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Abstract: Simultaneous localization and mapping (SLAM) algorithm is a prerequisite for unmanned
ground vehicle (UGV) localization, path planning, and navigation, which includes two essential
components: frontend odometry and backend optimization. Frontend odometry tends to amplify the
cumulative error continuously, leading to ghosting and drifting on the mapping results. However,
loop closure detection (LCD) can be used to address this technical issue by significantly eliminating
the cumulative error. The existing LCD methods decide whether a loop exists by constructing local or
global descriptors and calculating the similarity between descriptors, which attaches great importance
to the design of discriminative descriptors and effective similarity measurement mechanisms. In
this paper, we first propose novel multi-channel descriptors (CMCD) to alleviate the lack of point
cloud single information in the discriminative power of scene description. The distance, height,
and intensity information of the point cloud is encoded into three independent channels of the
shadow-casting region (bin) and then compressed it into a two-dimensional global descriptor. Next,
an ORB-based dynamic threshold feature extraction algorithm (DTORB) is designed using objective
2D descriptors to describe the distributions of global and local point clouds. Then, a DTORB-
based similarity measurement method is designed using the rotation-invariance and visualization
characteristic of descriptor features to overcome the subjective tendency of the constant threshold
ORB algorithm in descriptor feature extraction. Finally, verification is performed over KITTI odometry
sequences and the campus datasets of Jilin University collected by us. The experimental results
demonstrate the superior performance of our method to the state-of-the-art approaches.

Keywords: autonomous driving; unmanned ground vehicle; LiDAR; simultaneous localization and
mapping; loop closure detection

1. Introduction

SLAM [1] is a key technology in the field of UGV, which can provide a prior map for
UGV to perform the positioning function. The SLAM system [2–4] estimates the poses
of vehicles within a certain period of time through the continuous data collected by the
sensors and builds incremental maps via these estimated poses to achieve the goals of
self-orientation and mapping. Undoubtedly, accurate estimation of poses is a key link in
the whole process. The higher the accuracy of pose estimation, the higher the mapping
quality. However, the traditional pose estimation methods that rely only on the interframe
matching of the odometer are prone to the problem of error accumulation. The estimated
trajectory of a system in long-time operation is bound to deviate significantly from the
actual moving trajectory. These drift errors can be corrected by additional information
provided by the LCD algorithm [5,6], which can recognize the revisited region by building
a new constraint relationship between the current and historical frames to supplement
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the inter-frame pose estimation. However, existing LCD solutions, including vision and
light detection and ranging (LiDAR) based methods, remain defective in some aspects and
cannot meet the demands of practical applications.

The existing vision-based LCD algorithms mainly adopt the strategy of combining
Oriented FAST and rotated BRIEF (ORB) bag-of-words model [7] and Random Sample Con-
sensus (RANSAC) [8,9] method. These LCD methods have the advantages of high retrieval
efficiency and rotation invariance regardless of the changes in viewpoints. However, the
bag-of-words database must be built in advance, and the subsequent candidate verification
steps are cumbersome. In addition, the performance of these vision-based methods is sus-
ceptible to the factors such as light, weather, and perspective. Compared with vision-based
methods, common radar LCD methods involve one more step to project point clouds into a
2D image. The main difficulty of these methods is manifested in how to design descriptors
and ensure the similarity score calculation is rotation-invariant. Scan Context (SC) [10,11]
exploits a bird-eye view (BEV) to project 3D point clouds into an expanded image. Though
maximum height and intensity information reflect the environmental information condition
to some extent, they are both low-dimensional descriptors generated according to the single
features of point clouds at the loss of much information contained in point clouds. The
discriminative power of these descriptors weakens in the case of many similar buildings
in the data collection process. Moreover, this coding approach transforms the rotational
change of sensors into the column sequence change of images so that the traditional scheme
of extracting rotation-invariant features from images is no longer applicable. It is because
the change relation between columns in the descriptors via brute-force retrieval is essential
before calculating the similarity. Evidently, this method has enormous room for improve-
ment. Shan [12] used LiDAR with 128 channels to generate a ring view of the environment
based on the intensity information. Then an ORB descriptor and RANSAC combined
method was successfully introduced into the LiDAR-based LCD. Despite the success of this
method in applying the traditional image feature extraction method to the LiDAR-based
method, the process of extracting image features is heavily dependent on high-resolution
LiDAR; otherwise, it would be difficult for descriptors generated on low-resolution LiDAR
to acquire valid features.

According to the above analysis, the existing LCD algorithms remain open to the fol-
lowing problems: (1) The descriptors constructed via the single information of point clouds
are lacking in the discriminative power of scene description; (2) the constant threshold
ORB algorithm is hard to extract descriptor features effectively; (3) the common similarity
calculation methods are sensitive to rotation and poor in interpretability, leading to misde-
tection or omitted detection of loop closure. To address these issues, this paper begins by
bringing forth a method for the construction of multi-channel descriptors (CMCD), with
the distance, height, and intensity information of point clouds introduced, coded into three
separate channels in the projection subregions (bins), and then compressed into 2D global
descriptors. Next, an ORB-based dynamic threshold feature extraction algorithm, DTORB,
is designed. This algorithm calculates the dynamic threshold according to the standard
deviation of objective global pixel values and the difference between pixel values within
local areas and then extracts the features of descriptors according to the dynamic thresh-
old. Finally, a DTORB-based similarity measurement method is proposed. This approach
transforms the problem of similarity between point clouds into the problem of similarity
between images and calculates the similarity score derived from the Hamming distance
between these features by matching the DTORB features of two images. This process is
also visualized. The main contributions of our paper can be summarized as below:

1. The method for CMCD: A novel CMCD method is proposed to resolve the lack
of point clouds in the discriminative power of scene description. It enhances the
discriminative power of descriptors and mitigates the effect of abnormal pixel values
in a single channel on subsequent feature screening by synthesizing the distance,
height, and intensity features of point clouds.
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2. The feature extraction algorithm DTORB: The feature extraction algorithm DTORB is
designed to get rid of the subjective tendency of the constant threshold ORB algorithm
in extracting descriptor features. A dynamic threshold is designed to screen features
via the objective global and local distributions of point clouds to ensure high-quality
features can still be extracted from the three-channel images generated using point
clouds. Meanwhile, the rotation-invariance property of ORB features guarantees
DTORB features are also rotation-invariant.

