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Abstract: Unmanned aerial vehicle (UAV) remote sensing was used to estimate the leaf area index
(LAI) and leaf chlorophyll content (LCC) of two hemp cultivars during two growing seasons under
four nitrogen fertilisation levels. The hemp traits were estimated by the inversion of the PROSAIL
model from UAV multispectral images. The look-up table (LUT) and hybrid regression inversion
methods were compared. The hybrid methods performed better than LUT methods, both for LAI and
LCC, and the best accuracies were achieved by random forest for the LAI (0.75 m2 m−2 of RMSE) and
by Gaussian process regression for the LCC (9.69 µg cm−2 of RMSE). High-throughput phenotyping
was carried out by applying a generalised additive model to the time series of traits estimated by
the PROSAIL model. Through this approach, significant differences in LAI and LCC dynamics were
observed between the two hemp cultivars and between different levels of nitrogen fertilisation.

Keywords: Cannabis sativa L.; precision agriculture; UAV remote sensing; multispectral images;
PROSAIL; LUT; machine learning; trait estimation; high-throughput phenotyping

1. Introduction

Interest in hemp (Cannabis sativa L.) cultivation, which is expanding internationally [1], is
related to its high yield potential as this crop was reported to produce up to 20 Mg ha−1 of dry
aboveground biomass in a few months of cultivation in given environments [2–4]. Addition-
ally, hemp does not require phytosanitary products, it has low fertilisation requirements [5],
and its integration into crop rotation systems can disrupt the weeds and disease cycles,
increasing the sustainability of agrosystems [6]. All these features cause hemp to be an
ideal crop in the frame of the expanding bioeconomy, by providing biomass for various low
and high value bio-based applications (e.g., building materials, specialty papers, composite
materials) [7]. Furthermore, not only hemp produces raw material for a wide range of
bio-based applications, but it also produces seeds for food applications [1,3], in this way
avoiding issues linked to indirect land use change. Despite the large interest in hemp, its
cultivation has not significantly expanded in recent years due to legislative issues in link
with the presence of psychoactive phyto-cannabinoids, but also due to limited innovation
along the whole value chain [8]. In a recent EU project (MultiHemp), for the first time,
innovative biotechnological tools have been applied for hemp breeding, but, so far, the
management of hemp cultivation and the monitoring of its growth have not benefitted
from the application of innovative precision agriculture technologies [9].

Unmanned aerial vehicle (UAV) remote sensing is a precision agriculture technology
widely used to monitor crop growth [10,11]. UAV remote sensing platforms acquire a large
volume of spectral data with high spatial and temporal resolutions, which are needed for
applications in both precision agriculture [12] and high-throughput phenotyping (HTP)
in the frame of breeding programs [13,14]. The spectral data acquired from the UAV
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HTP platforms are used to estimate crop traits during the growing season [15,16]. The
leaf area index (LAI) and leaf chlorophyll content (LCC) are among the most important
crop traits estimated in HTP applications [17,18]. The spatial and temporal information
on LAI and LCC are usually regarded as relevant traits to monitor the status of crop
growth [19,20]. Two main methods are used to estimate LAI and LCC using spectral data
via remote sensing: (i) statistical methods such as linear regression or machine learning and
(ii) physical methods based on radiative transfer models (RTMs) inversion. RTM-based
methods have the advantage of overcoming the problem of lack of transferability and they
minimise the reliance on in situ data over the statistical methods, which are site-specific [21].
The good reproducibility across environments makes RTMs particularly interesting for
phenotyping applications, when field trials are carried out at multiple locations, in multiple
years, and involving several genotypes. One of the most popular RTMs is the PROSAIL
model [22], which simulates the canopy reflectance by combining the leaf PROSPECT
model [23] and the canopy SAIL model [24]. Two main methods are commonly used for the
PROSAIL model inversion: (i) look-up tables (LUTs) [25,26] based on a cost function and
(ii) hybrid regression method [27] based on machine learning techniques such as artificial
neural network (ANN) [28], Gaussian process regression (GPR) [29], and random forest
(RF) [30]. The hybrid methods combine elements of statistical and physical methods using
RTM-generated data to train machine learning (ML) algorithms. These algorithms enable
the description of a non-linear relationship between the simulated canopy reflectance and
relevant crop traits [31]. On the contrary, the LUT methods use a cost function to find
the solution, i.e., the input parameters combination corresponding to the RTMs simulated
canopy reflectance that most closely resembles the measured one [27]. However, the
diverse combinations of crop traits can generate similar canopy reflectance causing the
ill-posed problem of the PROSAIL model inversion [32]. To solve the ill-posed problem,
to which no unique solution can be found, several strategies have been proposed, such
as the use of multiple solutions (instead of the single best solution) [33,34] and the use
of a priori knowledge on the ranges of input parameters [35]. Recently, several studies
have demonstrated that the coupling of UAV remote sensing and the PROSAIL model
provides reliable estimations of crop traits for HTP purposes, such as LAI and LCC [36–40].
However, these studies only evaluated the ability of the PROSAIL model to estimate
crop traits, without characterising the dynamic of crop traits evolution along the growing
season using the values estimated by the PROSAIL model. On the contrary, Impollonia
et al. [41] and Antonucci et al. [42] demonstrated that the HTP of seasonal dynamic of crop
traits can be characterised by combining multiple UAV observations, estimation models
(i.e., machine learning and PROSAIL model), and a generalised additive model (GAM).
The advantage of using the GAM in comparison to the use of smoothing functions is that
the interactions of the variables can be used for fitting the models. These interactions are
particularly important for multi-seasonal time series, which are typical of HTP field trials.

