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Abstract: Precise canopy management is critical in vineyards for premium wine production because
maximum crop load does not guarantee the best economic return for wine producers. The growers
keep track of the number of grape bunches during the entire growing season for optimizing crop load
per vine. Manual counting of grape bunches can be highly labor-intensive and error prone. Thus,
an integrated, novel detection model, Swin-transformer-YOLOv5, was proposed for real-time wine
grape bunch detection. The research was conducted on two varieties of Chardonnay and Merlot from
July to September 2019. The performance of Swin-T-YOLOv5 was compared against commonly used
detectors. All models were comprehensively tested under different conditions, including two weather
conditions, two berry maturity stages, and three sunlight intensities. The proposed Swin-T-YOLOv5
outperformed others for grape bunch detection, with mean average precision (mAP) of up to 97% and
F1-score of 0.89 on cloudy days. This mAP was ~44%, 18%, 14%, and 4% greater than Faster R-CNN,
YOLOv3, YOLOv4, and YOLOv5, respectively. Swin-T-YOLOv5 achieved an R2 of 0.91 and RMSE of
2.4 (number of grape bunches) compared with the ground truth on Chardonnay. Swin-T-YOLOv5 can
serve as a reliable digital tool to help growers perform precision canopy management in vineyards.

Keywords: computer vision; crop load estimation; deep learning; full growth season; in-field imaging;
object detection; precision viticulture; vineyard management; wine grape; yolo

1. Introduction

The overall grape production in the United States has reached 6.05 million tons in
2021, in which approximately 5.78 million tons (~96%) were from wine grape production
in California and Washington [1]. To maintain the premium quality of wine, vineyards
need to be elaborately managed so that the quantity and quality of the grapes can be
well balanced for maximum vineyard profitability. Such vineyard management can be
difficult because the number of berry bunches should be closely monitored by laborers
throughout the entire growing season to avoid a high volume of bunches overburdening the
plant and thus the berry composition may not be optimal [2]. Presenting this information
can help the growers to timely prune and thin the grape clusters during the growing
season. This presents significant challenges for wine grape growers and managers due to
the agricultural workforce shrinking and cost increasing. Potentially, this issue might be
mitigated by leveraging the superiority of state-of-the-art computer vision technologies
and data-driven artificial intelligence (AI) techniques [3].

Object detection is one of the fundamental tasks in computer vision, which is used
for detecting instances of one or more classes of objects in digital images. Several common
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challenges, that prevent a target object from being successfully detected, include but are not
limited to variable outdoor light conditions, scale changes in the objects, small objects, and
partially occluded objects. In recent years, numerous deep learning-driven object detectors
have been developed for various real-world tasks, such as fully connected networks (FCNs),
convolutional neural networks (CNNs), and Vision Transformer. Among these, CNN-based
object detectors have demonstrated promising results [4,5]. Generally, CNN-based object
detectors can be divided into two types, including one-stage detectors and two-stage
detectors. The one-stage detector uses a single network to predict the bounding boxes and
calculates the class probabilities of the boxes. Two-stage detector first proposes a set of
regions of interest (i.e., region proposal) where the potential bounding box candidates can
be infinite, then a classifier processes the region candidates only. Taking a few examples,
one-stage detectors include Single Shot Multibox Detector (SSD) [6], RetinaNet [7], Fully
Convolutional One-Stage (FCOS) [8], DEtection TRansformer (DETR) [9], EfficientDet [10],
You Only Look Once (YOLO) family [11–14], while two-stage detectors include region-
based CNN (R-CNN) [15], Fast/Faster R-CNN [16,17], Spatial Pyramid Pooling Networks
(SPPNet) [18], Feature Pyramid Network (FPN) [19], and CenterNet2 [20].

As agriculture is being digitalized, both one-stage and two-stage object detectors have
been widely applied to various orchard and vineyard scenarios, such as fruit detection
and localization, with promising results achieved. Some of the major reasons, which made
object detection challenging in agricultural environments, include severe occlusions from
non-target objects (e.g., leaves, branches, trellis-wires, and densely clustered fruits) to target
objects (e.g., fruit) [21]. Thus, in some cases, the two-stage detectors were preferred by
the researchers due to their greater accuracy and robustness. Tu et al. [22] developed an
improved model based on multi-scale Faster R-CNN (MS-FRCNN) that used both RGB
(i.e., red, green, and blue) and depth images to detect passion fruit. Results indicated
that the precision of the proposed MS-FRCNN was improved from 0.85 to 0.93 (by ~10%)
compared to generic Faster R-CNN. Gao et al. [21] proposed a Faster R-CNN-based multi-
class apple detection model for dense fruit-wall trees. It could detect apples under different
canopy conditions, including non-occluded, leaf-occluded, branch/trellis-wire occluded,
and fruit-occluded apple fruits, with an average detection accuracy of 0.879 across the
four occlusion conditions. Additionally, the model processed each image in 241 ms on
average. Although two-stage detectors have shown robustness and promising detection
results in agricultural applications, there is still one major concern, the high requirement of
computational resources (leading to slow inference speed), to further implement them in
the field. Therefore, it has become more popular nowadays to utilize one-stage detectors
in identifying objects in orchards and vineyards, particularly using YOLO family models
with their feature of real-time detection.