3. A rotation-invariant similarity measurement method is developed to figure out the
similarity score between descriptors by calculating the Hamming distance between
matched features. Its theoretical basis is also visualized.

4. A comprehensive evaluation of our solution is made over the KITTI odometry se-
quences with a 64-beam LiDAR and the campus datasets of Jilin University collected
by a 32-beam LiDAR, and the results demonstrate the validity of our proposed
LCD method.

The remaining part of this paper is organized as follows: Section 2 reviews the existing
LCD methods; Section 3 elaborates on our LCD algorithm, including the construction
of multi-channel descriptors, determination of the loop candidate set, DTORB feature
extraction, and similarity measurement; Section 4 displays the experimental results; Section 5
draws the conclusion. Figure 1 is a schematic of CMCD blocks for multi-channel descriptors.
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Figure 1. Schematic of CMCD blocks for multi-channel descriptors. The red area represents a pixel in
the figure, and the point cloud in the corresponding three-dimensional region of the red area will be
projected into this pixel.

2. Related Work
2.1. Vision-Based LCD

Existing LCD methods can generally be classified into vision-based and LiDAR-based
solutions. Most common in vision-based LCD is the bag-of-words [8] model that builds
a dictionary via the extracted image features and then a bag-of-words vector according
to whether the feature appears in the image. Sivic et al. [13] were the first to use the
bag-of-words model in the vision-based LCD task. They built a visual dictionary by
discretizing the extracted image features to figure out the frequency of occurrence of
different words describing different scenes and decide whether there existed a loop closure.
Cummins [14] implemented LCD by combining Speeded Up Robust Features (SURF) [15]
with a dependency tree to generate a bag-of-words model. Mur-Artal et al. [16] extracted
ORB features with rotation invariance and scale invariance to construct a bag-of-words
vector for LCD and used Random Sample Consensus (RANSAC) to eliminate mismatched
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loop frames. Dorian et al. [17] constructed a vocabulary tree of discrete binary descriptor
space to accelerate the geometric verification process of the bag-of-words model. Liu et al.
extracted the compact high-dimensional descriptors from single images and used PCA to
reduce the dimensionality of LCD to boost computational efficiency. However, the images
acquired using a camera by the vision-based LCD method are susceptible to changes in the
environment, illumination, and perspective during loop detection, leading to insufficient
accuracy of follow-up feature extraction and greatly affecting the performance of LCD.

2.2. LiDAR-Based LCD

The LiDAR-based LCD method has stronger adaptiveness to changes in the environ-
ment, illumination, and perspective and higher robustness, and can acquire rich infor-
mation, such as 3D coordinates, distance, azimuthal angles, surface normal vector, and
depth, from point clouds. The LiDAR-based LCD method can be further divided into two
categories: one is to extract local or global descriptors directly from point clouds, and the
other is to use the image as the intermediate representation.

The first category of methods lays a particular emphasis on extracting local or global
descriptors directly from point clouds. ESF [18] constructs global descriptors of point
clouds using three features: distance, angle, and area distributions. However, this solution
overlooks the effects of rotation and translation. Rusu et al. [19] proposed the Fast Point
Feature Histogram (FPFH), using the local normal lines of scanning points to construct
a key point feature histogram to detect a loop, but the normal line information has high
computational complexity and poor real-time performance. Bosse et al. [20] extracted
Gestalt key points and descriptors from point clouds and used key point voting to identify
positions. SegMatch et al. [21] segmented a point cloud into distinct elements, extracted
features from each segmented result, and then matched the features by the deep learning
method. PointNetVLAD [22] utilized PointNet [23] to extract features from point clouds
and used NetVLAD [24] to generate global descriptors. All these above methods are poor
in generalization as they need training with mass data.

The second category projects LiDAR point clouds onto the 2D plane(s) by means of
dimensionality reduction and then solves the LCD problem using a 2D method. M2DP [25]
projects point clouds onto multiple 2D planes and calculate the left and right singular
vectors of each plane as global descriptors according to the density feature, but it overlooks
the rotation problem. SC divides a BEV into several bins, each of which takes the maximum
height to form SC descriptors in terms of the azimuthal angle and radial direction and
adopts a two-stage search to detect a loop. Although the effect of LiDAR viewpoint changes
is mitigated by brute-force matching, SC [10] is not ideal for dealing with rotation invariance.
As an improvement over SC, ISC [26] constructs a global descriptor for the value assigned
to each bin in the combination of point cloud density and geometrical information, using
a two-stage layered recognition process for loop detection. Although making up for the
detection error due to the maximum height merely used by SC, ISC still leaves the rotation
invariance problem unresolved. To solve the brute-force matching problem of SC, IRIS [27]
projects point clouds into a BEV and obtains a binary image through Log-Gabor filtering
and threshold operation to search loop candidates. Although it has solved the rotation
invariance problem, its effectiveness is unsatisfactory in practical application. BVMatch [28]
constructs a maximum index map via the Log-Gabor filter to acquire the local descriptors
of BEV Feature and then a bag-of-words vector for scene recognition. OverlapNet [29]
uses range, normal vector, intensity, and semantic information to project point clouds
into 2D images and adopts a Siamese neural network to estimate the overlapping ratio
and relative yaw angle of the images and to ultimately complete loop closure detection
and correction. However, such a deep learning-based method is weak in generalization
and needs to undergo transfer training to be applied in specific scenarios with mass data
and high computational complexity. Shan et al. [12] projected the point clouds of a 128-
beam imaging-level LiDAR into an intensity map in the light of a point cloud sphere.
Subsequently, they built a bag-of-words model to query for the loop candidate set by
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extracting ORB features from the image. This method has not only a high requirement
on the equipment but also a certain requirement on the size of the bag-of-words model,
needing to update the bag-of-words model whenever a new scene appears.