In this context, the main goal of this study was to evaluate the introduction of these
innovative precision agriculture technologies for the monitoring and management of hemp
cultivation, particularly HTP applications. In particular, in this study, UAV-based remote
sensing technology were used: (i) to estimate hemp traits (LAI and LCC) and to compare
two inversion methods of the PROSAIL model: LUT and hybrid regression methods and
(ii) to characterise the dynamics of LAI and LCC of two contrasting hemp cultivars (a yellow
and a green cultivar) under different nitrogen fertilisation levels via GAM.

2. Materials and Methods
2.1. Experimental Design

The field experiments were conducted at the CERZOO research centre (45◦00′11.70′′N,
9◦42′35.39′′E) in the province of Piacenza (NW Italy) during the years 2020 and 2021
(Figure 1). Two cultivars were used: “Futura 75”, a conventional green one, and “Fibror 79”,
a yellow-stalked one, both having been developed and provided by Hemp-it (France).
The seeds were sown on the 6th and on the 9th of April, in 2020 and 2021, respectively.



Remote Sens. 2022, 14, 5801 3 of 21

The sowing density and depth were of about 45 kg ha−1 and 3 cm, respectively. The
experimental layout was a complete randomised block design with four levels of nitrogen
fertilisation: 0, 25, 50, and 100 kgN ha−1, with four replicates for a total of n = 32 plots
(Figure 1).
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Figure 1. Experimental field design and drone picture of hemp trials in (a) 2020 and (b) 2021.
Destructive samplings of 1 m2 are observable in drone pictures.

2.2. Crop Measurements

During the vegetative growth, four georeferenced measurements of leaf area in-
dex (LAI) were performed, in each growing season (total n = 256). For each of these
256 measurements, five-to-six LAI measures were performed in a one-meter square quadrat
with a ceptometer (AccuPAR LP-80, Decagon Devices, Inc., Pullman, WA, USA) between
12 p.m. and 2 p.m. (at zenith). This one-meter square quadrat was subsequently sampled
in the frame of another experiment for yield determination (Figure 1). At the same time
(Figure 2), the leaf mass per area (LMA) and equivalent water thickness (EWT) were deter-
mined from all the leaves of a three-to-five plant sample. The leaves were separated from
the stems, weighted, and transferred to a fridge at −18 ◦C. The leaf surface was determined
by scanning the leaves that were subsequently oven dried at 65 ◦C and weighted. The LMA
(g cm−2) and EWT (g cm−2) were calculated as the ratio of the dry weight (LMA) or of the
water weight (EWT) of the leaves to their surface. To determine the leaf chlorophyll content
(LCC), additional leaf samples were collected at the top of the canopy, at three sampling
times in 2020 and two in 2021 (total n = 160) (Figure 2). After collection, the samples were
quickly stored in ice and transported to a −18 ◦C fridge up to analysis. The LCC was
measured following the methods reported by Ritchie [43] and Warren [44].
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EWT) during the two years (2020 and 2021).

2.3. UAV Multispectral Observations

The unmanned aerial vehicle (UAV) DJI Matrice 210 RTK was used in the experiment.
The UAV was equipped with a MicaSense RedEdge-MX camera that acquired the images
in five spectral bands (Table 1). The UAV observations were carried out at the same
time as the crop measurements (Figure 2) and other UAV supplementary observations
(i.e., UAV observations with no corresponding crop measurements) were also carried out
to improve the analysis of the crop trait dynamics derived from multiple UAV observations
as suggested by Impollonia et al. [41]. The UAV flight altitude was 50 m above ground
level, the flight speed was set at 3 m s−1, and the ground sampling distance was 2.78 cm.
The lateral and forward overlap was set at 75% and at 80% of the images, respectively. The
reflectance panel provided by MicaSense and the light sensor mounted at the top of the
UAV were used for the radiometric calibration of the images. Pix4D mapper software was
used for radiometric calibration and orthomosaic generation. The experimental designs
were drafted in AutoCAD and subsequently georeferenced using QGIS software. On
the same position as the ceptometer measurements and after the UAV flight, destructive
samplings were performed in the frame of another study. One-meter square polygons
corresponding to the position of these destructive samplings were draft in AutoCAD and
georeferenced to extract the mean values of spectral data of each plot, for the validation of
the inversion PROSAIL model. Therefore, for the time series analysis based on multiple
UAV observations, the sampled quadrats were subtracted from the experimental designs to
eliminate the noise caused by these destructive measurements on the multispectral images
as shown in Figure 1.

