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Abstract: Combining deep learning and UAV images to map wetland vegetation distribution has
received increasing attention from researchers. However, it is difficult for one multi-classification
convolutional neural network (CNN) model to meet the accuracy requirements for the overall
classification of multi-object types. To resolve these issues, this paper combined three decision
fusion methods (Majority Voting Fusion, Average Probability Fusion, and Optimal Selection Fusion)
with four CNNs, including SegNet, PSPNet, DeepLabV3+, and RAUNet, to construct different
fusion classification models (FCMs) for mapping wetland vegetations in Huixian Karst National
Wetland Park, Guilin, south China. We further evaluated the effect of one-class and multi-class
FCMs on wetland vegetation classification using ultra-high-resolution UAV images and compared
the performance of one-class classification (OCC) and multi-class classification (MCC) models for
karst wetland vegetation. The results highlight that (1) the use of additional multi-dimensional
UAV datasets achieved better classification performance for karst wetland vegetation using CNN
models. The OCC models produced better classification results than MCC models, and the accuracy
(average of IoU) difference between the two model types was 3.24–10.97%. (2) The integration of
DSM and texture features improved the performance of FCMs with an increase in accuracy (MIoU)
from 0.67% to 8.23% when compared to RGB-based karst wetland vegetation classifications. (3) The
PSPNet algorithm achieved the optimal pixel-based classification in the CNN-based FCMs, while
the DeepLabV3+ algorithm produced the best attribute-based classification performance. (4) Three
decision fusions all improved the identification ability for karst wetland vegetation compared to
single CNN models, which achieved the highest IoUs of 81.93% and 98.42% for Eichhornia crassipes
and Nelumbo nucifera, respectively. (5) One-class FCMs achieved higher classification accuracy for
karst wetland vegetation than multi-class FCMs, and the highest improvement in the IoU for karst
herbaceous plants reached 22.09%.

Keywords: karst wetlands; vegetation classification; one- and multi-class deep learning; model
fusion; decision fusion; UAV images

1. Introduction

The global distribution of soluble rocks accounts for approximately 20% of the dry
and ice-free land area [1], while the area of karst landform in China accounts for approx-
imately 81% of the national territorial area [2], and the karst areas of south China is one
of the largest continuous karst regions in the world [3]. Karst wetlands are a special and
important component of karst ecosystems, which is a natural complex, consisting of lakes,
rivers, freshwater marshes, etc. Karst wetlands are not only one of the most productive and

Remote Sens. 2022, 14, 5869. https://doi.org/10.3390/rs14225869 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14225869
https://doi.org/10.3390/rs14225869
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3469-1861
https://doi.org/10.3390/rs14225869
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14225869?type=check_update&version=2


Remote Sens. 2022, 14, 5869 2 of 33

diverse ecosystems in karst areas but also a stable “carbon reservoir” and source of “carbon
absorption” [4]. Health wetland ecosystems are the key foundations for global and regional
ecological security and sustainable development. However, karst wetlands are highly
dependent on the hydrological cycle, which involves the interaction between groundwa-
ter and surface water. However, surface water is highly susceptible to human activities,
resulting in a very fragile karst wetland system [5]. Unfortunately, the intensification of
human activities (such as wetland reclamation, sewage discharge, tourism development,
infrastructure development, species invasion, etc.) in recent decades has brought about
enormous pressures on the fragile karst wetland system [6] and resulted in its continuous
degradation (shrinkage of wetland area, biodiversity decrease, eutrophication of water bod-
ies, etc.). Therefore, this makes it more important than ever to constantly monitor the status
of karst wetlands and develop and strengthen wetlands conservation. As an important
component of the karst wetland ecosystem, vegetation is a sensitive indicator of wetland
environmental changes [7]. Accurate vegetation classifications and repeat monitoring are
able to provide strong support for the conservation and rational development of karst
wetlands.

Recent studies reported that satellite remote sensing images have been widely used
in wetland vegetation mapping [8,9] and obtained good classification accuracy. However,
the most often used global open satellite images are usually in the medium and coarse
spatial resolutions, which is difficult to effectively distinguish from complex wetland
vegetation types [10], while high-resolution satellite images have high costs and find it
difficult to achieve continuous monitoring of wetland vegetation due to the cloudy and
rainy weather conditions [11]. Therefore, the UAV remote sensing images with ultra-high
spatial resolution, low cost, and on-demand acquisition have been gradually applied in
wetland vegetation mapping [12,13]. Although existing unmanned aerial vehicles have
been able to carry multispectral and hyperspectral sensors, these sensors are usually
expensive, and their spatial resolution is generally not as good as the spatial resolution of
comparable RGB sensors [14]. Nevertheless, RGB images with limited spectral information
have several challenges in the fine-scale classification of wetland vegetation. To address
this problem, previous studies have demonstrated that additional texture features (TFs)
and the digital surface model (DSM) improved the classification accuracy of wetland
vegetation [15,16]. However, the spatial distribution and composition of karst wetland
vegetation differ significantly from other wetland types, and the applicability of combining
multi-dimensional height and texture information to classify karst wetland vegetation
remains to be verified.

The choice of algorithm is also very important for wetland classification tasks. Cur-
rently, shallow machine learning algorithms such as the Support Vector Machine (SVM) [17],
Random Forest (RF) [18], K-Nearest Neighbor (KNN) [19], etc., have been proven to achieve
good wetland vegetation classification. However, these traditional machine learning al-
gorithms rely heavily on targeted feature engineering to guarantee the accuracy of the
classifier due to their shallow architecture and low complexity [20]. Meanwhile, this man-
ual feature extraction process is also limited by existing a priori knowledge and thus suffers
from certain drawbacks [21]. In contrast, deep learning allows end-to-end learning without
recognizing human intervention in its training process, and its deeper architecture of higher
complexity allows it to learn more complex features autonomously [22], avoiding complex
feature engineering. Among the existing deep learning algorithms, convolutional neural
networks (CNNs) have been applied to the classification of land cover types [23–25]. Fu
et al. [26] used DeepLabV3+ and PSPNet algorithms to classify mangrove communities and
both achieved over 86% overall accuracy. Pashaei et al. [27] utilized the SegNet algorithm
to carry out coastal wetlands mapping and obtained 82% overall classification accuracy.
Although these studies demonstrated that CNN algorithms are able to achieve good classifi-
cation results in wetland vegetation classification, they focused on multi-class classification
(MCC), and for the CNN model, the increase in classes is inevitably accompanied by an
increase in parameters in the classifier stage, and the difficulty of fitting the model also
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increases. Moreover, MCC usually requires a relatively large training sample size, and
for wetlands, samples of field investigations are difficult to obtain and the collection of
a large number of samples is bound to lead to an increase in time and cost. In contrast,
one-class classification (OCC) is a more effective method for classifying wetland vegetation
because its purpose is to extract a single class, and only sample data from the target class
are needed [28]. These reduce the cost and time of both sample collection and model
training significantly [29,30]. Tang et al. [31] used the SegNet algorithm for classifying karst
wetlands and found that the classification accuracy (F1-score) of the one-class SegNet-based
model for karst wetland vegetation was higher than that of the multi-class SegNet-based
model, and their differences in F1 scores were between 2% and 19%. However, the above-
mentioned study only evaluated the performance of the SegNet algorithm in one-class
and multi-class wetland vegetation mapping. Moreover, there are numerous current CNN
models with different architectures, which have different classification performances for
different wetland vegetation types. Therefore, the evaluation of the classification ability
of different CNN algorithms for karst wetland vegetation mapping is still considered an
important research topic. We selected four CNN algorithms (SegNet, PSPNet, DeepLabV3+,
and RAUNet) to build different OCC and MCC models and examined their performance
for karst wetland vegetation mapping.