Our motivation in this paper is to introduce relevant methods of 2D LCD into 3D LCD
tasks. The crux is to design a 3D-to-2D projection method, which requires considering
the high fidelity of point cloud data on the one hand and whether the descriptors are
consistent due to sensor viewpoint change on the other hand. Therefore, the method
for CMCD, which is distinguished from the foregoing descriptors containing only the
single features, is designed. The distribution, vertical structure, and reflection information
of point clouds are made full use of to enhance the discriminative power of descriptors
and reduce the interference of outliers occurring in the single information to follow-up
feature extraction while saving the information content. The rotation invariance problem is
approached by extracting DTORB features. Although our generated descriptors constitute
a BEV, which might rotate with sensor viewpoint change, it remains possible for us to
extract consistent features from the rotated image based on the rotation invariance of ORB
descriptors. Finally, the similarity score of descriptors is obtained from the Hamming
distance between matched features. In a visualized way, we displayed the extracted
features and the matching condition between them, giving a visual presentation of the
rationality of this method. The entire method proposed by us is distinguished from the
LiDAR-based method using ORB features and from the vision-based methods. Having
low requirements on the resolution of LiDAR, our method is applicable to both high-
and low-beam LiDAR data. Our proposed method does not require the construction of
dictionary vectors. Different from the bag-of-words model, our algorithm first extracts
the retrieval vector of the descriptor. Then, based on this vector, the nearest 10-frame
point cloud is retrieved from the KD tree. Next, the DTORB features of the descriptors
corresponding to the current point cloud and candidate point cloud are extracted. Finally,
the Hamming distance of matched features is calculated to score the similarity. Since the
distances of DTORB features are computed directly, rather than calculating scores against
the dictionary as in the bag-of-words model, there is no need to construct an appropriately
sized dictionary in advance or update the dictionary as new scenes emerge.

3. Methods
3.1. System Overview

This section introduces our solution in four major stages: construction of multi-
channel descriptors, selection of loop candidates, DTORB feature extraction, and similarity
measurement. The concrete pipeline of the procedure is shown in Figure 2. To start with,
the point clouds are projected and encoded into multi-channel descriptors after undergoing
data preprocessing. Next, possible loop candidates are selected by the descriptors. The first
step is to calculate the translation-invariant retrieval vector and linear weighted distance
for CMCD to get the loop candidate set of the current point clouds; the second step is to
extract rotation-invariant DTORB features for the descriptors; the third step is to calculate
the Hamming distance between matched rotation-invariant features as the similarity score
and decide whether the two-frame point clouds are a loop-closing pair.
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Figure 2. System overview.

3.2. Construction of Multi-Channel Descriptors

Given a 3D point cloud P, project it vertically onto the xOy plane of the sensor coordi-
nate system. Select the square region with area RANGEX× RANGEY centered at Origin
O as the region of interest (ROI). Segment ROI into Nx × Ny subregions with equal size,
where Nx and Ny correspond to the number of blocks divided on each side of the square
region, respectively, as shown in Figure 3. Each subregion at the row i and the column
j is symbolized by Bi

j for all point clouds in it. The row index and column index of this
subregion are calculated by the following formulae:

P = ∪
iεNx ,jεNy

Bi
j (1)

i =
x(p)+RANGEX

2
RANGEX

× Nx (2)

j =
y(p)+RANGEY

2
RANGEY

× Ny (3)

where p denotes a point among the point clouds within the current subregion Bi
j; x(p) and

y(p) represent the x- and y-coordinate information about point p, respectively; RANGEX
and RANGEY are offsets which ensure the row index and column index of point cloud
block Bi

j fall within the range of positive integers. In this paper, we set RANGEX = 120 m,
RANGEY = 120 m, Nx = 160, and Ny = 160. At this point, the size of the scanning region
in real scenes corresponding to each subregion is 0.75 m × 0.75 m.
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A one-frame point cloud is divided into several subregions after undergoing the above
partitioning. Traditional descriptors mostly adopt the single features of point clouds, but
it would be difficult to make a distinction between different point clouds when part of
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the rich information contained is used. Moreover, the existing descriptors are hard to
extract traditional image features. So, we designed multi-channel descriptors CMCD, using
multiple features to construct descriptors and represent point clouds by multi-channel
means. Referring to the RGB color pattern of images, we set three information channels for
each subregion, which were assigned values in terms of the distance, height, and intensity
features of the point clouds within that subregion.

The value assigned to the first channel is the maximum distance RBi
j

between the

points in Bi
j and Origin O of the sensor coordinate system, as calculated by the formula:

RBi
j
= max

√
x(p)2 + y(p)2, pεBi

j (4)

The value assigned to the second channel is the height information coding result HBi
j

for the points in Bi
j. We encoded the height values into octal codes and then converted

them into decimal numbers as the final HBi
j

for all points within a subregion by referring

to IRSI [27]. The specific way of height coding is described as below: For the set of point
clouds within each subregion, firstly, sort them by height. Then, linearly discretize them
into eight bins (not each bin has points, and the value of the bins with points is 1, whereas
the value of those without is 0) so as to obtain 8-bit binary codes for the height information.
Finally, convert them into decimal numbers, as shown in Figure 3.

The value assigned to the third channel is the intensity information coding result IBi
j

for the points in Bi
j. The intensity information is encoded into the final result IBi

j
in the same

way as the height information.
Through partitioning and coding, and then compressing the codes into grayscale global

descriptors containing rich information, a point cloud is represented as a multi-channel
descriptor CMCD, as shown in Figure 3. A CMCD reveals the distributional structure,
vertical structure, and reflection information of the ambient and can accurately discriminate
different scenes while reducing the interference of outliers to follow-up feature extraction.

