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Abstract: Soil freeze–thaw processes are remarkable features of the land surface across the Tibetan
Plateau (TP). Soil moisture and temperature fluctuate during the freeze–thaw cycle, affecting the soil
water and energy exchange between the land and atmosphere. This study investigates variations
in the soil temperature, humidity, and freeze–thaw state and their responses to air temperature and
precipitation on the TP from 1981 to 2016. Regional simulations of the TP using Community Land
Model version 4.5 demonstrate that the climate of the TP has become warmer and wetter over the
past 37 years, with increases in both regional average temperature and precipitation. Using empirical
orthogonal function analysis and the Mann–Kendall trend test of air temperature, we show that
1980–1998 was relatively cold, and 1999–2016 was relatively warm. Soil temperature and moisture in
most areas of the TP were affected by air temperature and precipitation, and both showed an upward
trend during the past 37 years. Overall, from 1981 to 2016, the freezing date of the TP has become
delayed, the thawing date has been hastened, and the duration of the freeze–thaw state has shortened.
The surface soil freezes and thaws first, and these processes pervade deeper soil with the passage
of time; freeze–thaw processes have an obvious hysteresis. Precipitation and air temperature had
marked effects on the freeze–thaw processes. Higher air temperatures delay the freezing date, hasten
the thawing date, and shorten the freeze–thaw period. Areas with the highest precipitation saw late
soil freeze, early thaw, and the shortest freeze–thaw duration. Areas with less vegetation froze earlier
and thawed later. The freeze–thaw duration increased in the northwest of the plateau and decreased
on the rest of the plateau. This article informs research on frozen soil change in the context of
global warming.

Keywords: freezing–thawing processes; climate change; air temperature and precipitation; Community
Land Model; Tibetan Plateau

1. Introduction

With an average elevation of more than 4000 m, the Tibetan Plateau (TP), also known
as the “Roof of the World”, lies adjacent to the subtropical zone in the south and approaches
mid-latitudes in the north [1,2]. It is the highest plateau on Earth and has the most compli-
cated topology. Owing to its unique geographical position and altitude and the complex
underlying surface, the TP creates a unique regional atmospheric circulation; this has a
considerable influence on the weather and climate of China, the atmospheric circulation in
East Asia, and even the global climate [3–5]. Land surface processes are closely related to
atmospheric movement and constitute momentum, energy, and water exchange activities
between the land and atmosphere. Land surface processes and climate change have a
reciprocal relationship. While simultaneously being affected by climate change, the land
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surface also further influences atmospheric turbulence and ocean movement by partici-
pating in land–atmosphere and land–ocean energy and water interactions; these, in turn,
have a notable impact on climate change, providing further feedback to influence the land
surface [6–9]. The realistic simulation of land surface processes, particularly the process of
hydrothermal transport, is critical for climate change research.

Frozen soil is a major forcing factor on land surface processes and is a highly sensitive
indicator of climate change [10]. The substantial warming of the climate over the past few
decades has caused a significant increase in surface temperature and a sharp degradation
of frozen soil [11–13]. Moreover, the accelerated climate change has driven a widespread
area expansion of lakes across the Changtang Plateau (CP) and desertification in the northern
TP [14,15]. Frozen soil is widely distributed across the planet. According to the duration
of freezing, frozen soil can be divided into two types: permafrost and seasonally frozen
soil. Currently, permafrost covers 23–25% of the Earth’s land surface, and a further 25% is
covered by seasonally frozen soil. The TP contains approximately 2.7 × 106 km2 of frozen
soil, with permafrost and seasonally frozen soil covering 1.5 × 106 and 1.2 × 106 km2,
respectively [16,17]. Frozen soil has unique hydrothermal characteristics, which play an
essential role in land surface processes. The presence of ice in frozen soil renders the process of
soil water and heat transfer more complicated; it also affects the infiltration of precipitation, ice
melt, and snow melt, which can regulate energy and water circulation between the land and
atmosphere. The processes of soil freezing and thawing not only play an important role in the
transition between dry and wet seasons on the TP but also greatly affect the exchange of water
and energy between the land and atmosphere. Features of the spatiotemporal distribution
of temperature and moisture, as well as continual changes in the processes of soil moisture
and heat transport, are critical to the alteration of the plateau ecosystem [18–21]. Furthermore,
there is a good correlation between summer precipitation in China and atmospheric circulation
on the TP and East Asia [22–24].