Huang et al. [23] proposed an improved YOLOv3 model for detecting immature
apples in orchards, using Cross Stage Partial (CSP)-Darknet53 as the backbone network of
the model to improve the detection accuracy. Results showed that the F1-Score and mean
Average Precision (mAP) were 0.65 and 0.68, respectively, for those severely occluded fruits.
Furthermore, Chen et al. [24] also improved the YOLOv3 model for cherry tomato detection,
which adopted a dual-path network [25] to extract features. The model established four
feature layers at different scales for multi-scale detection, achieving an overall detection
accuracy of 94.3%, recall of 94.1%, F1-Score of 94.2%, and inference speed of 58 ms per
image. Lu et al. [26] introduced a convolutional block attention module (CBAM) [27] and
embedded a larger-scale feature map to the original YOLOv4 to enhance the detection
performance on canopy apples in different growth stages. In general, object detectors tend
to have false detections when occlusion occurs, no matter using a one-stage or two-stage
detector. YOLO family detectors, like many other widely adopted detectors, could also
have information loss affected by canopy occlusions. During the past two years, Vision
Transformer has demonstrated outstanding performances in numerous computer vision
tasks [28] and, therefore, is worth being further investigated to be employed together with
YOLO models in addressing the challenges.
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A typical Vision Transformer architecture is based on a self-attention mechanism that
can learn the relationships between components of a sequence [28,29]. Among all types,
Swin-transformer is a novel backbone network of hierarchical Vision Transformer, using
a multi-head self-attention mechanism that can focus on a sequence of image patches to
encode global, local, and contextual cues with certain flexibilities [30]. Swin-transformer
has already shown its compelling records in various computer vision tasks, including
region-level object detection [31], pixel-level semantic segmentation [32], and image-level
classification [33]. Particularly, it exhibited strong robustness to severe occlusions from
foreground objects, random patch locations, and non-salient background regions. However,
using Swin-transformer alone in object detection requires large computing resources as the
encoding–decoding structure of the Swin-transformer is different from the conventional
CNNs. For example, each encoder of Swin-transformer contains two sublayers. The first
sublayer is a multi-head attention layer, and the second sublayer is a fully connected layer,
where the residual connections are used between the two sublayers. It can explore the
potential of feature representation through a self-attention mechanism [34,35]. Previous
studies on public datasets (e.g., COCO [36]) have demonstrated that Swin-transformer
outperformed other models on severely occluded objects [37]. Recently, Swin-transformer
has also been applied in the agricultural field. For example, Wang et al. [38] proposed
“SwinGD” for grape bunch detection using Swin-transformer and Detection Transformer
(DETR) models. Results showed that SwinGD achieved 94% of mAP, which was more accu-
rate and robust in overexposed, darkened, and occluded field conditions. Zheng et al. [39]
researched a method for the recognition of strawberry appearance quality based on Swin-
transformer and Multilayer Perceptron (MLP), or “Swin-MLP”, in which Swin-transformer
was used to extract strawberry features and MLP was used to identify strawberry according
to the imported features. Wang et al. [40] improved the backbone of Swin-transformer
and then applied it to identify cucumber leaf diseases using an augmented dataset. The
improved model had a strong ability to recognize the diseases with a 99.0% accuracy.

Although many models for fruit detection have been studied in orchards and
vineyards [26,41–47], the critical challenges in grape detection in the field environment
(e.g., multi-variety, multi-stage of growth, multi-condition of light source) have not yet been
fully studied using a combined model of YOLOv5 and Swin-transformer. In this research,
to achieve better accuracy and efficiency of grape bunch detection under dense foliage
and occlusion conditions in vineyards, we architecturally combined the state-of-the-art,
one-stage detector of YOLOv5 and Swin-transformer (i.e., Swin-Transformer-YOLOv5
or Swin-T-YOLOv5), so that the proposed new network structure had the potential to
inherently preserve the advantages from both models. The overarching goal of this re-
search was to detect wine grape bunches accurately and efficiently under a complex vine-
yard environment using the developed Swin-T-YOLOv5. The specific research objectives
were to:

• Effectively detect the in-field wine grape bunches by proposing a novel combined
network architecture of Swin-T-YOLOv5 using YOLOv5 and Swin-transformer;

• Compare the performance of the developed Swin-T-YOLOv5 with other widely used
object detectors, including Faster R-CNN, generic YOLOv3, YOLOv4, and YOLOv5,
and investigate the results under different scenarios, including different wine grape
varieties (i.e., white variety of Chardonnay and red variety of Merlot), weather con-
ditions (i.e., sunny and cloudy), berry maturities or growth stages (i.e., immature
and mature), and sunlight directions/intensities (i.e., morning, noon, and afternoon)
in vineyards.

2. Materials and Methods
2.1. Data Acquisition and Preprocessing
2.1.1. Wine Grape Dataset

The data acquisition and research activities in this study were carried out in a wine
vineyard located in Washington State University (WSU) Roza Experimental Orchards,
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Prosser, WA. Two different wine grape varieties were selected as the target crops due
to their distinct color of berry skin when mature, including Chardonnay (white berries;
Figure 1a) and Merlot (red berries; Figure 1d). The color of berry skin for Chardonnay was
consistently white throughout the growth season (Figure 1b,c), while the color for Merlot
changed from white to red (Figure 1e,f) during the season. There were approximately
10–33 and 12–32 grape bunches per vine for the experimental Chardonnay and Merlot
plants in this study. The wine vineyard was maintained by a professional manager for
optimal productivity. The row and inter-plant spaces were about 2.5 m and 1.8 m for
both varieties.
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Figure 1. Grape dataset acquisition on (a) Chardonnay (white color of berry skin when mature;
10–33 grape bunches per plant) with the close-up views of grape bunch during (b) immature and
(c) mature stages, and (d) Merlot (red color of berry skin when mature; 12–32 grape bunches per
plant) with the close-up views of grape bunch during (e) immature and (f) mature stages.

The imagery data collection was completed using a Samsung Galaxy S6 smartphone
(Samsung Electronics Co., Ltd., Suwon, Republic of Korea) at distances of 1–2 m, while
the camera was facing perpendicularly to the canopy. The data collection was carried
out during the entire growth season (i.e., from the berries were developed to mature) at
a periodical frequency of one day per week and three times per day from 4 July 2019 to
30 September 2019. More specific details were given in Table 1 that the images of the
canopies were captured under two weather conditions (i.e., sunny and cloudy), two
berry maturity conditions (i.e., immature from 4 July 2019–27 July 2019 and mature from
7 September 2019–30 September 2019), and three sunlight direction/intensity conditions
(i.e., morning at 8am–9am, noon at 11am–12pm, and afternoon at 4pm–5pm, Pacific Day-
light Time). All these various outdoor conditions largely represented the diversity of the
imagery dataset. Note that all images were always acquired from the same side of the
canopy. As a result, 459 raw images were collected in total for Chardonnay (234 images)
and Merlot (225 images) grape varieties in the original resolution of 5312 × 2988 pixels
(Table 2). The specific number of raw images under individual conditions can also be found
in Table 1.
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Table 1. Grape dataset collected under different weather, berry maturity, and sunlight direc-
tion/intensity conditions.