3.3. Selection of Loop Candidates

To speed up the retrieval, the translation-invariant search vector [10] is designed by
which to build a fast-retrieving KD tree [30]. Furthermore, the linear weighted distance
is devised by performing nearest-neighbor retrieval to find the most similar historical
point cloud to the current ones and construct a loop candidate point cloud set. To follow
the concrete steps, the CMCD is flipped in the x-direction and y-direction, respectively,
to get the enhanced descriptors; the L1-norms of all rows are taken for the original and
enhanced descriptors and added up to get a 160-dimensional original retrieval vector. The
enhanced descriptors ensure the most similar candidates are still retrievable when the
sensor viewpoint is reversed. The retrieval vector calculated in the x-direction is endowed
with translation invariance, ensuring the nearest neighbors are retrievable in the event of
horizontal translation. Meanwhile, for the retrieval vector stored in the KD tree to be more
representative, and to reduce dimensionality and speed up the retrieval. The principal
component analysis (PCA) [31] is conducted on the original retrieval vector to derive an
eigenmatrix Q by which to reduce the dimensionality of the original retrieval vector. The
new retrieval vector after dimensionality reduction is stored in the KD tree for retrieving
historical frames. The new retrieval vector Query is calculated by the formula:

Query =
(

µ
(

I1
)

, . . . , µ
(

Ii
))

(5)

µ(Ii) = (
159

∑
j=0

(L(Ii
j) + L(Ix

i
j) + L(Iy

i
j)))×Q (6)
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where Ii
j is the pixel value of the subregion corresponding to the original descriptors, Ix

i
j

and Iy
i
j are pixel values of the subregion corresponding to the enhanced descriptors; i

and j are the row and column indexes of CMCD, respectively; L() signifies calculating
the L1-norm of the element within the parentheses; Q is the eigenmatrix obtained after
PCA processing.

To speed up the retrieval of the KD tree and meet the real-time performance require-
ment of LCD, the linear combination of the Manhattan distance D1, and the chessboard
distance D∞ with low computational complexity is selected instead of the Euclidean dis-
tance as the criterion for KD tree retrieval. The Manhattan distance D1 is calculated by
the formula:

D1(x, y) =
n

∑
i=1
|xi − yi| (7)

The chessboard distance D∞ is calculated by the formula:

D∞ = max
1≤i≤n

{|xi − yi|} (8)

The linear combination is calculated by the formula below:

D = ω× (D1 + D∞) (9)

where the weight ω = 0.5.
The retrieval vector of CMCD is then by Formula (5) and stored in the KD tree. The

ten most similar historical point clouds, of which the IDs are in a candidate set of loop-
closing pairs, to the current point clouds are retrieved by Formula (9). The results of the
selection of loop candidates are shown in Figure 4. We project and encode the point cloud
at frame 2582 of KITTI-05 to obtain the descriptor CMCD. Then we calculate the retrieval
vector for CMCD according to the formula and quickly retrieve the ten most similar loop
candidates from the KD tree according to the linear combination distance. The frame IDs
of the ten most similar loop candidates are 145, 819, 820, 822, 823, 834, 835, 836, 887, and
1998, respectively.

3.4. DTORB Feature Extraction Algorithm

Considering that LiDAR data undergo viewpoint change or horizontal shift in the
revisited place, it is necessary to extract rotation-invariant features from the current CMCD
and those corresponding to the loop candidate set. The ORB feature extraction algorithm [7]
can extract rotation-invariant and scale-invariant features from the image to meet our
requirements. However, given that the ORB algorithm is applied in traditional images, it
would be too subjective to screen features using a fixed threshold, and it would deviate
from the intended effect if used directly to extract the rotation-invariant features of CMCD.
Therefore, the aspect of feature extraction of ORB algorithm by designing a dynamic
threshold feature extraction and description algorithm DTORB. This algorithm sets a global
threshold via the degree of dispersion of the pixel values of the entire descriptor, as well as
a local threshold via the difference between the pixel values within a local region, according
to the thought of the variable-threshold method. The global and local thresholds are
integrated to calculate the dynamic threshold to extract feature points discriminatively. The
specific procedure is described as follows:

DTORB adopts a three-layer image pyramid to obtain CMCD with distinct resolutions
after graying the image and then extracting FAST [32] feature points for each CMCD using
the dynamic threshold. Considering the degree of dispersion of pixel values of the entire
descriptor, the dynamic global threshold of the entire CMCD is first calculated. To avoid
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the effect of outliers on the threshold, the standard deviation of grayscale values excluding
the maximum and the minimum is taken as the global threshold αt:

αt =

√
∑N

i=1 (Ii − Im)
2

N
(10)

where N is the total number of points in the image; Ii is the grayscale value of each point;
Im is the mean of grayscale values of the remaining points after excluding the maximum
and minimum grayscale values.
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Considering the degree of deviation of data within the neighborhood, the dynamic
local threshold βt of the neighborhood encompassing each point is calculated by the
following formula:

βt = k1 ×
Imax − Imin

Im
(11)

where Imax and Imin are the maximum and minimum grayscale values, respectively; Im is
the mean of grayscale values of the 14 remaining points after excluding Imax and Imin; k1 is
typically taken as 2–5.

The final dynamic threshold of feature points is selected as

θt = k× αt + (1− k)× βt (12)

where k is typically taken as 0.5–1; αt is the global dynamic threshold; βt is the local
dynamic threshold.

Feature points are extracted by the following formula depending on the dynamic
threshold θt:

f
(

Ix, Ip
)
=

{
1,
∣∣Ix − Ip

∣∣ ≥ θt
0,
∣∣Ix − Ip

∣∣ < θt
(13)

N = ∑
x∈[1,16]

f
(

Ix, Ip
)

(14)

where Ix represents the grayscale value of the current point; Ip represents the grayscale value
of a neighborhood point, which is considered a feature point when N ranges from 9 to 12.