Since there are differences in the identification ability of a single classification model
for different land cover types, to take full advantage of the respective advantages of dif-
ferent models and achieve better classification results, it is necessary to fuse multiple
models to obtain several new models with better classification performances. In shallow
machine learning algorithms, the idea of the model ensemble has been widely used in
various aspects such as cancer detection [32], vegetation health monitoring [33], land use
classification [34], etc., and all of them have demonstrated that the advantages of fusing
multiple models effectively improve the performance. In the studies of fusion methods
for deep learning algorithms, some scholars have used the decision fusion method to
mix multiple classifiers to improve classification accuracy. For deep learning, previous
researchers have confirmed that decision fusion can improve remote sensing classification
accuracy [35,36]. Y. Hu et al. [37] proposed a multi-objective CNN decision-fusion classifi-
cation method for coastal wetlands with hyperspectral images and found that the decision
fusion classification method based on fuzzy membership achieved an overall accuracy of
82.11%. Meng et al. [38] constructed a hybrid classifier using the decision fusion of CNN
and SVM to perform lake wetlands mapping and produced overall classification accuracy
of over 90%. Deng et al. [39] used the maximum probability method to fuse multiple
one-class SegNet models and explored the identification ability of the fused models for
karst wetland vegetation, demonstrating that the classification performance of the fused
models was better than that of the single SegNet model and achieved over 87% overall
accuracy. The above-mentioned studies indicated that the fusion of different classification
models can compensate for their respective shortcomings and achieve higher accuracy than
any single model. Nevertheless, current studies usually build fusion models only using one
CNN algorithm, and there is a lack of research examining the classification performance of
fusion models with different CNN algorithms for wetland vegetation. Meanwhile, previ-
ous studies focused on a single decision fusion strategy and did not sufficiently consider
the applicability and effect of different decision fusion strategies on wetland vegetation
classification. Therefore, we proposed three decision fusion strategies (Majority Voting
Fusion, Average Probability Fusion, and Optimal Selection Fusion) based on the common
voting method with three different rules and further explored their performance for fusing
four CNN models in karst wetland vegetation mapping.

To fill the research gaps, this paper aims to evaluate the performance and effect of
different decision fusions on classifying karst wetland vegetation with four CNN algorithms
and ultra-high-resolution UAV images. The specific contributions of this study are as
follows:
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• We constructed three UAV image datasets by combing DOM, DSM, and TFs to explore
the impact of different feature combinations on karst wetland vegetation mapping.

• We constructed several OCC and MCC models based on four CNN algorithms (SegNet,
PSPNet, DeepLabV3+, and RAUNet) and compared the classification results of OCC
and MCC models to demonstrate the advantages of OCC for classifying karst wetland
vegetation communities.

• We used three decision fusion strategies (Majority Voting Fusion, Average Probabil-
ity Fusion, and Optimal Selection Fusion) to fuse multiple OCC and MCC models,
respectively, and evaluated the identification abilities of one-class FCMs and multi-
class FCMs to demonstrate the advantages of multiple OCC models’ fusion for karst
wetland vegetation mapping.

• We compared the differences in classification accuracy between FCMs and single CNN
models to evaluate the effects of different decision fusion strategies on the classification
of karst wetland vegetation.

2. Materials and Methods
2.1. Study Area

Huixian Karst National Wetland Park (HKNWP), Guilin, south China, is located in the
core of the East Asian Karst Region, the third largest karst concentration area in the world,
with a geographical location of 25◦01′30′ ′N–25◦11′15′ ′N and 110◦08′15′ ′E–110◦18′00′ ′E
(as shown in Figure 1). The total area of HKNWP is 586.75 hectares, of which 84.12%
(493.59 hectares) is wetland, which is the most representative and complete karst wetland
in China and even in Asia [40]. The Huixian Wetland, known as the “Kidney of the
Lijiang River”, is the largest original karst landscape wetland in the Lijiang River basin
and has important environmental regulation functions and ecological benefits, such as
water conservation, water purification, flood storage, drought resistance, and maintenance
of biodiversity, and thus has high research and protection value. However, in the last
half-century, with the deterioration of the ecological environment and the intensification of
human activities, the ecosystem of the Huixian Wetland has been severely damaged, so
the Chinese government listed it as a pilot national wetland park for conservation work
in 2012 and it officially became a national wetland park in China in 2017. The HKNWP
has been divided into five different areas, among which the core area is less disturbed by
anthropogenic activities and still preserves a relatively complete ecological landscape of
karst wetlands, which plays an important role in the study and protection of Huixian karst
wetlands and is the reason for choosing it as the study area in this research.
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2.2. Data Source
2.2.1. UAV Data Acquisition and Processing

The UAV aerial data were collected by the DJI Phantom 4 Pro, which has an integrated
FC6310S sensor to acquire visible images. Aerial photography was conducted from 10:30 am
to 15:00 am (UTM + 8:00) on 26–28 August 2020 in clear and cloudless weather with a
total of 12 flights. The flight altitudes were 90 m and 40 m (40 m was the flight altitude of
the sample strip) and the overlap rates of heading and side directions were 80% and 75%,
respectively. The processing process of UAV images was as follows: (1) We imported the
original UAV aerial images into Pix4D mapper software for automated processing, which
includes quality inspection, image matching, aerial triangulation, point cloud generation,
etc., and finally generated DOM and DSM with a spatial resolution of 0.05 m; (2) we used
ArcGIS 10.6 software to resample the DOM and DSM to a 0.1 m spatial resolution and
performed georeferencing, and the projected coordinate system was WGS 1984 UTM Zone
49N; and (3) we converted the DOM to gray image using ENVI 5.6 software and then
calculated its TFs (mean, variance, homogeneity, contrast, dissimilarity, entropy, angular
second moment, and correlation), after which mean, contrast, and entropy were selected by
high-correlation rejection and feature selection for a total of three texture features, where the
processing window was 9 × 9, the co-occurrence shift was (x, y) = (1, 1), and the greyscale
quantization level was 64. Finally, we combined DOM, DSM, and TFs to obtain three
image feature datasets (RGB, RGBS, and RGBST), and the detailed feature composition
information is shown in Table 1.

Table 1. Different image datasets.

Image Datasets Combination Descriptions

RGB DOM Blue, Green, and Red
RGBS DOM + DSM Blue, Green, Red, and DSM

RGBST DOM + DSM + TFs Blue, Green, Red, DSM, Mean, Contrast,
and Entropy

2.2.2. Field Investigation and Semantic Label Creation

The field investigation was divided into two time periods: 26 to 28 August 2020 and
14 to 21 October 2021. We investigated the vegetation on the ground by setting a quadrat of
1 m × 1 m and used Hi-Target’s V90 GNSS RTK System to record the specific coordinates
of the sample points, while the iHand55 Handheld Controller was used to photograph
each square from multiple angles and record the vegetation types in the quadrat area.
According to the ground investigation, the vegetation types in the aerial photography area
were mainly divided into seven types of features: Karst Rivers and Lakes (KRL), Karst
Herbages (KH), Paddy Field (PF), Karst Woody Plants (KWP), Eichhornia Crassipes (EC),
Nelumbo Nucifera (NN), and Bare Soil and Artifacts (BSA). A total of 240 sample points
were obtained, and the specific distribution is shown in Figure 2. In this research, we
combined the sample data from the field investigation with the aerial strip images taken by
the UAV to visually interpret the DOM using ArcGIS software, mapped the corresponding
vectorized data labels, and finally generated the required semantic labels (the image size
is 4603 × 3017) by vector conversion raster. The final number of verification samples and
pixels is shown in Table 2.
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Table 2. Number of sample points and pixels for accuracy assessments.

Classes KRL KH PF KWP EC NN BSA Total

Number of samples 50 45 15 55 35 25 15 240
Number of pixels 3,508,776 3,177,450 530,202 4,420,458 1,592,524 591,233 94,083 13,887,251

Since the focus of this paper is on karst wetland vegetation, we grouped all land
cover types except the four karst wetland vegetation types into one category (Others). This
allowed us to reduce the training cost of the multiclass classification model, make it easier
to fit, and focus more on the differences in classification results between different karst
wetland vegetation in the subsequent quantitative and qualitative analyses, excluding the
influence of other non-vegetation types.