Soil moisture and temperature are the two core elements of land surface processes.
Soil moisture controls the energy–water balance between the land surface and atmosphere;
it can affect the surface albedo and heat capacity, with the former regulating the local net
radiation flux and the latter affecting heat exchange between the land and atmosphere.
Soil moisture also affects surface evaporation and vegetation transpiration, which together
determine water vapor and latent heat transport to the atmosphere. Soil temperature
directly controls sensible heat transport from the land to the atmosphere and the presence
and phase of water in the soil; this, in turn, affects soil moisture and the series of physical
and biochemical processes that it controls. Soil moisture and temperature are also the
most direct reflections of the freeze–thaw processes on the plateau. Studies have shown
that freeze–thaw processes can directly change the hydrothermal properties of the soil,
thereby affecting the surface energy budget and hydrological cycle and, further, affecting
the exchange of energy and water between the land and atmosphere.

Soil moisture plays an important role in the climate system, second only to sea surface
temperature (SST), and its role even exceeds that of SST on land [25]. Evaporation from the
land surface accounts for 65% of precipitation on land [26], and soil moisture is one of the
key elements that influences evaporation. Changes in surface albedo, heat capacity, and
sensible and latent heat delivered to the atmosphere all influence climate change [26,27].
The freeze–thaw processes of soil and the spatiotemporal distribution of soil temperature
are notably affected by changes in the soil moisture on the TP [28]. Frozen soil contains
nearly twice as much organic carbon as the atmosphere [29]; organic carbon initially
trapped in frozen soil will be released into the atmosphere as a result of climate change,
enhancing the greenhouse effect. Therefore, the study of the soil freeze–thaw state is of
great significance for global climate change.
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2. Study Area and Data
2.1. Study Area

The study area of this paper is the Tibetan Plateau (25◦N~40◦N, 74◦E~104◦E). This
part of China starts from the Pamir Plateau in the west and the Hengduan Mountains in
the east. It spans 31 degrees of longitude and is about 2945 km long from east to west.
The width is about 1532 km. The average altitude of the TP is about 4000 m. China is the
third-largest country with frozen soil in the world, and its frozen soil is mainly distributed
on the TP, which is known as the “third pole in the world”; the spatial distribution of the
TP’s permafrost is shown in Figure 1a [30]. In addition, the map of vegetation types is
given in Figure 1b.
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Figure 1. (a) Spatial distribution of permafrost on the TP [30]. (b) Spatial patterns of different
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2.2. Data

Land–cover data. A collection of the 5.1 MODIS land-cover product (MCD12C1)
was used in this study for statistical analysis. There were five land–cover classification
schemes in this dataset, and the International Geosphere and Biosphere Programme (IGBP),
at a spatial resolution of 0.05◦ from 2001–2008, was developed. This dataset consists of
17 general land–cover types, which include 11 natural vegetation classes, three developed
and mosaicked land classes, and three non-vegetated land classes [31,32]. We selected three
vegetation types: forest, grassland, and bare land.

Atmospheric forcing data for our study, comprising shortwave radiation, precipitation,
pressure, specific humidity, surface air temperature, and wind, were obtained from the
China Meteorological Forcing Dataset (CMFD), which was created by the Chinese Academy
of Sciences’ Institute of TP Research. This dataset, which was produced by merging a variety
of data sources (i.e., remote sensing data, reanalysis data, station data), spans the years
1979–2012 and has a 0.1◦ spatial resolution and a 3 h temporal resolution. The CMFD has
been utilized in many previous studies [33], and its precision has been confirmed to be
sufficient for modeling. The data sources used to produce the forcing data include:

1. Wind, relative humidity, sunshine duration, air temperature, precipitation, and surface
pressure observations from China Meteorological Administration (CMA) weather
stations for the years 1980 to 2016; true values of the meteorological parameters
calculated using the observed data and radiation data estimated from the observed
sunshine duration.