Table 1. Spectral characteristics of the MicaSense RedEdge-MX camera used for multispectral
images acquisitions.

Spectral Band Centre Wavelength (nm) Full Width at Half Maximum (nm)

Blue 475 32
Green 560 27
Red 668 14

Red edge 717 12
Near-infrared 840 57
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2.4. PROSAIL Model

The leaf area index (LAI) and leaf chlorophyll content (LCC) of hemp cultivars were
estimated by the inversion of the PROSAIL model. The PROSAIL model combines the
PROSPECT and SAIL models, simulating the canopy reflectance from 400 to 2500 nm. The
leaf parameters and canopy parameters were used to simulate the leaves’ optical properties
(PROSPECT model) and the bidirectional reflectance of the canopy (SAIL model). The
leaf structure parameter (N, i.e., internal structure parameter of the leaf mesophyll), leaf
chlorophyll content (LCC), leaf equivalent water thickness (EWT), and leaf mass per area
(LMA) parameters were used to simulate the optical properties of leaves (PROSPECT
model). The leaf area index (LAI), average leaf inclination angle (ALIA), hotspot parameter
(hot), solar zenith angle (tts), observer zenith angle (tto), and relative azimuth angle (psi)
parameters were used to simulate the bidirectional reflectance of canopy (SAIL model)
(Table 2). The soil reflectance from 400 to 2500 nm was also considered in the PROSAIL
model to characterise the soil backgrounds. However, the soil reflectance in this wavelength
interval cannot be acquired by the UAV multispectral camera used in the present work and
therefore it was retrieved from the database “ICRAF-ISRIC Soil VNIR Spectral Library”
of the Soil Information System (ISIS) of the International Soil Reference and Information
Centre (ISRIC), as this includes the soil reflectance from 400 to 2500 nm. The retrieval of the
soil reflectance was performed firstly by the resampling of soils reflectance measured in Italy
and found in the soil database, based on UAV multispectral camera characteristics (Table 1).
Then, a calculation of the differences of soils reflectance measured in soils from Italy found
in the database and soil reflectance extracted in this study from five UAV multispectral
images was made. Finally, the soil with the least difference in reflectance was used in the
PROSAIL model. The canopy reflectance was simulated from PROSAIL model using the R
package hsdar [45]. The spectral reflectance simulated were resampled based on a MicaSense
RedEdge-MX characteristics camera (Table 1). The canopy and leaf parameter combinations
and the spectral reflectance simulated by PROSAIL model are used for look-up table (LUT)
generation. The LUT generated included 86,400 parameter combinations following the
ranges (minimum and maximum) and the steps of the parameters summarised in Table 2.
In order to reduce the ill-posed problem [35], the ranges of values for the leaf and canopy
parameters were fixed on the base of in field measurements acquired during the two growing
seasons. The ALIA range was set between 10 and 30 because of the planophile nature of the
hemp canopy [46]. All parameter combinations used for LUT generation were considered
for LAI and LCC estimation as the hemp cultivars evaluated in this study exhibited large
differences in traits (e.g., high LAI and low LCC for “Fibror 79” and high LAI and high
LCC for “Futura 75” at the end of the vegetative phase) throughout the whole growing
season (e.g., low LAI and high LCC at the start of the growing season and low LAI and low
LCC at the end of the growing season).

Table 2. Ranges of input parameters for the PROSAIL model for generating the LUT.

Parameter Abbreviation Unit Values

Leaf

Structure parameter N Unitless 1.5
Chlorophyll content LCC µg cm−2 5–60 (step = 5)

Equivalent water thickness EWT g cm−2 0.006–0.03 (step = 0.004)
Mass per area LMA g cm−2 0.004–0.007 (step = 0.001)

Canopy

Leaf area index LAI m2 m−2 0.1–6 (step = 0.3)
Average leaf inclination angle ALIA deg 10–30 (step = 10)

Hotspot parameter hot m m−1 0.1
Solar zenith angle tts deg 20–30 (step = 5)

Observer zenith angle tto deg 10
Relative azimuth angle psi deg 190–195 (step = 5)
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2.5. Inversion Methods of the PROSAIL Model

Two inversion methods were compared in this study: a look-up table method based
on a cost function and a hybrid regression method based on machine learning techniques.

2.5.1. The Look-Up Table Inversion Method

The look-up table (LUT) was sorted using the cost function based on the root mean
square error (RMSE) to find the solution to the inverse problem for the measured canopy re-
flectance [33,34]. The RMSEr cost function (Equation (1)), between the measured reflectance
and the simulated reflectance found in the LUT, was calculated as:

RMSEr =

√
∑n

i=1
(

Rmeasuredi
− Rsimulatedi

)2

n
(1)

where n is the number of spectral bands, which was equal to five in the present work
(blue, green, red, red edge, and near-infrared), Rmeasuredi

is the reflectance at spectral band
i measured by the UAV, and Rsimulatedi

is the simulated reflectance at spectral band i in
the LUT. Two LUT methods were tested to find the solution to the inversion problem: the
first LUT method (single best solution) was determined as the set of input parameters
corresponding to the reflectance in the LUT that provides the smallest RMSEr; it will
thereafter be referred to as LUT-I. However, this solution is not always the optimal one
since it may not be unique (ill-posed problem). In order to reduce this problem, the second
LUT method (multiple best solution), was determined using the mean value of parameters
corresponding to the best 100 solutions (i.e., having the smallest sorted RMSEr) and it will
thereafter be referred to as LUT-II.