Grape Variety Weather/Plant/Light Condition Number of Raw Images Total

Chardonnay

Weather
Sunny 169 5

234Cloudy 65

Berry maturity Immature (white) 83
155 6

Mature (white) 72

Sunlight direction 1
Morning 2 91

234Noon 3 75
Afternoon 4 68

Merlot

Weather
Sunny 153

225Cloudy 72

Berry maturity
Immature (white/white–red

mix) 81
162 6

Mature (red) 81

Sunlight direction
Morning 82

225Noon 70
Afternoon 73

1 All images in this study were taken from the consistent side of the canopy. 2 Morning at 8am–9am (in the
direction of the light). 3 Noon at 11am–12pm (maximum solar elevation angle). 4 Afternoon at 4pm–5pm (against
the direction of the light). 5 Both sunny and cloudy images were included in the train set. 6 All images were
periodically collected from 4 July 2019–30 September 2019, in which the dates were divided into three growth
stages, including early stage (4 July 2019–27 July 2019), middle stage (2 August 2019–24 August 2019), and late
(harvest) stage (7 September 2019–30 September 2019). During the middle stage, the change in shape and color of
the grapes was inconsiderable. Therefore, we only compared the early stage (immature) and late stage (mature).

Table 2. Grape imagery dataset and augmentation in this study.

Dataset Variety Color of
Berry Skin

Original Image
Size (Pixels)

Number of
Raw Images

Number of Total Images
(After Augmentation)

Grape Chardonnay White
5312 × 2988

234 2263
Merlot Red 225 2155

Total 459 4418

2.1.2. Dataset Annotation and Augmentation

The raw imagery dataset was manually annotated using the annotation tool of
LabelImg [48]. The position of the grape bunch was individually selected using bounding
boxes. Clustered grape bunches were also carefully separated. In addition, the “debar” ap-
proach was adopted based on our previous publication [26] to separate individual canopies
for evaluation purposes only. Once all raw images (Figure 2a) were annotated with manual
labels, the dataset was further enriched (Figure 2b–e) by using data enhancement and aug-
mentation library of Imgaug [49]. During data augmentation, the annotated “key points”
and “bounding boxes” were transformed accordingly. The enriched dataset can better rep-
resent the field conditions of the grape bunches. After augmentation, a dataset containing
4418 images was developed, where a detailed description of the augmented dataset can
be found in Table 2. The finalized dataset was further divided into train (80%), validation
(10%), and test sets (10%), respectively, for development of grape bunch detection models.
Finally, the in-field manual counting of grape bunches was completed during the harvest
season on 1 October 2019 after the last dataset was acquired.
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2.2. Grape Bunch Detection Network
2.2.1. Swin-Transformer

First, the Swin-transformer architecture [30] was introduced in Figure 3a. It can
split the input RGB image into non-overlapping, small patches through a patch partition
module. Each patch was treated as a “token” whose features were set as the concatenation
of the raw pixel values in the RGB image (i.e., 3 channels). In this study, a patch size of
4 × 4 was used and, therefore, the feature dimension per patch was 4 × 4 × 3 = 48. A linear
embedding layer was then applied to this raw value feature to project it to an arbitrary
dimension (denoted as C in Figure 3a). Swin-transformer was built through replacing the
standard multi-head self-attention (MSA) module in a regular Transformer block by an
MSA module based on “windows” (i.e., W-MSA) and “shifted windows” (i.e., SW-MSA),
while other layers kept the same (Figure 3b). This module was followed by a 2-layer
multi-layer perceptron (MLP) with nonlinearity of rectified linear unit (ReLU) in between.
A normalization layer (LayerNorm) and a residual connection were applied before and
after each MSA module and MLP layer.
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After linear projection and reshape operation, a feature map X ∈ RH×W×C becomes
Q, K, V ∈ RN× C′ to provide self-attention, where N = H×W. The output of self-attention
is expressed in Equations (1) and (2):

Attention = TV (1)

T = SoftMax

(
QKT
√

d
+ B

)
(2)

where T ∈ RN×N is the attention matrix representing the relationship between all elements
on the feature map and other elements. The output Attention aggregates the global in-
formation. The absolute position encoding is to add a learnable parameter to each token
before the self-attention calculation, and the relative position encoding is to add a learnable
relative position parameter in the calculation process of self-attention. The relative position
offset is B ∈ RM2×M2

, and the value range of each axis is [−M + 1, M − 1]. Then W-MSA
module was used to reduce the amount of computation. MSA performs the self-attention
calculation among all pixels in Vision Transformer (Equation (3)), while W-MSA only
performs the self-attention calculation among pixels in the same window (size of 7 × 7).
With the local window size of m×m, the computational complexity (Ω) of a feature map
X ∈ RH×W×C was calculated in Equations (3) and (4):

Ω(MSA) = 4hwC2 + 2(hw)2C (3)

Ω(W−MSA) = 4hwC2 + 2M2hwC (4)

2.2.2. YOLOv5

YOLOv5 (specifically, YOLOv5s) is a recent detection model in YOLO family [13],
which has fast inference (detection) speed. In addition, YOLOv5s is a lightweight model
with fewer model parameters, which is approximately 10% of the generic YOLOv4, indi-
cating that this model might be more suitable for deployment on embedded devices for
real-time object detection. Combined with all these advantages, this study attempted to
detect grape bunches in dense canopies using the improved YOLOv5.