2.3. Methods

In this paper, we created three UAV image datasets to evaluate the impact of multi-
dimensional data on the classification of karst wetland vegetation. Then, we constructed
different OCC and MCC models based on four CNN algorithms to compare the classifi-
cation performances of wetland vegetation between OCC and MCC models. This paper
further evaluated the accuracy differences of CNN-based fusion classification models
(FCMs) between four deep learning algorithms in wetland vegetation classification. We
constructed different one-class FCMs and multi-class FCMs and compared the identifi-
cation ability of OC-FCM and MC-FCM for wetland vegetation mapping. Finally, we
compared the classification performances of FCMs and the single-CNN model to examine
the effectiveness of three decision fusions for classifying wetland vegetation. The technical
route of this paper is shown in Figure 3.
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left is the data processing of UAV images. The second section in the middle is divided into three
parts: (1) Construction of image datasets; (2) training of four one- and multi-class CNN classification
models. Three combination datasets of UAV images and their semantic labels were used for training
of SegNet, PSPNet, DeepLabV3+, and RAUNet, respectively, and OCC and MCC models were built;
(3) three decision fusion strategies, which are explained in detail in Section 2.3.3. The third section
on the right is the accuracy assessment metrics and comparative analysis of classification results
between different classification models.

2.3.1. CNNs-Based Wetland Vegetation Classification

SegNet [41] is a pixel-wise image semantic segmentation algorithm whose structure
consists of an encoder and a decoder (Figure 4). The encoder uses the first 13 layers of the
VGG-16 network and performs five iterations of double downsampling, while the decoder
performs five iterations of double upsampling, showing a symmetric relationship between
the two. The main contribution of this network is to guide the decoder to perform nonlinear
upsampling with the pooling index in the encoder for more efficient and accurate image
segmentation.
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The network structure of PSPNet [42] is shown in Figure 5. The network adopts the
Dilated ResNet in the DeepLab algorithm as the backbone network so that the sampling
coefficient output by the encoder is 1/8 of the input image to ensure a higher-resolution
feature map and improve the segmentation performance of the algorithm. The network
adds a spatial pyramid pooling module after the backbone network to obtain the multi-
scale features of the target through four different pooling methods, all of which use bilinear
interpolation to upsample to 1/8 of the original image and fuse with the output of the
backbone network. In the decoding part, bilinear upsampling is directly performed to the
size of the input image to achieve image segmentation.
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The network structure of DeeplabV3+ [43] is shown in Figure 6. The encoder consists
of the Xception network with depthwise separable convolution and Atrous Spatial Pyramid
Pooling (ASPP). The introduction of the depthwise separable convolution reduces the
number of parameters without affecting the segmentation performance and the ASPP
enables the algorithm to obtain multi-scale information about the target without increasing
the number of parameters too much. The decoder consists of two upsampling modules,
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which add location information by incorporating the low-level feature output using the
Xception network to obtain finer segmentation results.
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The network structure of RAUNet [44] is shown in Figure 7. The encoder consists of
the ResNet-34 and the decoder consists of multiple layers of the Attention Augmentation
Module (AAM) and deconvolution to fuse multiple layers of target features. Among
them, AAM is used to reconstruct semantic correlations and guide low-level information
with high-level semantic information to emphasize key features and filter background
information. Furthermore, deconvolution is used in the decoder for upsampling to obtain
more refined edge features.
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2.3.2. One-Class and Multi-Class Classification Models of Karst Wetland Vegetation Using
CNN Algorithms and UAV Images

In this research, we used three image datasets (RGB, RGBS, and RGBST) and four
CNN algorithms (SegNet, PSPNet, DeepLabV3+, and RAUNet) to construct twenty-four
OCC (12) and MCC (12) models for karst wetland vegetation, which were divided into
eight groups, with each group containing three classification scenarios. Among them,
each scenario in groups I–IV constructs four OCC models for karst wetland vegetation
(corresponding to four types of wetland vegetation, KH, KWP, EC, and NN), while each
scenario in groups V–VIII constructs different MCC models for karst wetland vegetation.
The details are shown in Table 3 below.

Table 3. Construction of OCC and MCC models for karst wetland vegetation.

Models Groups Algorithms Image Datasets Scenarios

One-class
classification

I SegNet
RGB 1

RGBS 2
RGBST 3

II PSPNet
RGB 4

RGBS 5
RGBST 6

III DeepLabV3+
RGB 7

RGBS 8
RGBST 9

IV RAUNet
RGB 10

RGBS 11
RGBST 12

Multi-class
classification

V SegNet
RGB 13

RGBS 14
RGBST 15

VI PSPNet
RGB 16

RGBS 17
RGBST 18

VII DeepLabV3+
RGB 19

RGBS 20
RGBST 21

VIII RAUNet
RGB 22

RGBS 23
RGBST 24

Firstly, this paper quantitatively evaluated the difference in the classification accuracy
of karst wetland vegetation between different image datasets under identical CNN algo-
rithms to explore the identification ability of different image datasets for karst wetland
vegetation. Taking the SegNet algorithm and KH as an example, we compared the results
of scenarios 1–3 in group I to explore the effect of the addition of DSM and TFs on the
classification performance of KH. Secondly, this paper compared the differences in the clas-
sification accuracy of karst wetland vegetation of OCC models composed of different CNN
algorithms combined with an identical image dataset to evaluate the impact of different
CNN algorithms on the classification effect of karst wetland vegetation. Taking the RGBST
image dataset and NN as an example, we compared the results of scenarios 3, 6, 9, and 12 to
explore the differences in the classification performance of SegNet, PSPNet, DeepLabV3+,
and RAUNet algorithms for NN. Finally, this paper compared the classification accuracy of
karst wetland vegetation of OCC and MCC models based on an identical image dataset
and the CNN algorithm to evaluate the difference in classification accuracy between OCC
and MCC models for karst wetland vegetation. Taking the PSPNet algorithm, RGBS image
dataset, and KWP as examples, we compared the results of scenarios 5 and 17 to explore



Remote Sens. 2022, 14, 5869 11 of 33

the difference in the classification performance for KWP of the OCC and MCC models
composed of the PSPNet algorithm combined with the RGBS image dataset.

In this research, all models were trained in a consistent manner. For the training
dataset, the images of the study area were divided in a ratio of 3:1. Image data with a ratio
of 3 were randomly cropped to 256 × 256 pixels and enhanced (flipped, rotated, channel
exchange, etc.) to generate a dataset of 100,000 images. Of these, 80% were used as training
data and the remaining 20% were validation data, and the final image data with a ratio
of 1 were used as the final test data. For model optimization, the weighted cross-entropy
loss function was used to guide model training to alleviate the class imbalance, where the
weights were calculated using the “balance” method provided by the scikit-learn library
and the Adam algorithm was used as the optimizer (learning rate = 0.001, and betas = (0.9,
0.999)) to update the model parameters to minimize the loss function. The training epoch
of all models was 10, and the best model in each model period was selected for subsequent
vegetation classification and accuracy assessment after the training was completed. The
specific training curves for each model are shown in Figures A1–A5.

2.3.3. Fusion Classification Models Based on Three Fusion Strategies

This paper adopted three decision-level fusion strategies to fuse OCC and MCC
models, respectively, to construct different one-class fusion classification models (OC-FCM)
and multi-class fusion classification models (MC-FCM), and then quantitatively evaluated
the performance of OC-FCM and MC-FCM for karst wetland vegetation.

Majority Voting Fusion (MVF) [45] The specific fusion method of this strategy is
shown in Equation (1). Taking a single pixel point as an example, we first calculated the
values (Xn, n = 1, . . . , 5) of the prediction results of all the models used for fusion for
that pixel point, up to a total of five types (four vegetation types and one background).
After that, we counted the number of occurrences (Count) of different values and used the
class corresponding to the value with the highest number of occurrences as the final output
result (X

max
index

) for that pixel. Finally, we completed the prediction of the whole image in a

pixel-by-pixel manner. Taking the OCC model and EC as an example, we fused the models
of scenarios 1, 4, 7, and 10 in Table 3 to obtain the OC-FCM based on the RGB image dataset
to identify EC. The specific fusion process of the MVF strategy is shown in Figure 8.