2.5.2. The Hybrid Regression Inversion Method

The hybrid methods utilised the parameter combinations (y) and the simulated spectral
reflectance (x) from the PROSAIL model, used for the LUT generation, to train machine
learning regression models. Therefore, the hybrid regression methods allow replacing
the field measurements needed to train nonparametric models, with the input parameters
and the output simulated by the PROSAIL model [27]. This study evaluated different
machine learning regression models: random forest (RF), Gaussian process regression
(GPR), artificial neural network (ANN), and the ensemble method (EM) obtained combining
RF, GPR, and ANN via stacking. The machine learning regression models were built using
the caret and caretEnsemble R packages [47,48]. The structural hyperparameters of the
machine learning regression models were optimised using a grid-searching method with
cross-validation. The training dataset was created using a stratified random sampling
method by LAI, LCC, and LMA value distribution of the LUT. The function of caretList was
used for building the machine learning regression models using the method rf, gaussprRadial,
and nnet, for RF, GPR, and ANN, respectively. The EM model was built using the function
caretStack that finds a good linear combination of the models (RF, GPR, and ANN).

2.5.3. Comparison of Inversion Methods

The field measurements of LAI and LCC were used to validate the inversion methods
of the PROSAIL model. The coefficient of determination (R2), the bias, the root mean square
error (RMSE), and the normalised root mean square error (NRMSE) were used for inversion
methods comparison. The bias was calculated using the mean of the difference between
measured values and estimated values. The NRMSE was calculated using the mean of
the measured values for normalising the RMSE [16]. These performance metrics were
calculated for each season, for each cultivar, for each trait and for two different intervals of
the traits. The LAI trait intervals investigated were LAI ≤ 3 m2 m−2 and LAI > 3 m2 m−2.
The LCC trait intervals investigated were LCC ≤ 30 µg cm−2 and LCC > 30 µg cm−2.
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2.5.4. Statistical Analysis of Inversion Methods

The non-parametric Friedman test was carried out to determine the best inversion
method for LAI and LCC estimations among the six inversion methods (LUT-I, LUT-II,
ANN, EM, GPR, and RF) as suggested by Demšar [49] and Kamir et al. [50]. A Nemenyi
post hoc test was performed to compare pairwise performance differences [51]. These
two statistical tests are based on ranks and they were performed using the NRMSE cal-
culated for each combination of different cultivar, year, and nitrogen fertilisation levels.
One hundred has been subtracted from the NRMSE values so that the low ranks indicate
high performance and conversely high ranks indicate low performance [50]. Two inversion
methods were stated as significantly different when the actual difference between their
average rank was greater than the critical distance at the 95% confidence level. A critical
distance diagram [49] was performed using the R package scmamp [52] and it was used to
display the results of the Nemenyi post hoc test. The diagram showed the average rank of
each inversion method and the critical distance.

2.6. GAM for Crop Phenotyping

The hemp cultivar traits were estimated from multiple UAV observations (supplemen-
tary observations were also considered) using the best inversion methods for each trait for
phenotyping the dynamics of LAI and LCC and identifying differences among cultivars
and nitrogen fertilisation levels. The time series of LAI and LCC values estimated from the
PROSAIL model inversion were fitted against the day after sowing (DAS). The statistical
analysis of the hemp traits time series was carried out via a generalised additive model
(GAM). The GAM models were fitted in R package mgcv [53]. The fitted models used fixed
factors such as season, block, cultivar, and nitrogen fertilisation levels and a smooth for
DAS, based on season and on interaction of cultivars and nitrogen fertilisation levels.

3. Results
3.1. Data Distribution of LAI and LCC

The distribution of the leaf area index (LAI) and leaf chlorophyll content (LCC) mea-
sured during two years on green and yellow hemp cultivars is shown in Figure 3. Generally,
“Futura 75” showed higher LAI and LCC values than “Fibror 79”. Regarding the LAI,
“Fibror 79” and “Futura 75” showed the lowest (LAI < 1 m2 m−2) and the highest values
(LAI > 5 m2 m−2) in 2020 while they showed a high frequency of the data in interme-
diate values (1.5 m2 m−2 < LAI < 4.5 m2 m−2) in 2021. Regarding the LCC, “Fibror
79” and “Futura 75” showed the lowest values (LCC < 18 µg cm−2 for “Fibror 79” and
LCC < 40 µg cm−2 for “Futura 75”) in 2020 compared to the LCC values recorded in 2021.