2. Tropical Rainfall Measuring Mission (TRMM) satellite precipitation analysis data
(3B42) for the years 1998 to 2016 and Global Land Data Assimilation System (GLDAS)
precipitation for the years 1980 to 2016.
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3. GLDAS downward shortwave radiation data for the years January 1980–June 1983
and January 2008–December 2016 and Global Energy and Water Exchanges-Surface
Radiation Budget (GEWEX-SRB) downward shortwave radiation data for the years
July 1983–December 2007.

4. The modern era-retrospective analysis for research and applications (MERRA) surface
pressure for the years 1979 to 2015. GLDAS surface pressure data after 2015.

5. GLDAS air temperature, wind, and relative humidity data for the years 1979 to 2018.

To investigate the responses of soil freeze–thaw processes to climate change on the
entire TP, the atmospheric forcing data from the CMFD on the TP (25◦–40◦N, 75◦–105◦E)
was used to drive the regional simulation of CLM4.5. We ran CLM4.5 for 37 years from
1980 to 2016, and the spatial resolution of CLM4.5 is 10 km × 10 km.

The observed data. The relevant research is based on field weather station data from
the BJ site, Amdo site, and NewD66 site of the Nagqu Plateau Climate and Environment
(NPCE) station on the TP. The location of the BJ site is 31.37◦N, 91.90◦E, the Amdo site is
32.24◦N, 91.62◦E, and the NewD66 site is 35.43◦N, 93.59◦E.

3. Methods
3.1. Model Description

The land surface process model utilized in this study was the Community Land Model
(CLM) version 4.5 [34], which is the land surface module of the Community Earth System
Model (CESM) developed by the National Center for Atmospheric Research (NCAR). The
CLM is currently one of the most widely used land surface process models; it includes
biogeophysical processes, hydrological cycle processes, surface heterogeneity, dynamic
processes of the biological system, and biochemical processes, among others. Compared
with the previous version, CLM4.5 has expanded the performance of the model, updated
the atmospheric and surface forcing datasets, added the concept of surface water storage,
replaced the original wetland unit of the model, adjusted the photosynthetic parameters,
and improved some parameterization schemes. Improvements to the frozen soil water con-
duction parameterization scheme [35–37], as well as changes to the plant canopy radiation
scheme, mean that CLM4.5 can better simulate water and heat transfer processes within
the soil.

The simulation of soil temperature is related to the surface energy balance equation;
the equation describing the surface energy balance in CLM4.5 is:

h = Ssoil − Lsoil − Hsoil − λEsoil , (1)

where h is the heat flux entering the soil (W/m2); Ssoil is the solar short-wave radiation
absorbed by the surface (W/m2); Lsoil is the long-wave radiation absorbed by the surface
(W/m2, defined with upwards being the positive direction); Hsoil is the surface sensible
heat flux (W/m2); and λEsoil is the surface latent heat flux. The heat that enters the soil
from the atmosphere is determined by the net surface radiation and surface sensible and
latent heat; in turn, the surface sensible and latent heat are determined by the difference in
temperature and humidity between the land and atmosphere. Precipitation affects changes
in surface temperature. The simulation of soil temperature is, thus, related to both air
temperature and precipitation.