Prediction = X
max

index

(Count(X1), Count(X2), . . . , Count(Xn)) (1)
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Average Probability Fusion (APF) [45] The specific fusion method of this strategy
is shown in Equation (2). Taking a single pixel as an example, firstly, we calculated the
probability distributions ([P1, P2, . . . , Pn], n = 1, 2, . . . , 5) of the prediction results of all
models used in fusion for that pixel; after that, we added all the probability distributions
and averaged them (∑j=0[P1, P2, . . . , Pn]/j); then, we selected the class corresponding to
the highest probability in the probability distribution as the output result (X

max
index

); finally,
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we performed the prediction of the whole image in a pixel-by-pixel manner. Taking the
OCC model and KH as an example, the models of all scenarios in Group I in Table 3 were
fused to obtain the OC-FCM based on the SegNet algorithm to identify KH. The specific
fusion process of the APF strategy is shown in Figure 9.

Prediction = X
max

index

(
∑j=0[P1, P2, . . . , Pn]

j

)
(2)
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Optimal Selection Fusion (OSF) This strategy is different from the above two strate-
gies in terms of fusion. First, we directly obtained the classification result map of all
models used in the fusion and calculated the classification accuracy of each type of karst
wetland vegetation in the classification results of each model. After that, we calculate the
classification accuracy of the four vegetation types and selected the classification results
of the model with the best accuracy for each vegetation type. Finally, we overlaid the
single distribution maps of the four vegetation types to obtain the final image prediction
results. When overlaying multiple classes, we covered them from top to bottom in order of
accuracy, from small to large, to ensure that the pixels of the low-precision class were not
overlapped by the high-precision class, further reducing the accuracy of the low-precision
class. The specific fusion process of the OSF strategy is shown in Figure 10.
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2.3.4. Accuracy Assessment

This paper evaluated the performance of classification models for karst wetland
vegetation through the normalized confusion matrix and five precision metrics (precision,
recall, F1-score, macro-average F1-score (Macro-F1), Intersection over Union (IoU), and
Mean Intersection over Union (MIoU)), and the computational equations are shown in (3)
to (8). The F1-score was calculated by the precision and recall in this paper. Meanwhile, the
classification results were evaluated at both pixel and attribute levels. In the attribute-level
assessment approach, we used the F1-score to evaluate the identification ability of each
model for attribute information of a single karst wetland vegetation, and we used Macro-F1
to evaluate the identification ability of each model for overall attribute information of the
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four vegetation types. In the pixel-wise assessment approach, we selected IoU and MIoU
to evaluate the fit between the classification results of the models and the semantic labels,
where IoU was used to evaluate the identification ability of each model for the geometric
information of a single karst wetland vegetation area, and MIoU was used to evaluate
the identification ability of each model for the overall geometric information of the four
vegetation types.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1− score = 2· Precision·Recall
Precision + Recall

(5)

Macro− F1 =
∑n

i=1 F1− score
n

(6)

IoU =
TP

TP + FP + FN
(7)

MIoU =
∑n

i=1 IoU
n

(8)

In the above equation, TP presents the number of correct classifications of vegetation
types, while FP and FN are the numbers of classification errors of vegetation types. Taking
Karst Herbages (KH) as an example, TP is the total number of samples/pixels that are
classified as KH, FP is the total number of samples/pixels of other vegetation types that are
misclassified as KH, and FN presents the total number of samples/pixels of KH that are
misclassified as other vegetation types.

3. Results
3.1. One-Class and Multi-Class Classifications Based on CNN Models

This paper explored the distribution of classification accuracy metrics (IoU and F1-
score) of one-class CNN (OCC) and multi-class CNN (MCC) models (Figure 11) to quanti-
tatively analyze the difference in accuracy between OCC and MCC models. By comparing
the average values of accuracy, it could be seen that for identical vegetation types, the
accuracy of OCC models was higher than that of MCC models and the differences between
the average values of IoU and the F1-score of the two were 3.24–10.97% and 0.65–3.78%,
respectively. These results showed that OCC models had better performance for karst
wetland vegetation than MCC models, and the difference between the average value of IoU
of the two for KH is the largest at the pixel level, while the difference between the average
value of the F1-score of the two for KWP is the largest at the attribute level.
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This paper calculated the difference value of accuracy (IoU and F1-score) between OCC
and MCC models at the pixel and attribute levels (Figure 12), respectively (the difference
value was calculated as the accuracy of the OCC model minus that of the MCC model), to
further analyze the difference in performance between the two under identical conditions
for karst wetland vegetation. From Figure 12, it cn be seen that there were some differences
in the classification accuracy variations of the four vegetation types, while the performance
of the OCC model was better in most cases compared to the MCC model. Taking EC
as an example, excluding the case of using the RGB image dataset combined with the
SegNet algorithm, the difference values of IoU were greater than 0 and the difference
in performance between OCC and MCC models was the largest when using the RGB
image dataset combined with the RAUNet algorithm (the difference value of IoU was
6.27%). Excluding three cases (RGB_SegNet, RGBS_SegNet, and RGBS_RAUNet), the
difference values of the F1-score were greater than 0, and the difference in identification
ability between OCC and MCC models was greatest when using the RGB image dataset
combined with the RAUNet algorithm (the difference value of the F1-score was 11.1%).
The above results demonstrated that, in most cases, the OCC model was better than the
MCC model in the identification ability of EC at both the pixel and attribute levels.
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This paper examined the accuracy (IoU and F1-score) of OCC models for each karst
wetland vegetation (Figure 13) to evaluate the differences in performance between OCC
models. From Figure 13, it can be seen that there were some differences in the variation
trends of accuracy between OCC models for the four types of vegetation. For KH, the
values of IoU ranged from 0.3591 to 0.6494 (the value of IoU was maximized using the RGBS
image dataset and PSPNet algorithm), while the values of the F1-score ranged from 0.5634
to 0.9348 (the value of F1-score was maximized using the RGBST image dataset and SegNet
algorithm). For KWP, the minimum and maximum values of IoU were 0.5541 (using RGB
image dataset and DeepLabV3+ algorithm) and 0.7089, respectively, while the maximum
and minimum values of the F1-score were 0.8780 (using RGB image dataset and SegNet
algorithm) and 1, respectively. For EC, the RGBS image dataset combined with the SegNet
algorithm achieved the lowest values of IoU and F1-scores, which were 0.7053 and 0.8642,
respectively; and the RGB image dataset combined with the RAUNet algorithm achieved
the highest values of IoU and F1-scores, which were 0.8316 and 0.9722, respectively. For
NN, the values of the F1-score were 1 for all models, while the SegNet algorithm combined
with RGBS and RGB image datasets resulted in the minimum (0.9540) and maximum
(0.9830) values of IoU, respectively. The above results showed that among the four types of
karst wetland vegetation, NN had the most stable variation in accuracy and always had the
highest classification accuracy among the two assessment methods, while KH had a larger
variation in accuracy and always had the lowest classification accuracy among the two
assessment methods. The reason could be that there were differences in the distribution
range of different vegetation types, among which the distribution range of NN was the
most concentrated and easiest to distinguish.
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3.2. Fusion of CNN-Based Classification

Table 4 shows the difference in accuracy (Macro-F1 and MIoU) of the results of one-
class fusion classification models (OC-FCMs) and multi-class fusion classification models
(MC-FCMs) based on different image datasets and fusion strategies. Observing the variation
of MIoU, it could be seen that under identical conditions (using identical image datasets
and fusion strategies), OC-FCM achieved higher MIoU values compared to MC-FCM, and
the difference in MIoU between the two was 0.83–10.82%, where OC-FCM using the RGBS
image dataset and OSF strategy achieved the highest MIoU of 0.7894. These results proved
that OC-FCM had better performance at the pixel level than MC-FCM for karst wetland
vegetation under identical conditions, and OC-FCM using the RGBS image dataset and
OSF strategy had the best performance at the pixel level. Moreover, except for the case of
using the RGB image dataset, the Macro-F1 of OC-FCM in other cases was higher than
that of MC-FCM under identical conditions (the difference in Macro-F1 between the two
was 0.51–4.89%), and OC-FCM using the RGBST image dataset combined with the MVF or
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APF strategy achieved the highest Macro-F1 of 0.9684. These results proved that OC-FCM
outperformed MC-FCM in classifying karst wetland vegetation at the attribute level in
most cases, and OC-FCM using the RGBST image dataset combined with the MVF or APF
strategy had the best performance at the attribute level. When using an identical fusion
strategy, the FCMs based on the RGB image dataset achieved the lowest accuracy (MIoU
and Macro-F1), and the differences between their accuracy and that of FCMs based on
the RGBS and RGBST image datasets were 0.32–7.35% (MIoU) and 0.67–8.23% (Macro-F1).
These results proved that FCM based on the RGB image dataset had the lowest performance
at both pixel and attribute levels for karst wetland vegetation.