3.2. Comparison of Inversion Methods for LAI Trait Estimation

The results of the comparison of the different methods used for the inversion of the
PROSAIL model for the leaf area index (LAI) estimation is shown in Figure 4. Generally,
the hybrid methods achieved better accuracies than the look-up table (LUT) methods. The
random forest (RF) achieved the highest accuracy with 0.75 m2 m−2 of RMSE, 26.7% of
NRMSE, and 0.55 of R2. The LUT-I showed greater accuracy than the LUT-II, which ranked
last. The hybrid method with the worst accuracy was the ensemble method (EM) with
0.9 m2 m−2 of RMSE, 32.1% of NRMSE, 0.49 of R2, and −0.28 of bias (Figure 4). In Figure 4,
the NRMSE values of the different methods, divided by years and cultivars, are reported.
Generally, the RF was the best inversion method for both years and cultivars, except for
2020 where the ANN achieved the lowest NRMSE. Comparing the two years, “Fibror
79” displayed a higher variability of NRMSE than “Futura 75” (Figure 5). The different
inversion methods were evaluated on two LAI intervals (Figure 5). In general, the inversion
methods, when the LAI was ≤3 m2 m−2 were more accurate for “Futura 75” than “Fibror
79” while the opposite occurred when the LAI was >3 m2 m−2. The LUT methods and the
RF achieved lower NRMSE than the GPR, ANN, and EM when the LAI was ≤3 m2 m−2

(Figure 5), while when the LAI was >3 m2 m−2, the hybrids methods performed better
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than the LUT methods. The Nemenyi post hoc test was performed to identify groups of
inversion methods that significantly differed from one another (Figure 6). The inversion
method with the highest average rank was RF, which was included in the first group with
LUT-I, GPR, and ANN. The second group included LUT-I, GPR, ANN, EM, and LUT-II.
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3.3. Comparison of Inversion Methods for LCC Trait Estimation

The results of the inversion methods of the PROSAIL model for the estimation of leaf
chlorophyll content (LCC) are shown in Figure 7. The hybrid methods achieved better
accuracies than the LUT methods. The Gaussian process regression (GPR) achieved the
greatest accuracy with 9.69 µg cm−2 of RMSE, 29.7% of NRMSE, and 0.57 of R2. The
hybrid method that showed the worst accuracy was the ANN with 10.52 µg cm−2 of
RMSE, 32.3% of NRMSE, and 4.4 of bias (Figure 7). The NRMSE values of the different
methods, divided by years and cultivars, are reported in Figure 8. Overall, the NRMSE
values were lower in 2021 than in 2020 for both cultivars (Figure 8). The different methods
were also evaluated on two LCC intervals (Figure 8). The NRMSE values were lower in
LCC > 30 µg cm−2 than LCC ≤ 30 µg cm−2, particularly for “Futura 75”. The Nemenyi
post hoc test was performed to identify groups of inversion methods that significantly
differed from one another (Figure 9). The inversion method with the highest average rank
was GPR. Only one group was identified so no significant difference was observed between
inversion methods.

3.4. Dynamics of LAI and LCC of Hemp Cultivars

The best inversion methods, RF for LAI and GPR for LCC, were used to estimate the
LAI and LCC of the two hemp cultivars using the spectral data acquired from multiple
unmanned aerial vehicle (UAV) observations during 2020 and 2021 growing seasons. The
maps of LAI and LCC estimated on 105 days after sowing (DAS) during the growing season
2020 are reported in Figure 10.
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The generalised additive model (GAM) was applied to the time series of LAI and LCC
estimated by the inversion of the PROSAIL model, with “Futura 75” as a reference for
estimating significant differences among the hemp cultivars during the growing season
(Figure 11). The estimated differences of LAI between “Futura 75” and “Fibror 79” were
significant from 91 DAS to 108 DAS, with higher values of LAI for “Fibror 79” than for
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“Futura 75”, while higher values of LAI for “Futura 75” than for “Fibror 79” were observed
from 129 DAS until the end of the growing season (Figure 11). Higher values of LAI were
observed in “Futura 75” than “Fibror 79” during the early phases of the growing season
(until 72 DAS), but no significant differences were observed. The estimated differences of
LCC were significant throughout the whole growing season, with higher values of LCC
for “Futura 75” than for “Fibror 79” (Figure 11). The estimated differences of LCC showed
an increase from the start of the growing season up to 75 DAS (estimated difference of
−13.5 µg cm−2) and remained constant afterward until the end of the growing season.
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Figure 11. Traits’ dynamics of the two hemp cultivars according to the difference in estimated
LAI and LCC. The dashed green line represents the reference cultivar “Futura 75” and the yellow
line represents “Fibror 79”. The estimation of the differences between cultivars along the time
series was carried out using a GAM. Solid and dashed yellow line denotes, respectively, significant
(p-value < 0.05) and not significant differences of “Fibror 79” compared to the reference “Futura 75”.
A positive difference means that “Fibror 79” trait values were higher than "Futura 75”.