In CLM4.5, the change in soil moisture with time is calculated by the surface water
balance equation:

dW
dt

= Pr − ET − Rof, (2)

where w is soil moisture (mm); t is time (s); Pr is precipitation rate (mm/s); ET is evap-
otranspiration (mm/s); and Rof is surface runoff (mm/s). The strength of evaporation
depends on the temperature. Runoff is affected by precipitation and the water-holding
capacity of the soil. Hence, changes in soil moisture are also related to temperature and
precipitation [38,39].
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To better analyze the characteristics of freeze–thaw processes based on soil tempera-
ture, the soil temperature simulated by the CLM4.5 was validated by the observation data
of three field sites. The correlation between the simulated soil temperature values and the
observed values can reach more than 90% (Figure 2); in other words, the reliability of the
results by CLM4.5 simulation was validated, so the CLM4.5 model simulation results was
used to analyze freeze–thaw processes in this paper.
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Figure 2. Comparison of simulated and observed soil temperature in 4 soil layers at BJ site, Amdo
site, and NewD66 site.

3.2. Empirical Orthogonal Function (EOF) Analysis

Empirical orthogonal function analysis is a common method in meteorology, which has
fast convergence and a good reflection of the basic structural characteristics of meteorologi-
cal elements. In this paper, the EOF analysis method was used to study the spatiotemporal
distribution characteristics of temperature on the TP. The original meteorological data were
projected on an orthogonal basis in the EOF analysis. In addition, the orthogonal basis was
calculated using the eigenvector of the spatially weighted anomaly covariance matrix, with
the associated eigenvalues reflecting the percentage variance explained by each pattern.
As a result, the EOFs of spatiotemporal physical processes can reflect mutually orthogonal
spatial patterns in the data change set, with the first pattern accounting for the majority of
the variance, the second pattern accounting for the majority of the residual variance, and
so on. We selected the matching principal component (PC) of the dominant mode as the
reference time series for air temperature, because the PC of an EOF mode illustrates how
the spatial pattern of this mode oscillates over time.

In this paper, the CMFD data was used to force CLM4.5 to simulate soil temperature
and moisture on the Tibetan Plateau from 1980 to 2016, empirical orthogonal function
analysis and the Mann–Kendall trend test of air temperature were used to divide the
37 years of TP into different climate situations, and the characteristics of freeze–thaw
processes based on soil temperature were analyzed.
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4. Results
4.1. Regional Climate Change on the TP

The CMFD provided temperature and precipitation data from 1980 to 2016, which
were used to calculate the climatology and the trends of temperature and precipitation
(Figure 3). The climatology of regional average temperature and precipitation is −0.15 ◦C
and 465.14 mm, respectively, and their regional average trend is 0.41 ◦C/decade and
6.44 mm/decade, respectively. The regional distributions of precipitation and temperature
are similar, as the monsoon advances, with values roughly increasing gradually from
the northwest to the southeast of the TP. The southeast region of the TP has the highest
annual average temperature and the most annual average precipitation; moreover, high
temperature and low precipitation occur in the Qaidam Basin. The trends of temperature
and precipitation show that the temperature and precipitation in most parts of TP have
increased significantly in the past 37 years as a result of global warming, though the temper-
ature in the Karakoram area has a decreased trend, and, at the same time, precipitation has
increased in this area. The Karakoram Mountains have always been the focus of scientists
due to their unusually stable glaciers. According to a study published in Nature Geoscience,
the glaciers in the Karakoram Mountains have risen rather than reduced during the last
10 years, which contradicts the global trend of glacial melting [40]; the combination of
temperature and precipitation trends may be the cause of this phenomenon.
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Figure 3. Climatology and trends in temperature and precipitation on the TP from 1980 to 2016.
(a) Climatology of temperature (unit: ◦C). (b) Climatology of precipitation (unit: mm). (c) Trend
in temperature (unit: ◦C/decade). (d) Trend in precipitation (unit: mm/decade). Grid points with
statistically significant anomalies at the 90% confidence level are denoted by an oblique line.