Table 4. Differences in accuracy between OC-FCM and MC-FCM based on different image datasets.

Strategies Models Image Datasets

RGB RGBS RGBST

Macro-F1/MIoU Macro-F1/MIoU Macro-F1/MIoU

MVF
OC-FCM 0.8949/0.6965 0.9595/0.7788 0.9684/0.7653
MC-FCM 0.9340/0.6882 0.9463/0.6949 0.9433/0.7119

APF
OC-FCM 0.9070/0.7063 0.9650/0.7864 0.9684/0.7751
MC-FCM 0.9114/0.6712 0.9161/0.6782 0.9335/0.6970

OSF
OC-FCM 0.9039/0.7185 0.9640/0.7894 0.9390/0.7630
MC-FCM 0.9255/0.6903 0.9287/0.7017 0.9339/0.7269

The results of OC-FCM and MC-FCM based on different image datasets and fusion
strategies are shown in Figure 14. It can be seen that with the change in image datasets,
different fusion strategies and the difference between the models used for fusion created a
certain gap between the results of different FCMs.

For the results of OC-FCM (Figure 14a), when using the RGB image dataset, a large
number of KH were misclassified, while the misclassification rate with the OSF strategy
was slightly lower than that based on the MVF and APF strategies. When using the RGBS
and RGBST image datasets, the misclassification rate was significantly lower than that
based on the RGB image dataset, and the misclassification rate using the OSF strategy was
slightly lower than that based on the MVF and APF strategies. These results proved that
OC-FCMs based on the RGBS and RGBST image datasets had better performance for karst
wetland vegetation compared with the RGB image datasets, and among the three fusion
strategies, OC-FCMs based on the OSF strategy had the best performance.

For the results of MC-FCM (Figure 14b), when using the RGB image dataset, similar
to OC-FCM, a large number of KH were misclassified, and the highest misclassification
rate was observed when using the APF strategy from a visual point of view. When using
the RGBS image dataset, the misclassification rate was visually unchanged compared
with the RGB image dataset, while the misclassification rate when using the APF strategy
was still the highest and the misclassification rate of MC-FCM was higher than that of
OC-FCM when using the MVF and APF strategies. When using the RGBST image dataset,
the misclassification rate showed a significant decrease compared with that when using
the RGB and RGBS image datasets, while the misclassification rate of MC-FCM was still
significantly higher than that of OC-FCM when using the MVF and APF strategies. These
results proved that MC-FCM based on the RGBST image dataset had the best effect on
karst wetland vegetation in the three image datasets, and the effect of MC-FCM based on
the OSF strategy achieved the best result compared with MC-FCM using the MVF and
APF strategies. Moreover, the effect of OC-FCM was better than that of MC-FCM under
identical conditions.
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Figure 15 shows the normalized confusion matrix of OC-FCM based on different image
datasets at the attribute level (Figure 15a) and compares the differences in the accuracy
(IoU) between OC-FCMs at the pixel level (Figure 15b). When using the RGB image dataset,
it can be seen by observing the confusion matrix that the variation of recall to KH was
larger among the four vegetation types, with KH achieving the highest recall when the OSF
strategy was used, which was consistent with the variation trend of the corresponding IoU.
When using the RGBS image dataset, it could be seen by comparing the confusion matrix
that the recall of KH was improved compared with that when using the RGB image dataset,
and the recall of KH remained highest when using the OSF strategy, and this phenomenon
was also reflected in the variation of the corresponding IoU. When using the RGBST image
dataset, the recall of KH was reduced compared with that when using the RGBS image
dataset, yet it was still higher than that when using the RGB image dataset, where OC-FCM
based on the OSF strategy still had the best identification ability for KH and the variation
trend of the confusion matrix was also consistent with the change in IoU. The above results
proved that OC-FCM based on the RGBS image dataset and the OSF strategy had the best
performance for KH, both at the pixel and attribute levels. For the other three vegetation
types, excluding KH, although the confusion matrix based on the attribute level did not
change much, the variation trend of IoU was larger for KWP and EC in the pixel-level
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evaluation, except for NN. Among them, the variation trend of accuracy (IoU) of KWP
was very similar to that of KH (the RGBS image dataset combined with the OSF strategy
achieved the highest IoU, that is, the performance at the pixel level was optimal), while the
RGB image dataset combined with the APF strategy resulted in the highest IoU of EC, that
is, the optimal pixel-level classification performance was achieved.

Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 34 
 

 

accuracy (IoU) of KWP was very similar to that of KH (the RGBS image dataset combined 
with the OSF strategy achieved the highest IoU, that is, the performance at the pixel level 
was optimal), while the RGB image dataset combined with the APF strategy resulted in 
the highest IoU of EC, that is, the optimal pixel-level classification performance was 
achieved. 

 
Figure 15. Comparison of the classification accuracies of OC-FCMs with different image datasets for 
karst wetland vegetation. (a) Normalized confusion matrix, (b) IoU. 

This paper examined the difference in accuracy (F1-score and IoU) between OC-FCM 
and MC-FCM for each vegetation type (the difference was calculated by subtracting the 
F1-score/IoU of MC-FCM from the F1-score/IoU of OC-FCM) to quantitatively evaluate 
the difference in the effect of the two for different karst wetland vegetation when using 
identical image datasets (Figure 16): 
• For KH, the difference values of IoU and F1-score were both greater than 0 when 

using the RGBS image dataset. Among them, the RGBS image dataset combined with 
the APF strategy resulted in the difference values of IoU and F1-score both reaching 
the maximum, which are 22.09% and 8.41%, respectively, while the RGB image da-
taset combined with the MVF strategy resulted in the difference values of IoU and 
F1-score both reaching the minimum, which are −10.99% and −21.71%, respectively. 
These results proved that the identification ability of OC-FCM for KH was better than 
that of MC-FCM when using the RGBS image dataset, and the difference between the 
identification ability of the two at the pixel level reached the maximum when using 
the APF strategy. Meanwhile, the RGB image dataset combined with the MVF strat-
egy resulted in the identification ability of MC-FCM for KH surpassing that of OC-
FCM. 

• For KWP, the difference values of IoU and F1-score were both greater than 0 in all 
cases, and the RGBS image dataset combined with the APF strategy still resulted in 
the difference values of IoU and F1-score both reaching the maximum of 16.88% and 
6.62%, respectively. These results proved that the identification ability of OC-FCM 
for KWP was better than that of MC-FCM, and the difference between the two 
reached the maximum when using the RGBS image dataset and the APF strategy. 

Figure 15. Comparison of the classification accuracies of OC-FCMs with different image datasets for
karst wetland vegetation. (a) Normalized confusion matrix, (b) IoU.

