% accuracy of AVHRR and SPOT (Satellite Pour l’Observation de la Terre) in LAI
estimation due to the surface heterogeneity caused by mixed covers. The bias was mainly
due to the uncertainty in the atmospheric correction of Landsat images, but the surface
heterogeneity in mixed cover types also caused bias in AVHRR calculations. They attributed
the leading cause of random errors to pixels with mixed cover types. Korhonen et al. [20],
using band 1 of Sentinel-2B, reported an R2 of 0.73 and an RMSE of 19.60% for boreal
forest canopies. They stated that the atmospheric scattering of close pixels could affect
the reflection spectrum measured at the field diagram surface; this effect may be more
pronounced in heterogeneous landscapes.

In our research, all used images are characterized by moderate or low levels of spatial
resolution. At best (Sentinel-2B), a pixel covers an area of about 100 m2 (10 m× 10 m). Such
an area may be with several trees, bushes, grass, and forbs. They may represent different
taxa of plants. Vegetation composition and plant density may change significantly from
one pixel to another. This issue could cause some uncertainties.

The time between the ground data collection and image acquisition is an important
factor in estimating the LAI. These findings are not without problems. Moreover, that is why
we tried to make the ground data collection time as consistent as possible with the imaging
dates. The results of Zheng and Moskal [9] showed that in Canada, the estimated LAI data
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matched the ground data, providing better results. The LAI is usually characterized by
attributes of the site, stands, and species [53]. In the present research, only the site (different
ecoregions) was considered, and other attributes were not investigated. To appropriately
interpret the obtained results, it is suggested that the types of species of each PFT would be
studied in the future, which has not been performed in this study. Future research could
also be continued to implement a suitable method for calculating the LAI in the whole
province, which includes describing the land cover types to assess the similarity in the
architectural behavior of canopies in different climatic zones.

Examining the efficiency of hyperspectral aerial cameras based on VNIR and SWIR is
recommended for further evaluation. In addition, using a suitable sensor of LAI estimation
to determine the relationship between LAI and net primary production could be considered
for further research. Definitely, using more samples on a larger scale and conducting
research in other regions of Ardabil Province, as well as investigating the use of accurate
atmospheric corrections and other methods, such as nonlinear or nonparametric regression,
can provide the possibility of estimating this important ecological index with greater
certainty at the regional level.

6. Conclusions

The leaf area index (LAI) is one of the most critical indicators in plant ecology that
shows the production capacity of the habitat and its response to environmental changes.
Predicting the LAI can be used for various land and vegetation management. The most
important advantage of using remote sensing methods is the measurement distance in
a short time for the whole province and the ability to repeat and monitor changes. Of
course, to determine the accuracy of measurement in these methods, using different direct
estimation methods will always maintain its position. We evaluated the utility of Sentinel-
2B, Landsat 8, MODIS, and AVHRR for estimating the LAI in forests and rangelands of
Ardabil Province, Northwestern Iran. The capability of different images to estimate the LAI
and the accuracy of LP 100 as a modern device was investigated.

The mean LAI values extracted by Sentinel-2B, Landsat 8, MODIS, AVHRR, and LP
100 were, respectively, 1.92, 0.90, 1.29, 2.55, and 3.74 for June 2020 and 1.24, 0.68, 0.60, 0.71,
and 4.13 for July 2020. All sensors underestimated the LAI in comparison with LP 100. The
results of the accuracy assessment criteria showed various results and efficiencies. In terms
of different studied months, the lowest MAE, MBE, MBias, RBias, and RMSE were found
for MODIS (0.30), Sentinel-2B (−0.24), Landsat 8 (0.28), Sentinel-2B (−0.49), and AVHRR
(1.01) in June. Meanwhile, in July, in that respect, the lowest value of statistical errors was
found for Sentinel-2B (0.48), Sentinel-2B (−0.45), Landsat 8 (0.15), Sentinel-2B (−0.71), and
Sentinel-2B (1.34). Furthermore, among three studied PFTs, the lowest MAE, MBE, MBias,
RBias, and RMSE were respectively characterized for AVHRR (0.19) in shrubs, AVHRR
(−0.05) in bushes, Landsat 8 (0.18) in bushes, AVHRR (−0.56) in shrubs, and AVHRR (0.72)
in shrubs. The achieved results could assist in the efficient selection of proper Sentinel-2B
multispectral bands and spectral indices for LAI retrieval in large areas, such as Ardabil
Province.
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