After extracting FAST feature points according to the dynamic threshold, the follow-
up steps of ORB are adopted for feature extraction. With the vector direction from the
geometrical center to the center of mass of the feature point found within the feature point’s
neighborhood as the feature point’s principal direction, the BRIEF [33] algorithm at the
second stage of ORB is used to describe the feature point to acquire the rotation-invariant
features of CMCD.

3.5. Similarity Measurement

At the stage of similarity measurement, the rotation-invariant features are first calcu-
lated for the current CMCD, and so are those corresponding to the loop candidate set by
the DTORB feature extraction algorithm. Next, the distance between features is calculated
after the mismatched ones are eliminated to decide whether the two-frame point clouds are
a loop-closing pair. Since the rotation-invariant features are in binary form, the matching
point between two features is first searched for, and then the Hamming distance between
matched feature points is calculated for similarity measurement. The distance between
feature points is calculated as follows:

d(desc1, desc2) =
256

∑
i=1

(xi ⊕ yi) (15)

where desc1 and desc2 are binary representations for two feature points, and
desc1 = [x1, x2, . . . , x256], descc2 = [y1, y2, . . . , y256]; ⊕ denotes XOR operation; the values of
x and y are 0 or 1.

At the feature point matching stage of rotation-invariant features, LMEDS [34] method
is adopted to eliminate mismatched points to avoid their effect on the matching precision.
This algorithm is sensitive to Gaussian noise, while DTORB has processed the CMCD
image with Gaussian Blur before calculating features, so LMEDS is suitable for eliminating
mismatched points after extracting features by DTORB, which delivers high precision and
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robustness. After mismatched points are eliminated, the distance between two rotation-
invariant features is calculated as follows:

D
(

DESCq, DESCc
)
=

1
Nk

Nk

∑
i=1

d (16)

where DESCq and DESCc are rotation-invariant features of the current CMCD and historical
CMCD; Nk is the number of matched points; d is the Hamming distance between matched
feature points (See Formula (13)).

When the distance between rotation-invariant features is smaller than or equal to the
given threshold, the two CMCDs are similar, and the corresponding two-frame point clouds
are a loop-closing pair. For the loop candidate set obtained at the rough screening stage
of loops, the distances between the rotation-invariant features of the current CMCD and
each candidate CMCDs are calculated, and the candidate point cloud with the minimum
distance is taken as the LCD result of the current point clouds, as formulated below:

c∗ = argmin
ck∈C D

(
DESCq, DESCck

)
, s.t D < τ (17)

where C is the index of the nearest candidate point cloud retrieved by the KD tree; τ is the
given acceptance threshold, typically taken as 0.4–0.56; c∗ is the index of the most similar
point cloud among the candidate point clouds to the current ones. These two-frame point
clouds are a loop-closing pair. Feature matching is visualized in Figure 5:
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4. Results

In this section, our algorithm is verified by comparative experiments with four com-
mon algorithms in LCD: SC [10], ISC [26], M2DP [25], and ESF [18]. The codes for SC [35],
ISC [36], and M2DP [37] algorithms are downloadable from the author’s website, while
ESF [38] algorithm is implemented in the point cloud library (PCL). The entire point cloud
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is deemed as a reference point, like the center of mass, of which the ESF descriptors are
figured out to represent the frame of point clouds. All experiments are done on the same
computer with OS Ubuntu20.04, 3.07 GHz frequency, CPU Intel X5675, and 16 GB memory.

4.1. Datasets

All experiments were done over four KITTI odometry sequences [39], and four datasets
were collected on the campus of Jilin University. The datasets adopted by us are diversified,
e.g., the diverse types of 3D LiDAR sensors (Velodyne HDL-64E with 64 beams and
Velodyne HDL-32E with 32 beams) and of loop closure (both obverse and reverse loop
closures). The KITTI odometry sequences are obtained by Velodyne HDL-64E mounted
on vehicles, providing indexed scans and widely used in SLAM and LCD. Four sequences
(00, 02, 05, and 06) are selected with loops among the 11 KITTI odometry sequences with
ground truth for loop closure verification. The sequence KITTI-00 consists of 4541 frames
of point clouds in total, with five segments of obverse loop closure; the sequence KITTI-02
consists of 4661 frames of point clouds in total, with two segments of obverse loop closure
and one segment of reverse loop closure; the sequence KITTI-05 consists of 2761 frames of
point clouds in total, with three segments of obverse loop closure; the sequence KITTI-06
has one segment of obverse loop closure.

Multiple segments of data with obverse and reverse loop closures are collected from
the campus of Jilin University. The data are acquired by the devices 32-beam LiDAR
Velodyne HDL-32E and inertial navigator NovAtel NPOS220S erected on Volkswagen
Tiguan, with the vehicle’s speed maintained at about 30 km/h. Four scenes, jlu00, jlu01,
jlu02, and jlu03, with distinct scales, are selected from our datasets to validate our method.
Among them, jlu00 has 4626 frames, with two segments of obverse loop closure and one
segment of reverse loop closure; jlu01 has 1262 frames in total, with one segment of obverse
loop closure; jlu02 has 3894 frames in total, with one segment of obverse loop closure and
one segment of reverse loop closure; jlu03 has 6190 frames in total, with one segment of
obverse loop closure.