This paper examined the difference in accuracy (F1-score and IoU) between OC-FCM
and MC-FCM for each vegetation type (the difference was calculated by subtracting the
F1-score/IoU of MC-FCM from the F1-score/IoU of OC-FCM) to quantitatively evaluate
the difference in the effect of the two for different karst wetland vegetation when using
identical image datasets (Figure 16):

• For KH, the difference values of IoU and F1-score were both greater than 0 when using
the RGBS image dataset. Among them, the RGBS image dataset combined with the
APF strategy resulted in the difference values of IoU and F1-score both reaching the
maximum, which are 22.09% and 8.41%, respectively, while the RGB image dataset
combined with the MVF strategy resulted in the difference values of IoU and F1-score
both reaching the minimum, which are −10.99% and −21.71%, respectively. These
results proved that the identification ability of OC-FCM for KH was better than that
of MC-FCM when using the RGBS image dataset, and the difference between the
identification ability of the two at the pixel level reached the maximum when using
the APF strategy. Meanwhile, the RGB image dataset combined with the MVF strategy
resulted in the identification ability of MC-FCM for KH surpassing that of OC-FCM.

• For KWP, the difference values of IoU and F1-score were both greater than 0 in all
cases, and the RGBS image dataset combined with the APF strategy still resulted in
the difference values of IoU and F1-score both reaching the maximum of 16.88% and
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6.62%, respectively. These results proved that the identification ability of OC-FCM for
KWP was better than that of MC-FCM, and the difference between the two reached
the maximum when using the RGBS image dataset and the APF strategy.

• For EC, the difference values of IoU and F1-score were both greater than 0 when using
the RGB image dataset, and the RGB image dataset combined with the APF and MVF
strategies resulted in the difference values of IoU and F1-score both reaching their
maximum of 3.31% and 5.22%, respectively. Meanwhile, the RGBST image dataset
combined with the OSF strategy resulted in the difference values of IoU and F1-score
reaching their minimum of −3.9% and −0.15%, respectively. These results proved that
the identification ability of OC-FCM for EC was better than that of MC-FCM when
using the RGB image dataset, and the difference in the identification abilities of the
two at the pixel and attribute levels reached the maximum when using the APF and
MVF strategies, respectively. Meanwhile, the identification ability of MC-FCM for EC
was better than that of OC-FCM when using the RGBST image dataset and the OSF
strategy.

• For NN, similar to KWP, the difference value of IoU was greater than 0 in all cases,
where the RGB image dataset combined with the MVF strategy exhibited the largest
difference value of IoU (6.42%), while the RGBS image dataset combined with both
the MVF and APF strategies exhibited the largest difference value of F1-score (1.96%).
These results proved that OC-FCM outperformed MC-FCM in identifying NN at the
pixel level, and the difference in the identification ability between the two at the pixel
level reached the maximum when using the RGB image dataset and the MVF strategy.
Meanwhile, OC-FCM outperformed MC-FCM in identifying NN at the attribute level
when using the RGBS image dataset and the MVF and APF strategies.
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3.3. Fusion of Different Images Datasets Classifications

Table 5 compared the accuracy (Macro-F1 and MIoU) differences between the results
of OC-FCM and MC-FCM based on different CNN algorithms and fusion strategies. Similar
to those based on the image dataset, the Macro-F1 and MIoU of OC-FCM were higher
than those of MC-FCM under identical conditions, with the highest MIoU of 0.7894 (the
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PSPNet algorithm combined with the OSF strategy) and the highest Macro-F1 of 0.9496
(the DeepLabV3+ algorithm combined with the OSF strategy). These results prove that
OC-FCM was better than MC-FCM regarding the identification ability for karst wetland
vegetation at the pixel and attribute levels under identical conditions, and OC-FCM using
the OSF strategy combined with the PSPNet and DeepLabV3+ algorithms achieved the
best performance at both the pixel and attribute levels. For the four CNN algorithms,
the MIoU of FCMs based on the PSPNet algorithm was higher than that of FCMs based
on the other three algorithms under identical conditions, with a difference of 0.25–5.34%.
Excluding the case of OC-FCM using the APF and OSF strategies combined with the SegNet
and PSPNet algorithms, the Macro-F1 of FCMs based on the DeepLabV3+ algorithm was
higher than that of FCMs based on the other three algorithms under identical conditions,
with a difference of 0.09–3.39%. These results proved that FCMs based on the PSPNet
and DeepLabV3+ algorithms achieved the optimal identification ability for karst wetland
vegetation at both the pixel and attribute levels, respectively.

Table 5. Accuracy differences between OC-FCM and MC-FCM based on different CNN algorithms.

Strategies Models Algorithms

SegNet PSPNet DeepLabV3+ RAUNet

Macro-
F1/MIoU

Macro-
F1/MIoU

Macro-
F1/MIoU

Macro-
F1/MIoU

MVF OC-FCM 0.9516/0.7490 0.9595/0.7872 0.9604/0.7592 0.9337/0.7521
MC-FCM 0.9184/0.6692 0.9287/0.7107 0.9350/0.6758 0.9329/0.6894

APF OC-FCM 0.9617/0.7498 0.9613/0.7862 0.9597/0.7605 0.9432/0.7539
MC-FCM 0.9158/0.6556 0.9314/0.7091 0.9480/0.6748 0.9411/0.6804

OSF OC-FCM 0.9685/0.7630 0.9640/0.7894 0.9496/0.7545 0.9380/0.7753
MC-FCM 0.9344/0.6748 0.9384/0.7112 0.9451/0.6965 0.9112/0.7087

The results of OC-FCM and MC-FCM based on different CNN algorithms and fusion
strategies are shown in Figure 17. It can be seen that there were some differences between
the results of FCMs under different conditions.

For the results of the OC-FCM (Figure 17a), when using identical algorithms, the
results based on the OSF strategy had the lowest misclassification rate among the three
fusion strategies, while the results based on the MVF and APF strategies exhibited similar
misclassification rates. When using the identical fusion strategy, the results based on the
PSPNet algorithm had the lowest misclassification rate among the four CNN algorithms,
and the misclassification phenomenon of KH in the results based on the other algorithms
was aggravated to different degrees compared with the results based on the PSPNet
algorithm. Moreover, in the OC-FCMs based on the CNN algorithm, it could be seen from
the visual effect that the result of the OC-FCM using the PSPNet algorithm combined with
the OSF fusion strategy had the lowest misclassification rate. These results proved that
the OC-FCM based on the OSF strategy had better identification ability for karst wetland
vegetation than the OC-FCM using the MVF and APF strategies, and the OC-FCM based on
the PSPNet algorithm had the best performance compared with the other three algorithms.
Therefore, the PSPNet algorithm combined with the OSF strategy resulted in the OC-FCM
obtaining the best performance for karst wetland vegetation.

For the results of the MC-FCM (Figure 17b), when using the identical algorithm,
similar to the OC-FCM, the misclassification rate based on the OSF strategy was lower
compared to that when using the other two fusion strategies, while the results based on the
MVF strategy showed a lower misclassification rate compared to the results using the APF
strategy. When using the identical fusion strategy, similar to OC-FCM, the misclassification
rate based on the PSPNet algorithm was lower than that using the other three algorithms,
while the misclassification rate based on the SegNet algorithm was the highest among the
four algorithms. These results proved that for the three fusion strategies, the identification
ability of MC-FCM was ranked from strong to weak as follows: OSF > MVF > APF;
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among the four CNN algorithms, the MC-FCM based on the PSPNet algorithm had the
best performance, while the MC-FCM based on the SegNet algorithm had the weakest
performance. Moreover, by comparing the results of the OC-FCM and the MC-FCM under
the same conditions, it could be seen that the misclassification rate of the former was lower
than that of the latter, which proved that the MC-FCM was weaker than the OC-FCM in
the identification ability for karst wetland vegetation under the same conditions.