In general, YOLOv5 framework includes three parts: backbone, neck, and detection
(or output) networks (Figure 4a). The backbone network was used to extract feature maps
from the input images with multiple convolutions and merging. A three-layer feature
map was then generated in the backbone network in the sizes of 80 × 80, 40 × 40, and
20 × 20 (Figure 4a; left). After backbone network, the neck network contained a series of
feature fusion layers that can mix and combine image features. All feature maps in different
sizes generated by the backbone network were fused to obtain more context information
and reduce the information loss. The characteristic pyramid structure of Feature Pyramid
Network (FPN) and Path Aggregation Network (PANet) were adopted during the merging
process, where strong semantic features were transferred from top to bottom feature maps
using FPN structure. Meanwhile, strong localization features were transferred from lower
to higher feature maps using PANet. Overall, the ability of feature fusion in the neck
network was enhanced by using FPN and PANet together (Figure 4a; middle). Finally, the
detection network was used to give the detection results. It consisted of three detection
layers, with the corresponding output feature maps of 80 × 80, 40 × 40, and 20 × 20, which
was used to detect objects in the input images. Each detection layer ultimately can output a
21-channel vector and then generate and mark the predicted bounding box and category of
the target in the original input images for final detections (Figure 4a; right).
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Figure 4. (a) Integrated architecture of Swin-transformer-YOLOv5; layers of (b) focus; (c) CBL
and cross-stage partial (CSP) bottleneck with 3 convolutions (C3); and (d) spatial pyramid pooling
(SPP), where CONV, Concat, BN, SiLU, and ADD (⊕) refer to convolutional, concatenate, batch
normalization, activation function of sigmoid linear unit, and feature fusion with the number of
channels unchanged. P refers to the specific layer of feature map.

Moreover, the focus module of YOLOv5 can slice and concatenate images (Figure 4b),
which was designed to reduce the computational load of the model and speed up the
training process. It can first split the input 3-channel image into four slices using the
slice operation. The four slices were concatenated using the Concat operation, and a
convolutional layer (CONV) was then used to generate the output feature map. Figure 4c
gave the explanations on some layers/modules in backbone network, including CBL
and C3, in which CBL was a standard convolutional module consisting of CONV, batch
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normalization (BN), and activation function of sigmoid linear unit (SiLU); C3 was cross
stage partial (CSP) bottleneck with 3 CONVs. The initial input was split into two branches,
and thus the number of channels of the feature maps was halved by CONV operation in
each branch. The output feature maps of the two branches were again connected through
the Concat operation. The final output feature map of C3 was generated by CONV. C3 was
used to improve inference (test) speed by reducing the size of the model while maintaining
desired performances in extracting useful features from images. Finally, spatial pyramid
pooling (SPP) module was used to improve the receptive field by converting feature maps
of arbitrary size into feature vectors of fixed size (Figure 4d). The feature map was first
output through a CONV layer with the kernel size of 1 × 1. It was then connected with the
output feature map subsampled by three parallel max pooling layers, followed by a CONV
layer to output the final feature map.

2.2.3. Integration of Swin-Transformer and YOLOv5

To take advantage of both Swin-transformer and YOLOv5, two models were inte-
grated (i.e., Swin-transformer-YOLOv5 or Swin-T-YOLOv5) by replacing the last C3 layer
(i.e., with CSP bottleneck and three CONVs) in the backbone network of the original
YOLOv5 with Swin-transformer encoder blocks (Figure 4a). Because the resolution of
feature maps was 20 × 20 at the end of the backbone network, applying Swin-transformer
on low-resolution feature maps can reduce computational load and save memory space [50].
Swin-transformer can be used to capture long-distance dependencies and retain different lo-
cal information [30]. Although such integration may slightly slow down the inference speed
of YOLOv5, the detection accuracy can be enhanced. Therefore, our proposed scheme
combined YOLOv5s and Swin-transformer, so that the new structure can inherit their
advantages and preserve both global and local features. Furthermore, the self-attention
mechanism was used to improve the detection accuracy of the integrated model. This
integration might be particularly useful for the occluded grape bunches in dense foliage
vineyard canopies. Pre-trained YOLOv5s using COCO dataset was adopted during training
to improve the generalization ability of the proposed network. In the training phase, we
used a partially pre-trained model of YOLOv5s. There were many weights that can be
directly transferred from YOLOv5s to Swin-T-YOLOv5 because they shared most of the
backbone weights (i.e., blocks 0–7 in Figure 4a “Backbone”), which can save the train-
ing time. Then, we added Swin-transformer to the 8th layer of the backbone network
(i.e., block 8 in Figure 4a “Backbone”), where this layer and the subsequent nodes were
retrained without using the pretrained weights.

The training, validation, and testing steps were carried out on a workstation with an
Intel® Xeon® Silver 4114 CPU, 64 GB RAM, NVIDIA RTX3090 GPU (24 GB VRAM), and
Ubuntu 20.04 LTS Operating System. Python was used to write program code and call
required libraries, such as CUDA, cuDNN, and OpenCV, on top of PyTorch 1.8.1 frame-
work. To comprehensively evaluate the performances, our proposed Swin-T-YOLOv5
was compared against Faster R-CNN [17], YOLOv3 [12], YOLOv4 [11], and YOLOv5 [13],
where the training hyperparameters of each model were shown in Table 3. Specific hy-
perparameters were chosen to generally maintain their generic settings and to meet the
hardware requirement of the running platform.