To identify the change characteristics of the annual average temperature, EOF analysis
was performed using the air temperature data and was carried out on the covariance matrix.
The spatial pattern of the first dominant mode (EOF1) is depicted in Figure 4a, which was
created using the air temperature data. The spatial distribution of EOF1 is marked by
consistent variations in temperature in the entire TP, with an explained variance of 50.7%.
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The corresponding normalized PC1 shows that the temperature has changed with time,
with a significant increase since 1980. The Mann–Kendall trend test was conducted on the
average temperature of the TP from 1980 to 2016 and showed that the obvious warming of
the TP after the 1990s was an abrupt phenomenon, and the average temperature mutational
change occurred in 1998 (Figure 4c). Therefore, according to the time when this mutational
change occurred (1998), the average temperature of the TP was divided into two sections
for discussion; the years from 1980 to 1998 were relatively cold (hereafter RC), and the
years from 1999 to 2016 were relatively warm (hereafter RW).
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4.2. Responses of Soil Temperature and Moisture

As shown in Figures 5 and 6, on average, both the soil temperature and soil moisture
across most parts of the TP have increased between 1980 and 2016. The trend in soil
temperature is closely related to that in air temperature. The trends in soil temperature and
moisture at different soil depths across the TP are essentially the same. In areas where the air
temperature has risen, the soil temperature has also risen, indicating that soil temperature is
directly affected by the air temperature. The average soil temperature trends at soil depths
of 10, 20, 40, and 60 cm were 0.294, 0.291, 0.287, and 0.282 ◦C/decade, respectively. The
average soil moisture trends at soil depths of 10, 20, 40, and 60 cm were 0.00241, 0.00242,
0.00250, and 0.00265 m3·m−3/decade, respectively. With an increase in soil depth, soil
temperature increased at a lower rate, while soil moisture increased at a slightly higher rate,
indicating that the shallow soil temperature is more susceptible to air temperature. The
trend seen in soil moisture is roughly the same as that seen in precipitation. In areas where
precipitation has increased, soil moisture has also tended to increase; where precipitation
has decreased, soil moisture has also decreased, indicating that changes in soil moisture
are affected by precipitation. In the northern part of the TP, the soil has become noticeably
wetter, while in some parts of the southern TP, soil moisture has noticeably decreased.
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To better study the influence of air temperature on soil temperature, soil moisture, and
freeze–thaw processes, Figure 7 shows comparisons of the annual average soil temperature
between RW (from 1999 to 2016) and RC (from 1980 to 1998); the average soil temperature
differences, at depths of 10, 20, 40, and 60 cm between RW and RC, were 0.568, 0.562, 0.555,
and 0.546 ◦C, respectively. The soil temperature differences across most of the TP were
positive (and above 0.5 ◦C) at all four depths, but the differences in the northwestern TP
were negative. In addition, the maximum difference was found in the southwest, indicating
that the soil temperature in this region is most sensitive to changes in air temperature. As
the soil depth increased, the difference in soil temperature decreased slightly. The spatial
distribution of the difference in soil temperature is consistent with the temperature trend.
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On the one hand, this shows that shallow soil will be affected by the air temperature, to
a certain extent; on the other hand, it shows that the vertical gradient in soil temperature
is not obvious, and temperature changes are not sensitive to changes in depth. Figure 8
depicts the differences in annual average soil moisture between RW and RC; at depths of
10, 20, 40, and 60 cm, these differences were 0.00586, 0.00584, 0.00591, and 0.00611 m3/m3,
respectively. As the soil depth increased, the vertical change in soil moisture is not obvious,
and the difference value increased slightly. In terms of the type of land cover, the soil
in alpine steppe areas was considerably wetter than that in alpine meadow and alpine
desert areas.
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4.3. Responses of Soil Freeze–Thaw Processes to Climate

To analyze the characteristics of freeze–thaw processes, this study divided the soil
state into two periods: frozen and unfrozen. To consider a complete freeze–thaw cycle, we
adjusted the data to start on 1 September. The criteria for judging whether a freeze–thaw
occurred were as follows: (a) if the soil temperature was below 0 ◦C for five consecutive
days, the current time was regarded as the beginning of the freezing period; (b) if the soil
temperature was above 0 ◦C for five consecutive days, the current time was regarded as the
end of the freezing period. The freezing date means the start date of the freezing season,
and the thawing date is the end date of the freezing season.