Figure 18 shows the normalized confusion matrix for the results of OC-FCM based on
different CNN algorithms (Figure 18a) at the attribute level while comparing the accuracy
(IoU) differences for each vegetation type (Figure 18b) at the pixel level.
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Under the conditions of using identical algorithms, by observing the change in IoU
(Figure 18b), it could be seen that for the four algorithms, the absolute difference value
of IoU for the identical vegetation when using the MVF and APF strategies was less than
1%. Meanwhile, the IoU for the karst wetland vegetation using the OSF strategy had some
differences from that using the MVF and APF strategies. Taking KH and EC as examples,
regardless of which algorithm was used, the IoU for KH when using the OSF strategy was
higher than that for KH when using the other, which was consistent with the changes in
the confusion matrix (Figure 18a), where the PSPNet algorithm combined with the OSF
strategy resulted in the IoU of KH reaching the highest value at 0.6494. When using the
OSF strategy, the IoU for EC was lower than that for EC using other fusion strategies, where
the SegNet algorithm combined with the OSF fusion strategy resulted in the IoU of EC
reaching the minimum of 0.7507. The above results proved that the identification ability of
the OC-FCM based on the MVF and the APF strategies for karst wetland vegetation was
almost equal when the algorithms were identical. Among the three fusion strategies, the
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OC-FCM based on the OSF strategy had better identification ability for KH, and the OSF
strategy combined with the PSPNet algorithm resulted in the OC-FCM achieving the best
identification ability for KH at the pixel level. Meanwhile, the OC-FCM based on the OSF
strategy had the lowest identification ability for EC among the three fusion strategies, and
the OSF strategy combined with the SegNet algorithm resulted in the identification ability
of the OC-FCM for EC decreasing to the lowest value.
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Under the conditions of using the identical fusion strategy, the accuracy of OC-FCM
based on different algorithms differed for each vegetation type. Taking KWP and NN
as examples, for KWP, when using the OSF strategy, the OC-FCM based on the PSPNet
and DeepLabV3+ algorithms achieved the highest and lowest IoUs of 0.7344 and 0.6784,
respectively, while the RAUNet algorithm combined with the MVP or APF strategy resulted
in a minimal IoU of OC-FCM for KWP (Figure 18b). For NN, when using the OSF strategy,
OC-FCM based on SegNet and RAUNet algorithms achieved the highest and lowest IoUs of
0.9832 and 0.9749, respectively, while the PSPNet algorithm combined with the APF strategy
resulted in the smallest IoU of OC-FCM for KWP and the DeepLabV3+ algorithm combined
with the MVF strategy resulted in the maximal IoU of OC-FCM for KWP (Figure 18b).
The above results proved that the OC-FCM based on the PSPNet algorithm and the OSF
strategy had the best identification ability for KWP at the pixel level, while the OC-FCM
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based on the SegNet algorithm and the OSF strategy had the best identification ability for
NN at the pixel level.

This paper calculated the difference in accuracy (IoU and F1-score) between the results
of the OC-FCM and the MC-FCM for each vegetation type under the same conditions
(Figure 19) to quantitatively evaluate the difference in performance between the OC-FCM
and the MC-FCM for different karst wetland vegetation when using identical algorithms:

• For KH, the difference values of IoU were all greater than 0, while the difference values
of the F1-score were also greater than 0 when using the SegNet and PSPNet algorithms.
Among them, the SegNet algorithm combined with the OSF strategy resulted in the
difference values of IoU and F1-score reaching the maximum of 18.81% and 10.36%,
respectively.

• For KWP, when using the MVF and the APF strategies, the identification ability of OC-
FCM was higher than that of MC-FCM, and the difference value of IoU and F1-score
reached the maximum when using the SegNet algorithm and the APF strategy (the
maximum difference values of IoU and F1-score were 15.11% and 5.06%, respectively).

• For EC, the variation trends of the difference values of F1-score and IoU were similar
(the difference values were greater than 0), where the RAUNet algorithm combined
with the OSF strategy resulted in the maximum difference values of both F1-score and
IoU, which were 2.31% and 9.90%, respectively.

• For NN, the difference values of IoU were all greater than 0, and the RAUNet algorithm
combined with the APF fusion strategy resulted in the difference value of IoU reaching
a maximum of 8.89%; while in the attribute-level evaluation, two cases resulted in the
difference value of F1-score decreasing to less than 0 (the SegNet algorithm combined
with the MVF strategy and the RAUNet algorithm combined with the OSF strategy),
and there were two cases where the difference value of F1-score reached a maximum
of 1.96% (the RAUNet algorithm combined with the MVF or the APF strategy).
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The above results proved that the OC-FCM based on identical algorithms outper-
formed the MC-FCM in most cases for karst wetland vegetation. For four types of karst
wetland vegetation, the SegNet algorithm combined with the OSF and the APF strategies
resulted in the greatest difference in performance between the OC-FCM and the MC-FCM
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for KH and KWP, respectively, while the RAUNet algorithm combined with the OSF and
the APF strategies resulted in the greatest difference in performance between the two for
EC and NN, respectively.

3.4. Fusion of CNNs-Based and Image Datasets-Based Classifications

Table 6 compares the accuracy differences between the results of the OC-FCM and
the MC-FCM using the three fusion strategies. It could be seen that the results of the two
types of FCM differed somewhat in the use of different fusion strategies and accuracy
assessments. For OC-FCM, the MIoU using the OSF strategy was the highest among those
using the three fusion strategies, with a difference of 2.18% from the lowest MIoU (using
the MVF strategy), while the Macro-F1 using the MVF or APF strategy achieved the highest
value of 0.9660, which was 0.2% different from the lowest Macro-F1 (using the OSF strategy).
For MC-FCM, similar to OC-FCM, the highest MIoU was achieved when using the OSF
strategy, and the difference compared to the lowest MIoU (using the APF strategy) was
3.79%, while the highest Macro-F1 was achieved when using the MVF strategy, which was
0.98% higher than the lowest Macro-F1 (using the OSF strategy). Moreover, compared with
the MC-FCM, the results of the OC-FCM had higher values of Macro-F1 and MIoU under
identical conditions, which were 2.19–2.97% and 6.31–8.27% higher, respectively. The above
results proved that regardless of which fusion strategy was adopted, the identification
ability of OC-FCM was better than that of MC-FCM for karst wetland vegetation, among
which the OC-FCM based on the OSF strategy had the best performance for karst wetland
vegetation at the pixel level while the OC-FCM using three fusion strategies exhibited little
difference in performance for karst wetland vegetation at the attribute level.

Table 6. Accuracy differences of OC-FCM and MC-FCM based on different fusion strategies.

Strategies Models

OC-FCM MC-FCM

Macro-F1 MIoU Macro-F1 MIoU

MVF 0.9660 0.7683 0.9441 0.6929
APF 0.9660 0.7719 0.9406 0.6892
OSF 0.9640 0.7901 0.9343 0.7271

To explore the differences in performance between the FCMs based on different
fusion strategies, we plotted the results of the OC-FCM and the MC-FCM based on three
fusion strategies (Figure 20), calculated the IoU of each vegetation type (Figure 21b), and
plotted the normalized confusion matrix at the attribute level (Figure 21a). For OC-FCM,
the misclassification rates using the three fusion strategies were ranked from largest to
smallest as follows: MVF > APF > OSF, which could be mostly attributed to the gradual
improvement of KH being misclassified (observing the changes in the confusion matrix and
IoU). Therefore, among the three types of OC-FCM, the best identification ability for KH
was achieved when using the OSF strategy, whose IoU was 7.87% higher than the lowest
identification ability (using the MVF strategy). For MC-FCM, similar to OC-FCM in terms
of visual effects, the misclassification rate was the lowest when using the OSF strategy,
while the difference between the misclassification rates using the MVF and APF strategies
was small, which coincided with the variation trend of the corresponding confusion matrix
and IoU for each vegetation type. The main reason for this difference was the variation of
misclassification of KH, which was consistent with OC-FCM. Therefore, in the three types
of the MC-FCM, the best identification ability for KH was also the best when using the
OSF strategy, and the difference value of IoU between the best identification ability and the
lowest identification ability (using the APF strategy) was 7.64%. Moreover, under identical
conditions, the performance of the OC-FCM outperformed the MC-FCM for KH, KWP, and
NN, while the performance of the OC-FCM was also better than that of the MC-FCM for
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EC, excluding the case of using the OSF strategy, and the difference in IoU between the two
for each vegetation type ranged from 1.05% to 14.45%.
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4. Discussion