2.2.4. Evaluation Metrics

The performance of each model was evaluated using its precision (P), recall (R), F1-
score, mean average precision (mAP) (Equations (5)–(8)), and inference (detection) speed
per image, in which mAP served as a key metric to assess the overall performance of
a model:

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)
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F1 =
2× P× R

P + R
(7)

mAP =
1
n

k=n

∑
k=1

APk (8)

where true positives (TP) represent the positive samples correctly predicted by the model,
true negatives (TN) represent the negative samples correctly predicted by the model, false
positives (FP) represent the positive samples incorrectly predicted by the model, and false
negatives (FN) represent the negative samples incorrectly predicted by the model; APk
represents the AP of class k; n represents the number of classes. The P–R curves were also
used for visually demonstrating the performance of the models, where P and R were shown
on vertical and horizontal axes, respectively. The Intersection over Union (IoU) and the
confidence score were both set to 0.5 for test set. Additionally, R2 and root mean square
error (RMSE; Equation (9)) was adopted to compare the results predicted by the models
and ground truth data from both manual labeling and in-field manual counting:

RMSE =

√
∑N

i=1(xi − x̂i)
2

N
(9)

where i represents one data point (a plant), N represents the number of data points (plants),
xi represents the actual count of grape bunches (in-field or label), and x̂i represents the
estimated count of grape bunches using Swin-T-YOLOv5.

Table 3. Major hyper-parameters used in this study for YOLOv3, YOLOv4, YOLOv5, and Swin-
transformer-YOLOv5 (Swin-T-YOLOv5).

Hyper-Parameter Faster R-CNN YOLOv3 YOLOv4 YOLOv5 Swin-T-YOLOv5

Optimization algorithm SGD 1 SGD SGD SGD SGD
Initial learn rate 1 × 10−3 1 × 10−3 1 × 10−3 1 × 10−2 1 × 10−2

Learn rate drop factor 0.1 0.1 0.1 0.2 0.2
Mini-batch size 256 16 16 32 32

Number of epochs 100 100 100 100 100
Intersection over Union (IoU)

(train and validation) 0.3 0.213 0.213 0.2 0.2

Weight decay 5 × 10−4 5 × 10−4 5 × 10−4 5 × 10−4 5 × 10−4

Trainable parameters (×106) 36.1 61.5 63.4 7.0 7.2
Training time 11 h 18 min 17 h 35 min 20 h 48 min 17 h 50 min 18 h 4 min

1 SGD refers to stochastic gradient descent.

3. Results
3.1. Swin-Transformer-YOLOv5 Training and Validation

All models were trained and validated with the same dataset for a comprehensive
comparison. Table 4 shows the detailed comparison results using the previously defined
evaluation metrics. Overall, our proposed Swin-T-YOLOv5 outperformed all other tested
models, with an mAP of 97.4%, an F1-score of 0.96, and an inference speed of 13.2 ms per
image. The mAP of Swin-T-YOLOv5 was 34.8%, 2.1%, 3.2%, and 2.1% better than that
of Faster R-CNN, YOLOv3, YOLOv4, and YOLOv5, respectively. Although its inference
time was slightly slower (~12%) than the original YOLOv5, it was still faster than the rest
of the models by 0.6–336.8 ms per image. Moreover, P–R curves (Figure 5) showed that
Swin-T-YOLOv5 had the best performance among all models as it reached the furthest at
the top-right corner (blue curve). Faster R-CNN (in yellow color) performed the worst
among the models tested.
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Table 4. Comparison of training and validation results for Faster R-CNN, YOLOv3, YOLOv4,
YOLOv5, and Swin-transformer-YOLOv5 (Swin-T-YOLOv5).

Network Precision
(%) Recall (%) mAPIoU=0.5 (%) 1 F1-Score Inference Speed per Image (ms) 2

Faster R-CNN 60.1 59.1 62.6 0.59 350.0
YOLOv3 96.1 93.4 95.3 0.94 13.8
YOLOv4 75.5 92.8 94.2 0.82 14.2
YOLOv5 96.6 91.4 95.3 0.94 11.8

Swin-T-YOLOv5 97.9 94.7 97.4 0.96 13.2
1 mAP refers to mean average precision. 2 Inference time may vary depending on the hardware configurations.
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3.2. Swin-Transformer-YOLOv5 Model Testing
3.2.1. Testing under Two Weather Conditions

All models were tested under different conditions as listed in Table 1, including two
weather conditions (i.e., sunny and cloudy), two berry maturity stages (i.e., immature and
mature), and three sunlight directions/intensities (i.e., morning, noon, and afternoon),
to verify the superiority of the proposed Swin-T-YOLOv5. Detailed model comparison
results were given in Table 5 using the test set under two weather conditions for both grape
varieties of Chardonnay and Merlot. Compared to Faster R-CNN, YOLOv3, YOLOv4, and
YOLOv5, Swin-T-YOLOv5 achieved the best performance under both conditions in terms
of mAP (95.4–97.2%) and F1-score (0.86–0.89). Swin-T-YOLOv5 performed slightly better
under cloudy sky conditions with higher mAP (+1.8%) and F1-score (+0.03) compared to
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the same measures under sunny conditions. While the inference speed of Swin-T-YOLOv5
(13.2 ms per image) was not the best among all, it was 1.4 ms slower than YOLOv5 only.

Table 5. Model comparison using the test set under two weather conditions.

Model Weather
Condition mAPIoU=0.5 (%) 1 F1-Score Inference Speed

per Image (ms) 2

Faster R-CNN

Sunny

59.23 0.63 350
YOLOv3 84.47 0.64 13.8
YOLOv4 90.43 0.68 14.2
YOLOv5 92.16 0.82 11.8

Swin-T-YOLOv5 95.36 0.86 13.2

Faster R-CNN

Cloudy

53.54 0.67 350
YOLOv3 78.93 0.72 13.8
YOLOv4 83.45 0.76 14.2
YOLOv5 93.64 0.83 11.8

Swin-T-YOLOv5 97.19 0.89 13.2
1 mAP refers to mean average precision. 2 Inference time may vary depending on the hardware configurations.