4.2. Experimental Settings

To obtain the actual precision rate and recall rate, the ground truth pose distance
between the query and the matched frame is set as the criterion for loop detection. If the
distance is smaller than 4 m, then the loop is considered true positive. To avoid matching
with adjacent point clouds, no similarity judgment is made for the previous 50 frames
and the next 50 frames to the current frame. Each frame of point clouds is projected into
CMCD, the DTORB features are calculated after the rough screening by the KD tree, and
the similarity between point clouds is measured according to the distance between features.
Next, our parameters are optimized over the KITTI odometry sequences, and the distance
threshold is continuously improved to accurately screen loop frames. In this paper, the
parameters of CMCD are set as follows: the size of CMCD = 160× 160, range of point cloud
selection = 120 m × 120 m, dimension of the retrieval vector stored in the KD tree = 120,
number of the nearest neighbors retrieved by the KD tree = 10. In SC, the number of the
nearest neighbors retrieved by the KD tree is set as 10, the number of bins as 20 × 60,
and the maximum radius as 80 m. In ISC, the number of bins is set as 20 × 90, and the
maximum radius is set as 60 m. There is no parameter to set in ESF. In M2DP, the number
of bins per 2D plane is set as 8 × 16, and the number of 2D planes to use is set as 4 × 16.
These parameters are set according to the open-source code and the paper.

4.2.1. LCD Performance

The precision rate versus recall rate (P-R) curve and F1-score are adopted to compare
the performances of the five algorithms. The F1-score is defined as:

F1 = 2× P× R
P + R

(18)
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where P is the precision rate; R is the recall rate; F1 is the harmonic average of P and R of
the model, which gives simultaneous consideration to the model’s precision rate and recall
rate. Distinct loop acceptance thresholds are set within the interval [0, 1] in the experiments,
and the P-R curves of the algorithms are plotted to evaluate the LCD performance.

First, our method is evaluated over the KITTI odometry sequences, using the original
point cloud as the input to evaluate the performance of CMCD according to the P-R curves
in Figure 6. It is found that ESF exhibits inferior performance on all datasets because this
method relies on the histogram and cannot make an accurate distinction between positions
unless the environmental change is great. M2DP delivers a very high precision rate at
a very low recall rate on most of the datasets since it has correctly detected the obverse
loop closure. However, without considering the rotational and translational changes of
scenes, this method fails to detect the reverse loop closure, and the slopes of curves decrease
rapidly. SC and ISC deliver relatively good detection performance, but neither possesses
the rotation invariance in theory; they are implemented relying on brute-force matching,
and both rely on vertical structural information, so their performance is limited when the
vertical height in the environment varies little. Our method mainly relies on the projection
approach to solve the translation transformation problem and on DTORB features to
address contra-revisit. The detection performance of our method over both KITTI-00 and
KITTI-05 is superior to all other methods and is almost on par with the best-performing SC
over KITTI-02 and KITTI-06. Over the four sequences, the P-R curves of our method show a
slight decrease in precision rate with the increase in recall rate, and the precision rate is still
high at the maximum recall rate. The high recall rate signifies our method can effectively
search the loop candidates with the less missing report, whereas the high precision rate
can prevent erroneous loops from being registered into the map. According to Figure 6,
the detection performances of all algorithms over KITTI-02 are poorer than over any other
sequence, probably because the reverse loop closure in the data has the occlusion issue.
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The experimental evaluation method over JLU datasets is the same as over KITTI
odometry sequences. Through analysis of the performance of CMCD according to the P-R
curves in Figure 7, it can be found that the overall performance is consistent with that of
the KITTI odometry sequences. Since our datasets have been acquired by the 32-beam
LiDAR, while the KITTI odometry sequences have been acquired by the 64-beam LiDAR,
it is feasible to adopt DTORB of image features to decide whether a loop is constituted
after projecting 3D point clouds into a 2D image. This approach is not only independent of
LiDAR type, but it also has low equipment requirements, excellent robustness, and gener-
alization ability. It can be found from Figure 7 that the LCD performances of M2DP and
ESF remain inferior, and their effects are much unsatisfactory, especially over the dataset
jlu00. Since the dataset jlu00 contains one segment of reverse loop closure, while neither
M2DP nor ESF can recognize a reverse loop closure, the performance degrades dramatically.
Point cloud occlusion is not severe in the relatively simple campus environment, so our
algorithm can achieve a high precision rate over jlu00. Our algorithm delivers a higher
precision rate than all the others at the same recall rate over the datasets jlu02 and jlu03.
With the increase in recall rate, the precision rate of our scheme declines slowly, meaning
that the LCD performance is stable. Additionally, among these sequences, the P-R curve
of our algorithm almost completely covers those of other algorithms. Besides, the area
under the curve of our algorithm is significantly larger than that of any other algorithm,
demonstrating that our algorithm has outstanding discriminative performance and the
ability to detect loop closure effectively. The performances of all algorithms are almost
on par with the dataset jlu01, mainly because the scenes of this dataset only encompass a
single segment of a positively directed loop.
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4.2.2. Place Recognition Performance

EP score is used to evaluate the performance of our algorithm in place recognition. EP
is defined as:

EP =
1
2
(PR0 + RP100) (19)
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where PR0 is the precision rate at the minimum recall rate; RP100 is the maximum recall
rate at 100% precision rate. EP is an indicator specially used to evaluate the performance
of a place recognition algorithm. See Table 1 for the comparison of EP score lists among
different algorithms.

Table 1. F1 scores and EP scores over KITTI odometry sequences and JLU datasets.

Methods KITTI-00 KITTI-02 KITTI-05 KITTI-06 jlu00 jlu01 jlu02 jlu03

SC 0.9493/0.8719 0.8776/0.8746 0.9189/0.8326 0.9809/0.8957 0.8520/0.7407 0.9545/0.8809 0.8843/0.6776 0.9366/0.5396
ISC 0.8693/0.7141 0.8365/0.7935 0.8825/0.7564 0.9298/0.8677 0.8397/0.6485 0.9104/0.7857 0.8532/0.6056 0.8596/0.5321

M2DP 0.9188/0.7809 0.7902/0.5722 0.8892/0.5844 0.9328/0.6737 0.6667/0.4333 0.9185/0.7286 0.7717/0.3692 0.8970/0.4833
ESF 0.5653/0.4821 0.5589/0.4375 0.4795/0.2273 0.6216/0.45 0.1500/0.25 0.7285/0.53 0.4781/0.3226 0.5108/0.25

Ours 0.9754/0.8969 0.8950/0.8560 0.9729/0.8989 0.9827/0.9001 0.9056/0.7986 0.9403/0.8786 0.9359/0.7205 0.9478/0.5933

Notes: F1-score/EP score; figures in bold indicates the optimal performance.