The accuracy (Figure 11) of OCC and MCC models for karst wetland vegetation
showed that the OCC and MCC models achieved average F1-score values of 92.12% and
90.03%, respectively, and the average F1-score values of OCC and MCC models for the
four vegetation types were all above 77%. These results proved that high-resolution UAV
visible images combined with the CNN algorithm achieved high-accuracy classification
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for karst wetland vegetation. From the difference in accuracy between OCC and MCC
models for karst wetland vegetation under identical conditions (Figure 12), it could be seen
that the difference values of IoU and F1-score between OCC and MCC models for the four
types of vegetation were greater than 0 in most cases, and the mean difference values of
IoU for KH, KWP, EC, and NN were 10.97%, 9.03%, 3.24%, and 5.84%, respectively. These
results proved that OCC models tend to outperform MCC models for the four types of
karst wetland vegetation, but there were disparities in the classification performance for
different vegetation types, which may be caused by differences in the training samples of
vegetation types in the study area, similar to the results of Feyisa et al. [46]. Furthermore,
upon observing the difference in classification accuracy of OCC models based on different
image datasets for four types of karst wetland vegetation (Figure 13), it could be seen that
the IoU for KH and KWP improved by 6.69–20.75% and 5.6–13.23% when using the RGBS
and the RGBST image datasets, respectively, compared with the RGB image datasets. These
results proved that the addition of DSM and TF improved the classification accuracy of the
CNN algorithm for karst wetland vegetation since there were certain differences in height
and surface texture between different types of karst wetland vegetation. The addition
of height and texture information could improve the differentiation between different
vegetation types [47,48]. In future research, to further classify karst wetland vegetation in
more detail, we consider using image features such as UAV multispectral and vegetation
index to improve the differentiation between different vegetation types and using better
algorithms (e.g., Vision Transformer) to achieve more accurate and detailed classification
for karst wetland vegetation.

Due to the differences in image datasets and CNN algorithms between the models used
in fusion, the performance of different FCMs was different. By observing the differences
in the accuracy (Macro-F1 and MIoU) of FCMs using different image datasets (Table 4),
we showed that Macro-F1 and MIoU of FCMs using the RGBS and RGBST image datasets
were higher than those using the RGB image datasets, where the values of Macro-F1 and
MIoU were higher by 0.47–7.35% and 0.67–8.23%, respectively. These results proved that
the addition of DSM and TFs also improved the performance of FCM for karst wetland
vegetation. By examining the accuracy (Macro-F1 and MIoU) of the results of FCMs based
on different CNN algorithms (Table 5), we found that FCMs based on the PSPNet and
DeepLabV3+ algorithms achieved the highest average values of MIoU and Macro-F1 of
74.89% and 94.96%, respectively. These results proved that the FCM based on the PSPNet
algorithm at the pixel level had the best identification ability for karst wetland vegetation,
and similarly, the FCM based on the DeepLabV3+ algorithm had the best identification
ability for karst wetland vegetation at the attribute level. In addition, by examining the
difference between the IoU for karst wetland vegetation after model fusion and the highest
IoU before fusion (Figure 22), we found that the improvement in classification accuracy for
karst wetland vegetation after model fusion varied with the adopted image dataset and
CNN algorithm. Among the four types of karst wetland vegetation, the improvement of
IoU for KWP was the most obvious, in which the difference in the average value of IoU
before and after fusion for KWP achieved the highest value of 0.59% among the three image
datasets when using the RGBS image dataset. Similarly, the difference in the average value
of IoU before and after fusion for KWP achieved the highest value of 1.38% among the four
algorithms when using the PSPNet algorithm. These results proved that the identification
ability of the fused model for karst wetland vegetation was further improved compared to
that before fusion, which has some similarities with the findings of Hoffmann et al. [49].
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For model fusion, there were some differences in the classification results of the
models obtained by using different fusion strategies. By comparing the visual results
(Figures 15, 18 and 21) and the accuracy (MIoU and Macro-F1) of FCMs based on the
three strategies (Tables 4–6), we found that in most cases, the classification results based
on the OSF strategy achieved the lowest misclassification rate and the highest MIoU,
respectively, where the MIoU was 0.04–2.99% higher than those based on the MVF and APF
strategies. These results proved that the FCM using the OSF strategy was more suitable
for the classification of karst wetland vegetation. By examining the difference between
the accuracy (IoU) of the classification models based on the three fusion strategies and the
best accuracy before the fusion (Figure 23), we found that the classification accuracy for
KWP, EC, and NN improved to different degrees after the model fusion. Among them, the
OC-FCM and MC-FCM using the OSF strategy resulted in the improvement of IoU for KWP
by 2.55% and 0.27%, respectively. The MC-FCM based on three fusion strategies resulted in
the improvement of IoU for EC by 0.55–1.28%, while the OC-FCM based on the MVF and
APF strategies and the MC-FCM based on the OSF strategy resulted in the improvement
of IoU for NN by 0.11–0.12%. These results proved that all three fusion strategies were
able to improve the identification ability of the fused models for karst wetland vegetation.
However, it could also be observed in Figure 23 that the accuracy (IoU) for some vegetation
types decreased after fusion, especially when using the APF and MVF strategies. The reason
was likely due to the fact that the classification performance of the models used in the
fusion was mostly different from that of the optimal model, which caused the fused models
to suffer from the influence of most of the models with poorer classification performance
and reduced classification performance. In addition, by examining the IoU differences
between OC-FCM and MC-FCM for karst wetland vegetation under different conditions
(Figures 17, 20 and 22), we found that the IoU of OC-FCM was higher than that of MC-FCM
for karst wetland vegetation in most cases. Among them, the enhancement of IoU of the
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OC-FCM compared to the MC-FCM for KH, KWP, EC, and NN ranged from 2% to 22.09%,
4.95% to 16.88%, 0.6% to 3.13%, and 0.59% to 8.89%, respectively. These results proved that
the OC-FCM under the same conditions was better than the MC-FCM in identifying the
four types of karst wetland vegetation in most cases.
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5. Conclusions

This paper is pioneering in the evaluation of decision fusions for classifying karst
wetland vegetation in Huixian Karst National Wetland Park, Guilin, south China, using
one-class and multi-class CNN models with high-resolution UAV images. We demonstrated
that the use of additional TFs and DSM derived from UAV aerial images improved the
classification accuracies of karst wetland vegetation when compared to using only RGB
images and achieved an increase in accuracy (IoU) of 20.75% for karst herbs based on
one-class classification (OCC) models. We found that the OCC models outperformed
multi-class classification (MCC) models for karst wetland vegetation mapping, and the
highest accuracy (average value of IoU) difference was up to 10.97%. This study confirmed
that fusion classification models (FCMs) have different identification abilities regarding
wetland vegetation using different image datasets and CNN algorithms. The RGBS-based
and RGBST-based FCMs provide better classification performances compared to the RGB
image dataset-based FCMs. For the classification of different CNN algorithms via fusion,
PSPNet and DeepLabV3 + achieved the highest average accuracies at the pixel scale (MIoU)
and attribute scale (Macro-F1), reaching 74.89% and 94.96%, respectively, which proved
that the PSPNet and DeepLabV3 + algorithms have the optimal capability in pixel-based
and attribute-based classification for karst wetland vegetation, respectively. The FCMs
improved the classification accuracies (IoU) for karst woody plants, Eichhornia crassipes,
and Nelumbo nucifera by 0.27–2.55%, 0.55–1.28%, and 0.11–0.12%, respectively, when
compared to the single CNN model, which revealed that three fusion strategies improved
the classification performance of the CNN models for karst wetland vegetation. One-class
FCMs produced a better classification of karst wetland vegetation than multi-class FCMs
with an accuracy improvement of 0.59–22.09%.
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proved the classification performance of the CNN models for karst wetland vegetation. 
One-class FCMs produced a better classification of karst wetland vegetation than multi-
class FCMs with an accuracy improvement of 0.59–22.09%. 
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