3.5. Effect of Nitrogen Fertilisation on LAI and LCC Dynamics

The GAM was also used to analyse the effect of nitrogen fertilisation on the dynamics
of the LAI and LCC of the two hemp cultivars. The reference used for estimating sig-
nificant differences among nitrogen levels for each cultivar was the lowest fertilisation
dose, i.e., 0 kgN ha−1 (Figure 12). The analysis showed that the effect of nitrogen dose
was significant for both cultivars and both traits. The largest estimated differences were
observed with the highest nitrogen level and decreased proportionally to the nitrogen
dose. The estimated differences of LAI were highest during early phases of the growing
season and progressively decreased until the final harvest (Figure 12). Generally, the LCC
showed the highest estimated differences at the end of the vegetative growth from 60 DAS
to 90 DAS approximately, except for “Futura 75” at 25 and 50 kgN ha−1 nitrogen levels
where the highest estimated differences were observed at the start of the vegetative growth.
The LAI of “Futura 75” showed significant estimated differences throughout the whole
growing season with 100 kgN ha−1 nitrogen level and from the start of the growing season
until 118 DAS and 103 DAS with 50 kgN ha−1 and 25 kgN ha−1 nitrogen levels, respec-
tively. The “Futura 75” LCC showed significant estimated differences from the start of the
growing season until 144 DAS, 145 DAS, and 82 DAS with 100 kgN ha−1, 50 kgN ha−1, and
25 kgN ha−1 nitrogen levels, respectively (Figure 12). The LAI of “Fibror 79” showed sig-
nificant estimated differences from the start of the growing season until 140 DAS, 99 DAS,
and 70 DAS with 100 kgN ha−1, 50 kgN ha−1, and 25 kgN ha−1 nitrogen levels, respectively.
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“Fibror 79” LCC showed significant estimated differences throughout the whole growing
season with 100 kgN ha−1 nitrogen levels, from the 37 DAS and 40 DAS until 102 DAS
and 141 DAS with 50 kgN ha−1 and 25 kgN ha−1 nitrogen levels, respectively (Figure 12).
Significant LCC estimated differences of “Fibror 79” were also observed for 50 kgN ha−1

nitrogen levels from 135 DAS to the end of the growing season.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 21 
 

 

DAS and 103 DAS with 50 kgN ha−1 and 25 kgN ha−1 nitrogen levels, respectively. The “Fu-
tura 75” LCC showed significant estimated differences from the start of the growing sea-
son until 144 DAS, 145 DAS, and 82 DAS with 100 kgN ha−1, 50 kgN ha−1, and 25 kgN ha−1 
nitrogen levels, respectively (Figure 12). The LAI of “Fibror 79” showed significant esti-
mated differences from the start of the growing season until 140 DAS, 99 DAS, and 70 
DAS with 100 kgN ha−1, 50 kgN ha−1, and 25 kgN ha−1 nitrogen levels, respectively. “Fibror 
79” LCC showed significant estimated differences throughout the whole growing season 
with 100 kgN ha−1 nitrogen levels, from the 37 DAS and 40 DAS until 102 DAS and 141 
DAS with 50 kgN ha−1 and 25 kgN ha−1 nitrogen levels, respectively (Figure 12). Significant 
LCC estimated differences of “Fibror 79” were also observed for 50 kgN ha−1 nitrogen lev-
els from 135 DAS to the end of the growing season. 

 
Figure 12. Dynamics of the estimated difference of LAI and LCC across nitrogen fertilisation levels 
for hemp cultivars. The reference nitrogen fertilisation level with 0 kgN ha−1 is represented with a 
light green dashed line. The estimation of the differences between nitrogen fertilisation levels along 
the time series was carried out using a GAM. Solid and dashed coloured lines denote, respectively, 
significant (p-value < 0.05) and not significant differences of the corresponding nitrogen fertilisation 
levels compared to the reference nitrogen fertilisation level (0 kgN ha−1). A positive difference be-
tween the reference and any other level of nitrogen fertilisation means that the reference has a lower 
value of LAI and LCC. 

4. Discussion 
4.1. Evaluation of the Inversion Methods Accuracy for the Estimation of LAI and LCC 

This study focused on UAV-based remote sensing estimation of hemp traits to phe-
notype two contrasting cultivars and to support the application of innovative precision 
agriculture. Multispectral data acquired from an unmanned aerial vehicle (UAV) in two 

Figure 12. Dynamics of the estimated difference of LAI and LCC across nitrogen fertilisation levels
for hemp cultivars. The reference nitrogen fertilisation level with 0 kgN ha−1 is represented with a
light green dashed line. The estimation of the differences between nitrogen fertilisation levels along
the time series was carried out using a GAM. Solid and dashed coloured lines denote, respectively,
significant (p-value < 0.05) and not significant differences of the corresponding nitrogen fertilisation
levels compared to the reference nitrogen fertilisation level (0 kgN ha−1). A positive difference
between the reference and any other level of nitrogen fertilisation means that the reference has a
lower value of LAI and LCC.

4. Discussion
4.1. Evaluation of the Inversion Methods Accuracy for the Estimation of LAI and LCC

This study focused on UAV-based remote sensing estimation of hemp traits to pheno-
type two contrasting cultivars and to support the application of innovative precision agricul-
ture. Multispectral data acquired from an unmanned aerial vehicle (UAV) in two growing
seasons (2020 and 2021) were used to estimate the leaf area index (LAI) and leaf chlorophyll
content (LCC) using inversion methods of the PROSAIL model.