The F1 score is used to evaluate the robustness of LCD, and the EP score is used to
evaluate the robustness of place recognition. From Table 1, the indicators of our method
surpass other methods in most of the sequences. Over the dataset jlu00, where there exist
two segments of obverse loop closure and one segment of reverse loop closure, the F1-score
of our method is 0.9056, higher than that of the SC algorithm by 6%; the EP score of our
algorithm is 0.7986, higher than that of the best-performing SC algorithm by 8%. This
indicates our algorithm can accurately recognize obverse and reverse loop closures with
higher robustness to rotational variation. The EP scores over most of the KITTI odometry
sequences are all higher than those of other algorithms, meaning our algorithm can be used
in preliminary place recognition. Over our own datasets, the LCD task is more challenging
given the dynamic campus environment with a large number of pedestrians and parked
vehicles. Although the EP score over the dataset jlu01 is slightly lower than that of the
SC algorithm, the EP scores of our algorithm over other datasets are superior to other
algorithms. For example, the EP score of our algorithm over the dataset jlu02 increases by
95% as compared to that of M2DP. Therefore, our method has good generalization ability
and practical application value.

4.2.3. Improvement of the Mapping

In this experiment, the LCD module is added into the LeGO-LOAM [3,5,40] framework,
using ICP [41] to match the current point clouds with historical ones of loop closure upon
detecting loop closure, and a constraint factor is built. Afterward, the LiDAR odometry
factor obtained at the frontend of LeGO-LOAM and the constraint factor obtained in our
LCD scheme are both added into GTSAM [42] for mapping after backend optimization. The
estimated trajectory on KITTI odometry sequences and JLU datasets after adding our own
loop constraint into Lego-LOAM is shown in Figure 8. In Figure 8, the detected obverse
loop closures are marked with red lines, and the detected reverse loop closure are marked
with yellow lines. As shown in Figure 8a,b, the loop closures detected on the KITTI-00
sequence are completely closed in the map; the estimated trajectories show no intersection,
overlap, or disconnection. As shown in Figure 8g,h, loop closures can still be accurately
detected on the jlu00 sequence, thereby avoiding map drift. This suggests our method can
accurately detect loop closure at different locations, avoid drift due to cumulative error,
and improve the performance of mapping results. At the closed-loop position, the current
trajectory coincides with the historical trajectory without ghosting and drift problems. In
addition, wrong loop closure information is not registered in the estimated trajectory, so the
accuracy of mapping is high. In addition, we show the mapping of jlu02 and jlu03 in detail.
As can be seen from Figure 9, the constructed maps in jlu02 and jlu03 have no drift and
ghost, where the overall layout of buildings and the extension direction of roads correspond
to the scenes in Figure 9a,e. Figure 9b,c,f,g show the global mapping and local LCD results,
respectively. Figure 9c,g is a magnification of the positions circled in Figure 9b,f, all of
which are located in the closed part of the loop marked in red in Figure 9d,h. Therefore, the
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SLAM algorithm with CMCD as an LCD module can accurately detect loop closure in real
scenes without errors.
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4.2.4. Ablation Experiments

In this section, we designed three groups of ablation experiments to analyze the
impact of three methods, namely different point cloud projections, different similarity
measurements, and retrieval vectors with or without enhancement, on loop closure detec-
tion performance.

In the first ablation experiment, we compare the performance of four projection meth-
ods, CMCD, bird-eye view projection using height information, bird-eye view projection
using intensity information, and bird-eye view projection using distance information, on
the KITTI odometry sequences and JLU datasets. The main difference between these four
methods is different projection strategies, and other experimental settings are unchanged.
Figure 10 shows the CMCD projection of a frame point cloud in KITTI odometry sequences
and JLU datasets, respectively as well as the simple bird’s eye view of height, intensity,
and distance. As can be seen from Figure 10, the three simple projections are different in
detail, which indicates that the information they provide will be different. This further
indicates that more feature information can be obtained by combining them to improve the
performance of the algorithm.

The P-R curves in Figures 11 and 12 show the difference in algorithm performance
between the four projection methods due to different feature information. According to the
experimental results, we can find that firstly, CMCD improves in both accuracy and recall
of loop closure detection with a larger area under the curve compared to projection using a
single message. Secondly, CMCD seems to be more accurate on sequences with reverse loop
closure (refer to the results of sequences KITTI-02, jlu00 in Figures 11 and 12). One possible
explanation is that the global descriptor information is richer and more discriminative
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due to the multi-channel encoding, which reduces the occurrence of false matches. Finally,
this experiment can find that CMCD detects loop closure significantly better than other
schemes on the JLU datasets (refer to the results of sequences jlu00 and jlu03 in Figure 12).
The JLU datasets are collected by 32-beam LiDAR, and the number of point clouds in a
single frame is not as rich as 64-beam LiDAR used by KITTI odometry sequences. Thus,
the information loss is more serious after using single-channel projection, which leads to
poor loop closure detection performance. It can be concluded that our CMCD method can
significantly improve the information content and lead to better performance.

Remote Sens. 2022, 14, 5877 17 of 25 
 

 

    
(e) (f) (g) (h) 

Figure 8. Mapping and LCD results should be listed as the (a–f) mapping and LCD results on KITTI-
00, KITTI-02, and KITTI-05; (g,h) mapping and LCD results on jlu00. The red and yellow lines indi-
cate the detected obverse and reverse loop closures, respectively. 