As it was proven that Swin-T-YOLOv5 outperformed all other tested models under
both sunny and cloudy sky conditions, we further compared it against the ground truth data
from manual labeling and in-field manual counting (Figure 6) for Chardonnay and Merlot,
respectively. Results showed that Swin-T-YOLOv5 performed well with Chardonnay
variety under both weather conditions with 0.70–0.82 of R2 and 2.9–5.1 RMSE when the
predicted results were compared against both in-field and label counts (Figure 6a–c). It
also worked well with Merlot under cloudy conditions (Figure 6d), however, R2 dropped
to 0.28–0.36 and RMSE increased to ~7.0 on Merlot under sunny condition (Figure 6b),
indicating greater detection errors. Demonstrations of detection results under two weather
conditions were provided in Figures A1 and A2 in Appendix A.

3.2.2. Testing at Two Maturity Stages

In addition to two different weather conditions, we compared the performances of
Swin-T-YOLOv5 with all other studied models at two berry maturity stages, including
immature and mature berries for Chardonnay (i.e., white color of berry skin throughout the
growing season) and Merlot (i.e., white or white–red mix when immature; red color when
mature) (Figure 1). Detailed comparison results were given in Table 6 that, as expected,
Swin-T-YOLOv5 outperformed all other tested models at both berry maturity stages with
90.3–95.9% of mAP and 0.82–0.87 of F1-score. Clearly, all detectors achieved better detection
results at the mature stage, including Swin-T-YOLOv5 (5.6% higher in mAP and 0.05 higher
in F1-score), when the berries were larger (i.e., less occlusions) and with more distinct
color than their background, such as leaves. Compared to the second-best model, YOLOv5
(mAPs of 89.8–91.6%), the performance of Swin-T-YOLOv5 was improved more at the berry
mature stage (+4.3%) than the immature stage (+0.5%), indicating that the improvements
of the model were more effective to those ready-to-harvest grape bunches.

Figure 7 compared the specific predicted number of grape bunches using Swin-T-
YOLOv5 against the ground truth data of both manual labeling and in-field manual count-
ing on both Chardonnay and Merlot. As observed in Table 6, R2 was higher (0.57–0.89) and
RMSE was smaller (2.5–3.9) for those mature berries (Figure 7c,d). Swin-T-YOLOv5 did a
poor job on Merlot when the berries were immature (i.e., white or white–red mixed berries)
with 0.08–0.16 of R2 and 8.6–9.0 RMSE (Figure 7b). Demonstrations of detection results at
two berry maturity stages were provided in Figures A3 and A4 in Appendix A.
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Figure 6. The number of grape bunches comparison between in-field manual counting (gTruth),
manual label, and detection using Swin-transformer-YOLOv5 (Swin-T-YOLOv5) with (a) Chardonnay
(sunny); (b) Merlot (sunny); (c) Chardonnay (cloudy); and (d) Merlot (cloudy). RMSE refers to root
mean square error. Plant# refers to the number of plants.

Table 6. Model comparison using the test set at two berry maturity stages.

Model Berry Maturity mAPIoU=0.5 (%) 1 F1-Score Inference Speed
per Image (ms) 2

Faster R-CNN

Immature

50.12 0.52 350
YOLOv3 82.84 0.60 13.8
YOLOv4 87.24 0.65 14.2
YOLOv5 89.78 0.80 11.8

Swin-T-YOLOv5 90.31 0.82 13.2

Faster R-CNN

Mature

52.35 0.59 350
YOLOv3 85.43 0.76 13.8
YOLOv4 89.40 0.77 14.2
YOLOv5 91.58 0.81 11.8

Swin-T-YOLOv5 95.86 0.87 13.2
1 mAP refers to mean average precision. 2 Inference time may vary depending on the hardware configurations.
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Figure 7. The number of grape bunches comparison between in-field manual counting (gTruth),
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and (c,d) mature berries with Chardonnay (left) and Merlot (right). RMSE refers to root mean square
error. Plant# refers to the number of plants.

3.2.3. Testing under Three Sunlight Directions and Intensities

Finally, all models were tested under three different sunlight directions and intensities,
including in the morning (8am–9am), noon (11am–12pm), and afternoon (4pm–5pm)
(Table 1). The light intensity was highest at noon and lowest in the morning. Specific
comparison results were given in Table 7. Among all models tested in this research,
Swin-T-YOLOv5 performed the best under any sunlight condition, with optimal mAPs
of 92.0–94.5% and F1-scores of 0.83–0.86. It was also obvious that the detection results
were better at noon than in the morning or afternoon with 2.5–2.6% higher mAP and
0.01–0.03 higher F1-score. Additionally, YOLOv5 still performed the second best except for
during noon, where Swin-T-YOLOv5 and YOLOv4 achieved 6.1% and 1.7% better mAP
than it.

Table 7. Model comparison using the test set under three sunlight directions and intensities.

Model Sunlight
Condition mAPIoU=0.5 (%) 1 F1-Score Inference Speed

per Image (ms) 2

Faster R-CNN

Morning

55.35 0.56 350
YOLOv3 74.57 0.65 13.8
YOLOv4 78.15 0.67 14.2
YOLOv5 89.57 0.79 11.8

Swin-T-YOLOv5 92.04 0.83 13.2
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Table 7. Cont.

Model Sunlight
Condition mAPIoU=0.5 (%) 1 F1-Score Inference Speed

per Image (ms) 2

Faster R-CNN

Noon

60.73 0.59 350
YOLOv3 86.31 0.67 13.8
YOLOv4 90.16 0.70 14.2
YOLOv5 88.45 0.79 11.8

Swin-T-YOLOv5 94.53 0.86 13.2

Faster R-CNN

Afternoon

56.79 0.52 350
YOLOv3 76.78 0.70 13.8
YOLOv4 81.12 0.73 14.2
YOLOv5 87.46 0.80 11.8

Swin-T-YOLOv5 91.96 0.85 13.2
1 mAP refers to mean average precision. 2 Inference time may vary depending on the hardware configurations.