4.1.1. Effects of Data Distribution on Accuracy of LAI and LCC Estimation

The UAV multispectral camera used in this study (MicaSense RedEdge-MX) includes
five spectral bands and enabled a reliable estimation of LAI and LCC, achieving results com-
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parable to those obtained in previous studies, conducted with both multispectral [38–40]
and hyperspectral UAV cameras [36,54]. However, it remains difficult to compare the
models’ accuracy achieved in different conditions (i.e., years and cultivars) or studies be-
cause the performance metrics such as RMSE and NRMSE depend on the data distribution
(i.e., size, mean, and range of the traits) used for the validation of the models. For example,
in this study, high differences of NRMSE values for LCC estimation were observed between
years or LCC intervals. These results can be explained analysing the LCC distribution as,
for example, in 2020, the higher NRMSE values can be caused by the high frequency of low
LCC values in this year compared to 2021. In fact, the lowest accuracy of LCC estimation
was observed ≤ 30 µg cm−2; this may have been caused by hemp blooming at the end
of the season, as crop blooming has already been reported to affect reflectance data [40].
Analysing the accuracy of the LAI estimation, low accuracies were observed when the LAI
was ≤3 m2 m−2 and this may have been caused by the interferences of the soil at low LAI
values, which can affect the reflectance of the multispectral images from UAV, as observed
by Xu et al. [55]. However, at LAI ≤ 3 m2 m−2, the high difference between measured and
estimated LAI (Figure 3) were observed between 2 m2 m−2 and 3 m2 m−2 and this aspect
could be explained by the difference of LAI accuracy in “Fibror 79” between 2020 (low
values of NRMSE) and 2021 (high values of NRMSE), because in 2021 the LAI measured
showed a high frequency of the values between 2 m2 m−2 and 3 m2 m−2.

4.1.2. Comparison of Hybrids and LUT Inversion Methods

Among the different inversion methods reported in the literature, this study compared
two look-up table (LUT) methods based on the RMSEr cost function (LUT-I and LUT-II) and
four hybrid regression methods based on machine learning techniques (RF, GPR, ANN, and
EM) to identify the most accurate LAI and LCC estimation method. The results obtained
with the LUT methods showed that the LUT-I method (single best solution) achieved a
better accuracy than the LUT-II method (mean of 100 best solutions). The opposite results
were reported for heterogenous grassland, by Darvishzadeh et al. [33], and for wheat,
by Sehgal et al. [34]. Regarding hybrid methods, the best accuracies were achieved with
random forest (RF) for LAI and Gaussian process regression (GPR) for LCC, which was
also the most accurate method for estimating LCC in a study conducted on multi-crop by
Verrelst et al. [56]. Low accuracies were achieved using the ensemble method (EM) for
both LAI and LCC, which could be the consequence of the high correlation among the
values predicted by the individual algorithms (RF, GPR, and ANN), as already reported by
Kamir et al. [50].

In this study, the LAI estimation was generally more accurate than the estimation
of the LCC. This confirms the difficulty of estimating LCC, which was already reported
in previous studies [33,34,57] and that is the consequence of the poor signal propagation
from leaf to canopy scale, as demonstrated by Asner [58]. Overall, estimation of the LAI
and LCC was more accurate using hybrid methods than LUT ones, which is in agreement
with what was reported by Fei et al. [59] and Zhang et al. [60], but not with the findings of
Sehgal et al. [34] and Vohland et al. [61], who found that the LUT inversion methods were
more accurate than the hybrid ones. Ali et al. [62], instead, did not find differences between
the methods. This aspect was confirmed in this study using the critical distance diagram
where few (for LAI) and no (for LCC) significant differences were observed, though RF for
LAI and GPR for LCC ranked first. However, accuracy is not the only criteria to consider
when selecting the inversion method of the PROSAIL model. For example, studies have
focused on the inversion run time, showing that hybrid methods are faster in performing
the inversion compared to LUT methods [27,62]. Therefore, these hybrid methods appear
particularly pertinent for crop trait estimation for their accuracy and their fast inversion
compared to LUT methods.
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4.2. UAV Remote Sensing and GAM for Phenotyping the Dynamics of LAI and LCC

High-throughput phenotyping (HTP) obtained by the combination of multiple UAV
observations, estimation models of crop traits, and generalised additive model (GAM)
analysis, can characterise the dynamics of relevant crop traits [41,42]. This study focused
on the application of UAV multispectral images for characterising LAI and LCC in hemp.
The time series of the traits estimated (with the best method for each trait) were used to
characterise two hemp cultivars (a green and a yellow one), grown with different nitrogen
fertilisation levels, using a generalised additive model (GAM).