 
Figure 9. The mapping results of CMCD in SLAM on jlu02 and 03: (a,e) BEV images of jlu02 and 
jlu05, the red lines represent the driving route at the time of data collection; (b,f) the visualized 
Figure 9. The mapping results of CMCD in SLAM on jlu02 and 03: (a,e) BEV images of jlu02 and
jlu05, the red lines represent the driving route at the time of data collection; (b,f) the visualized results
of the point cloud map; (c,g) the local LCD results; (d,h) the mapping and LCD results, the red box
indicates that this trajectory has loop closure.
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0; Distance: 0,” indicates that the image is projected according to the height information.
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Remote Sens. 2022, 14, 5877 20 of 24

In the second ablation experiment, we compared our method with the method using
the bag-of-words model constructed by DTORB features for retrieval on KITTI odometry
sequences and JLU datasets, respectively. The main difference between them is the different
strategies of similarity metrics. The red and blue lines in Figures 13 and 14 are the results
of our method and the bag-of-words model method, respectively. It can be seen from the
figures that in most scenarios on KITTI odometry sequences and JLU datasets, the P-R
curve (red lines) of the proposed method is above the compared method (blue lines). This
indicates that the retrieval effect of our method is better than the compared method in
most cases. Our result is slightly worse than the compared method on KITTI-02. The main
reason is that the trajectory of KITTI-02 is more complex than the other three sequences
containing loops. It makes the scene vary greatly, and the discrimination between word
vectors is better. This indicates that the retrieval strategy based on the bag-of-words model
depends on the richness of features and the size of the bag of words. Because the dictionary
needs to be built in advance, its effect and stability are difficult to predict in advance.
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In the third ablation experiment, we used two different retrieval vectors. One is the
enhanced retrieval vector proposed in this paper, and the other is the ordinary retrieval
vector (ori-retrieval-vector). The ordinary retrieval vector is obtained by taking the L1-
norms of all rows for the descriptor and summing them. Other experimental settings are
unchanged. An illustration of the selected candidates is shown in Figure 15. According to
the enhanced retrieval vector, we find the ten most similar loop candidates of frame 2582 of
KITTI-05 and frame 3715 of jlu02, respectively. The frame IDs of the ten most similar loop
candidates of frame 2582 are 145, 819, 820, 822, 823, 834, 835, 836, 887, and 1998 respectively.
The frame IDs of the ten most similar loop candidates of frame 3715 are 1314, 1318, 2841,
2842, 2843, 2847, 2848, 2849, 2850, and 2851, respectively.
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The loop closure detection results of two retrieval vectors on different data sets are
located in Figures 13 and 14. By comparing the red line (enhanced retrieval vector proposed
in this paper) and the yellow line (original retrieval vector) in Figures 13 and 14, it can be
seen that the enhanced retrieval vector has a more significant effect. The area wrapped
by the P-R curve is obviously larger on the data with longer distances and more frames,
such as KITTI-00, KITTI-02, KITTI-05, jlu00, and jlu01. The visualization shows that our
algorithm can not only find the most similar frame but also find the region where the loop
is located, indicating that our algorithm has good robustness.

4.2.5. Analysis of Computation Time

To evaluate the real-time performance and computational complexity of the proposed
method, we adopt the following two methods for analysis: (1) Analyze the time complexity
of the proposed method, which is O(M× N + K). M and N are the length and width of
the image, and K is the number of point cloud frames. (2) Calculate the average execution
time of each frame point cloud. Specifically, we calculate and accumulate the processing
time of each frame point cloud from the initial projection process to the final selection of the
most similar candidate frames. Furthermore, we divide the total processing time above by
the total frames to obtain the average execution time. Table 2 shows the average execution
time per frame of the point cloud for different methods.

As can be seen, the average execution time of each frame of our method is lower than
that of other method on the KITTI odometry sequences. As for JLU datasets, the average
execution time for each frame of our algorithm in jlu01, jlu02, and jlu03 is lower than that
of other methods. Although the execution time in jlu01 is slightly poor, it is also within
the acceptable range. In the future, we will continue to improve the DTORB features to
optimize the execution time of the algorithm.
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Table 2. Average execution time over KITTI odometry sequences and JLU datasets.

Methods
Avg KITTI Execution Time (s/Query) Avg JLU Execution Time (s/Query)

KITTI-00 KITTI-02 KITTI-05 KITTI-06 jlu00 jlu01 jlu02 jlu03

SC 0.0867 0.0861 0.0885 0.0846 0.0583 0.0558 0.0658 0.0732
ISC 0.0697 0.0687 0.0678 0.0656 0.0537 0.0513 0.0580 0.0605

M2DP 0.3655 0.3873 0.3869 0.3827 0.3974 0.3554 0.3739 0.3538
ESF 0.0728 0.0784 0.0785 0.0664 0.0724 0.0574 0.0541 0.0655

Ours 0.0603 0. 0601 0.0589 0.0525 0.0587 0.0483 0.0539 0.0598

Notes: figures in bold indicates the optimal performance.
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5. Conclusions

In this paper, we have proposed a novel method for the construction of global de-
scriptors, CMCD. Multi-channel descriptors have been constructed by the CMCD method;
then, DTORB features have been extracted for the descriptors; finally, the similarity score
between point clouds has been calculated according to the features. Overall, our algorithm
has made full use of the structural information of point clouds and compressed the point
cloud information into a 2D image, thereby introducing the visual method into the LiDAR
point clouds. Compared with the state-of-the-art LCD methods, our method has achieved
an average precision rate of 0.9565 and an average recall rate of 0.8879 over the KITTI
odometry sequences, and a maximum precision rate of 0.9478 and a maximum recall rate of
0.8786 over our own datasets. The experiments have demonstrated that our algorithm can
accurately detect loop closure with high efficiency and robustness. We plan to extend our
method to point cloud matching and try to apply more mature and efficient visual SLAM
methods to the LiDAR algorithm in the future.
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