Further observations on the number of grape bunches detected by Swin-T-YOLOv5
comparing against ground truth data, from manual labeling and in-field manual count-
ing, were provided in Figure 8. For the Chardonnay variety, the agreement between the
predictions and ground truth was relatively better (0.55–0.91 of R2 and 2.4–4.7 of RMSE;
Figure 8a,c,e) than the Merlot variety (0.13–0.70 of R2 and 5.1–7.1 of RMSE;
Figure 8b,d,f) under any sunlight conditions. The results for Merlot were the best at
noon with 0.47–0.70 of R2 (Figure 8d), while the results were the worst in the afternoon
with only 0.13–0.29 of R2 when the imaging side was against the direction of the sunlight
(Figure 8f). Visual comparisons of model performances under different sunlight conditions
can be found in Figures A5 and A6 in Appendix A.
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4. Discussion

Compared to other fruits, such as apple, citrus, pear, and kiwifruit, grape bunches
in the vineyards have more complex structural shapes and silhouette characteristics to
be accurately detected using machine vision systems. Accurate and fast identification of
overlapped grape bunches in dense foliage canopies under natural lighting environments
remains to be a key challenge in vineyards. Therefore, this research proposed the combina-
tion of architectures from a conventional CNN YOLOv5 model and a Swin-transformer
model that can inherit the advantages of both models to preserve global and local features
when detecting grape bunches (Figure 4). The newly integrated detector (i.e., Swin-T-
YOLOv5) worked as expected in overcoming the drawbacks of CNNs in capturing the
global features (Figure 5).

Our proposed Swin-T-YOLOv5 was tested on two different wine grape varieties, two
different weather/sky conditions, two different berry maturity stages, and three different
sunlight directions/intensities for its detection performance (Table 1). A comprehensive
evaluation was made by comparing Swin-T-YOLOv5 against various commonly used
detectors (Table 4). Results verified that our proposed Swin-T-YOLOv5 outperformed all
other tested models under any listed environmental conditions with achieved 90.3–97.2%
mAPs. The best and worst results were obtained under cloudy weather and berry immature
conditions, respectively, with a 6.9% in difference.

Specifically, Swin-T-YOLOv5 performed the best under cloudy weather conditions
with the highest mAP of 97.2%, which was 1.8% higher than in sunny weather conditions
(Table 5), although the difference was inconsiderable. While testing the models at different
berry maturity stages, Swin-T-YOLOv5 performed much better when the berries were
mature with 95.9% of mAP than immature berries (with 5.6% lower mAP; Table 6). It has
been verified that crop early thinning can provide more berry quality benefits than late
thinning in vineyards [51]. Therefore, early (immature stage) grape bunch detection is
more meaningful than late (mature stage) detection in our study. However, early detection
is challenging because the berries tended to be smaller in size and lighter in color during
the early growth stage and thus more difficult to be detected. Moreover, Swin-T-YOLOv5
achieved better mAP at noon (94.5%) than the other two timings in the day (Table 7), while
the afternoon sunlight condition more negatively affected the model with a lower mAP
of 92.0% than in the morning. Apparently, the effectiveness of the berry maturities and
light directions can be the major reasons for impacting the performances of the models,
while weather conditions almost did not change the detection results. The improvements
from the original YOLOv5 to the proposed Swin-T-YOLOv5 varied based on the conditions
(0.5–6.1%), however, the maximum increment happened when comparing them at noon
(Table 7). Overall, it was confirmed that the Swin-T-YOLOv5 achieved the best results
in terms of mAP (up to 97.2%) and F1-score (up to 0.9) among all compared models in
this research for wine grape bunch detections in vineyards. Its inference speed was the
second best (13.2 ms per image) only after YOLOv5′s (11.8 ms per image) under any
test conditions.

To further assess the model performance, we compared the predicted number of grape
bunches by Swin-T-YOLOv5 with both manual labeling and in-field manual counting. The
R2 and RMSE between Swin-T-YOLOv5 and in-field counting had the similar trends of the
ones between Swin-T-YOLOv5 and manual labeling in general, potentially because some
of those heavily occluded grape bunches were not taken into consideration for labeling
during the annotation process. However, the values changed vastly for the two different
grape varieties under various conditions. It was clear that Swin-T-YOLOv5 did not perform
well on the Merlot variety when the weather condition was sunny. While for Chardonnay,
the model performed well under either condition (Figure 6). Similarly, the performance
of Swin-T-YOLOv5 was poor on the Merlot variety when the berries were immature. For
Chardonnay, Swin-T-YOLOv5 achieved better results under either condition (Figure 7).
In addition, Swin-T-YOLOv5 underperformed on the Merlot variety when the sunlight
condition was in the afternoon. Comparatively, it worked better on Merlot at noon. For
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Chardonnay, the predictions were more accurate (Figure 8). This was possibly because the
Merlot variety had a more complex combination of grape bunches when the berries were
immature with either white or white–red mixed color (Figure 1e), which may cause more
detection errors under more challenging test conditions, such as when imaging against the
direction of the light. In general, detecting grape bunches of the Merlot variety was more
challenging than the Chardonnay variety under any test conditions in this research.

We found that our proposed Swin-T-YOLOv5 could enhance the accuracy of grape
bunch detection when the grape bunches were slightly/moderately occluded or clustered,
attributed to the Swin-transformer module that was added to the generic YOLOv5. For
example, slight/moderate canopy occlusions and overlap of grape clusters can cause
detection errors in terms of detected number of bounding boxes, i.e., underestimations
in Figure 9a,b, overestimation in Figure 9c, and bounding box misplace in Figure 9d,
comparing the results from YOLOv5 and Swin-T-YOLOv5. Swin-transformer module
assisted in detecting the objects in line with common sense under such conditions. Clearly,
introducing the self-attention mechanism in the backbone network should be a
right direction.
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Figure 9. Detection results on Chardonnay (white variety; two columns on the left) and Merlot
(red variety; two columns on the right) using (a–d) generic YOLOv5 (in magenta color) and (e–h)
Swin-transformer-YOLOv5 (Swin-T-YOLOv5; in cyan color) in zoomed-in views.