4.2.1. Hemp Cultivars Phenotyping

The use of GAM to compare the LAI dynamics of two hemp cultivars showed that
the LAI of “Futura 75” tended to be higher (but not significantly) than that of “Fibror 79”
in the early phases of the growing season. At the end of the vegetative phase, LAI was
highest in “Fibror 79” and finally it became highest in “Futura 75” during the seed maturing
phase (Figure 11). The highest LAI of “Futura 75” at the start of the growing season might
indicate that its canopy developed more rapidly than that of “Fibror 79”. However, 90 days
after sowing (DAS), the LAI of “Fibror 79” increased faster than that of “Futura 75” and
became even significantly higher for 18 days (between 91 DAS and 108 DAS). This could
be explained by the fact that “Fibror 79” is a cultivar that flowers slightly later (with about
4 days of delay according to the breeder) than “Futura 75”, hence the senescence of “Futura
75” starts sooner than for “Fibror 79”, explaining the observed dynamic of LAI estimated
differences between both cultivars. These results are in accordance with Herppich et al. [63]
who reported that the LAI peak of “Ivory” (the yellow cv.), a cultivar that flowers earlier
than “Santhica 27” (the green cv.), was reached sooner than the LAI peak of “Santhica 27”.
They also found that for the green cultivar “Santhica 27”, the LAI remained the highest
for the rest of the growing season. After flowering, the same dynamics were observed
in this study where the LAI of the green cultivar “Futura 75” was significantly higher
than that of “Fibror 79” during the seed filling phase. This could be due to the higher
nitrogen content in “Futura 75” leaves than in “Fibror 79” ones, in line with the statement
of Thouminot [64], who stated that the yellow strain of hemp (i.e., “Fibror 79”) was due to
a reduced capacity of nitrogen assimilation. Indeed, the dynamic of LCC observed in this
study, linked to leaf nitrogen content [65], showed higher values for “Futura 75” than for
“Fibror 79” throughout the whole growing season. The LCC estimated differences of the
two hemp cultivars showed an increase from the start of the growing season until 75 DAS
and then remained constant until the end of the growing season (Figure 11).

4.2.2. Effects of Nitrogen Fertilisation on Hemp Growth

In order to characterise the LAI and LCC dynamics of hemp cultivars, the nitrogen
fertilisation effects were included in the GAM analysis. The nitrogen fertilisation had a
significant effect on the LAI and LCC dynamics (Figure 12). As for the LAI, the higher
estimated differences across the nitrogen fertilisation levels were observed in the early
phases of the growing season for both cultivars. These results are in accordance with those
reported by Seleiman et al. [66], who found that the nitrogen fertilisation treatments had
a significant effect on the LAI of hemp only at the start of the growing season (44 DAS).
The higher estimated differences of LAI between the nitrogen levels could be due to a
greater nitrogen accumulation at the start of the growing season, as reported by Ivonyi
et al. [67]. They found, for hemp, that the most intense phase of nitrogen accumulation
occurred between 30 and 60 DAS, as 79% of the total amount of nitrogen had effectively
been accumulated after 60 DAS, in accordance with Seleiman et al. [66]. This intense
nitrogen uptake during the early phases of the growing season could explain the general
increase of estimated differences of LCC until 60–80 DAS when a peak of LCC estimated
differences occurred (Figure 12). The increase of nitrogen fertilisation led to increases in
nitrogen uptake and accumulation by the crop, with a subsequent significant increase in
LCC, as reported by Yang et al. [68]. This relation was also observed in this study, as LCC
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dynamics had higher values at increasing levels of nitrogen fertilisation. After flowering,
the LCC estimated differences decreased with the start of the senescence stage and the start
of the chlorophyll’s degradation.

5. Conclusions

This study demonstrated that hemp traits can be estimated with relatively good
accuracy by the inversion of the PROSAIL model using multispectral images acquired by
UAV. Generally, the hybrid methods performed better than LUT methods, both for LAI and
LCC estimations, and the best accuracies were achieved by RF for estimating the LAI and by
GPR for estimating LCC. Few significant differences for LAI estimation and no significant
differences for LCC estimation were observed between the hybrid and LUT methods.
However, if the same accuracy is achieved by hybrids and LUT methods, it is preferable
to use the hybrid methods for their fast inversion compared to LUT methods. The HTP
of the crops can be carried out by applying the GAM to the time series of traits estimated
by the inversion of the PROSAIL model from multiple multispectral UAV observations.
The GAM analysis showed differences in the LAI and LCC dynamics between two hemp
cultivars with contrasting phenotypes. In particular, the dynamic of LAI along the growing
season was different between the two cultivars, with “Futura 75” having a slightly faster
increment of LAI than “Fibror 79” early in the season, while the opposite occurred at the
end of the vegetative growth. The two cultivars also clearly differed in terms of estimated
LCC, with “Futura 75” consistently having the highest LCC. Nitrogen fertilisation also had
a significant effect on the dynamics of both traits, with increasing levels of nitrogen leading
to increments of LAI and LCC. HTP based on UAV remote sensing proved to be a powerful
tool to estimate crop traits and to improve our understanding of the traits’ dynamics of
contrasting cultivars throughout the whole growing season. These innovative precision
agriculture technologies can contribute to the development of the hemp sector; for example,
enabling the HTP of different genotypes for drought tolerance characterisation in the frame
of breeding programs or by allowing a precise monitoring and an efficient management of
hemp’s cultivation.
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