Although Swin-T-YOLOv5 outperformed all other tested models in detecting grape
bunches under various external or internal variations, detection failures (i.e., TNs and FPs)
happened more frequently in several scenarios as illustrated in Figure 10. For example,
severe occlusion (mainly by leaves) caused detection failure, which was the major reason
for having TNs and FPs in this research as marked out using the red bounding boxes,
particularly when the visible part of grape bunches were small (Figure 10e,f) or having
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the similar color compared to the background (Figure 10a–c). In addition, clustered grape
bunches can cause detection failures, where two grape bunches were detected as one
(Figure 10d).
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Figure 10. Illustrations of failures (i.e., true negatives (TN) or false positives (FP) highlighted in
red bounding boxes; true positives (TP) in cyan bounding boxes) in grape bunch detection using
Swin-transformer-YOLOv5 (Swin-T-YOLOv5) during early (left column), mid- (middle column), and
harvest-stage (right column) for (a–c) “Chardonnay (white variety)” and (d–f) “Merlot (red variety)”
in zoomed-in views.

5. Conclusions

This research proposed an optimal and real-time wine grape bunch detection model in
natural vineyards by architecturally integrating YOLOv5 and Swin-transformer detectors,
called Swin-T-YOLOv5. The research was carried out on two different grape varieties,
Chardonnay (white color of berry skin when mature) and Merlot (red color of berry skin
when mature), throughout the growing season from 4 July 2019 to 30 September 2019 under
various testing conditions, including two different weather/sky conditions (i.e., sunny and
cloudy), two different berry maturity stages (i.e., immature and mature), and three different
sunlight directions/intensities (i.e., morning, noon, and afternoon). Further assessment was
made by comparing the proposed Swin-T-YOLOv5 with other commonly used detectors,
including Faster R-CNN, YOLOv3, YOLOv4, and YOLOv5. Based on the obtained results,
the following conclusions can be drawn:
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1. Validation results verified the advancement of proposed Swin-T-YOLOv5 with the
best precision of 98%, recall of 95%, mAP of 97%, and F1-score of 0.96;

2. Swin-T-YOLOv5 outperformed all other studied models under all test conditions in
this research:

3. Two weather conditions: During sunny days, Swin-T-YOLOv5 achieved 95% of mAP
and 0.86 of F1-score, which were up to 11% and 0.22 higher than others. During
cloudy days, it achieved 97% of mAP and 0.89 of F1-score, which were up to 18% and
0.17 higher;

4. Two berry maturity stages: With immature berries, Swin-T-YOLOv5 achieved 90% of
mAP and 0.82 of F1-score, which were up to 7% and 0.22 higher than others. With
mature berries, it achieved 96% of mAP and 0.87 of F1-score, which were up to 10%
and 0.11 higher;

5. Three sunlight directions/intensities: In the morning, Swin-T-YOLOv5 achieved 92%
of mAP and 0.83 of F1-score, which were up to 17% and 0.18 higher than others.
At noon, it achieved 95% of mAP and 0.86 of F1-score, which were up to 8% and
0.19 higher; In the afternoon, it achieved 92% of mAP and 0.85 of F1-score, which
were up to 15% and 0.15 higher;

6. Swin-T-YOLOv5 performed differently on Chardonnay and Merlot varieties when
comparing the predictions against the ground truth data (i.e., manual labeling and
in-field manual counting). For the Chardonnay variety, Swin-T-YOLOv5 provided
desired predictions under almost all test conditions, with up to 0.91 of R2 and 2.4 of
RMSE. For the Merlot variety, Swin-T-YOLOv5 performed better under several test
conditions (e.g., 0.70 of R2 and 3.3 of RMSE for mature berries), while underperformed
when detecting immature berries (0.08 of R2 and 9.0 of RMSE).

A novel grape bunch detector, Swin-T-YOLOv5, proposed in this study has been
verified for its superiority in terms of detection accuracy and inference speed. It is expected
that this integrated detection model can be deployed and implemented on portable devices,
such as smartphones, to assist wine grape growers for real-time precision vineyard canopy
management. Our next steps include (1) designing and developing a front-end user
interface (e.g., mobile application) and a back-end program to run the trained Swin-T-
YOLOv5 model and (2) establishing a digital dataset repository on GitHub to further
enlarge the image dataset specifically for grape canopies.
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Figure A1. Demonstrations of detection results on the test set of Chardonnay (white variety) using
(a,b) Faster R-CNN (bounding boxes in green color); (c,d) YOLOv3 (in blue color); (e,f) YOLOv4
(in red color); (g,h) YOLOv5 (in magenta color); and (i,j) Swin-transformer-YOLOv5 (in cyan color)
under sunny (left) and cloudy (right) weathers.
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Figure A2. Demonstrations of detection results on the test set of Merlot (red variety) using
(a,b) Faster R-CNN (bounding boxes in green color); (c,d) YOLOv3 (in blue color); (e,f) YOLOv4 in
red color; (g,h) YOLOv5 (in magenta color); and (i,j) Swin-transformer-YOLOv5 (in cyan color) under
sunny (left) and cloudy (right) weathers.
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Figure A3. Demonstrations of detection results on the test set of Chardonnay (white variety) using
(a,b) Faster R-CNN (bounding boxes in green color); (c,d) YOLOv3 (in blue color); (e,f) YOLOv4 (in
red color); (g,h) YOLOv5 (in magenta color); and (i,j) Swin-transformer-YOLOv5 (in cyan color) at
immature (left) and mature (right) stages.
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R-CNN (bounding boxes in green color); (c,d) YOLOv3 (in blue color); (e,f) YOLOv4 (in red color);
(g,h) YOLOv5 (in magenta color); and (i,j) Swin-transformer-YOLOv5 (in cyan color) at immature
(left) and mature (right) stages.
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