As can be seen from Figure 9 and Table 1, over the past 37 years, the multi-year means
of the freezing and thawing dates at the four soil depths were delayed with increasing soil
depth; the shallow soil of the TP began to freeze from early November, while the soil at a
60 cm depth was frozen, on average, for 84.16 days after 1 September. The soil at 10 cm
depth started to thaw in early April, on average, while the soil at s 60 cm depth began to
thaw approximately 20 days later. On the entire TP, the surface soil freezes and thaws first,
and these processes pervade deeper soil layers as time goes by; these freezing and thawing
processes have an obvious hysteresis. Since the average freezing and thawing times of each
layer are both delayed with increasing soil depth, the average period over which the soil
remains frozen is similar, ranging from 144 to 146 days. The spatial distributions of the
soil freeze–thaw processes in each layer also reflect the characteristics of air temperature
distribution. Where temperatures were high, each layer of the soil froze later and thawed
earlier. We can see in the northeast of the TP—the Qaidam Basin, the freezing date was later
than that of the surrounding area, the thawing date was earlier than that of the surrounding
area, and the freeze–thaw duration was shorter than that of the surrounding area. The
most likely reason for this phenomenon is mainly due to the drought and little rainfall in
this area, as the soil is dominated by sandy soil, the vegetation is relatively sparse, and the
coverage rate is low.
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Figure 9. Spatial distributions of multi-year means of the freezing date, thawing date, and freeze–
thaw duration for two soil depths from 1980 to 2016 (units: days after 1 September (a,b,d,e);
days (c,f)). (a) Freezing date of soil at 10 cm depth. (b) Thawing date of soil at 10 cm depth.
(c) Freeze–thaw duration of soil at 10 cm depth. (d) Freezing date of soil at 60 cm depth. (e) Thawing
date of soil at 60 cm depth. (f) Freeze–thaw duration of soil at 60 cm depth.
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Table 1. Multi-year means of soil freeze–thaw processes at different soil depths.

Soil Depth Freezing Date (Days
after 1 September)

Thawing Date (Days
after 1 September)

Freeze–Thaw
Duration (Days)

10 cm 67.42 212.12 144.70

20 cm 70.62 215.42 144.78

40 cm 76.12 220.70 144.59

60 cm 84.16 230.45 146.59

As shown in Figure 10 and Table 2, across most of the TP, all soil layers exhibited that
the freezing date moved later from 1980 to 2016. On average, the decreasing trend was
>2 days decade−1, and the trend was more pronounced in deeper soil layers. Meanwhile,
there were also delaying trends in thawing date and freeze–thaw duration, with these
change trends being less pronounced in deeper soil layers. As the global climate changed,
the freeze–thaw processes also changed dramatically, especially in shallow soils. The
thawing date varied more significantly than the freezing date, which also explains changes
in the duration of frozen soil. In the Karakoram Mountains and parts of the Qiangtang
Plateau, the freezing date has tended to advance (i.e., the soil freezes earlier in the year),
while the rest of the plateau essentially shows a delayed trend; the thawing date in the two
aforementioned regions has tended to be delayed, while the thawing date of the rest of
the plateau has advanced. Therefore, the freeze–thaw duration of each layer of soil in the
northwestern part of the TP has increased, while the permafrost in the rest of the region
has declined.
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Figure 10. Trends in freezing date, thawing date, and freeze–thaw duration at two soil depths from
1980 to 2016 (unit: day/decade). Grid points with statistically significant anomalies at the 90%
confidence level are denoted by an oblique line.

Table 2. Trends in soil freeze–thaw processes at different soil depths (unit: day/decade).

Soil Depth Freezing Date Thawing Date Freeze–Thaw Duration

10 cm 2.15 −2.17 −4.32

20 cm 2.15 −2.23 −4.38

40 cm 2.23 −1.62 −3.85

60 cm 2.30 −1.49 −3.79
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Figure 11 and Table 3 illustrate the differences in annual average soil freeze–thaw
processes between the RW and RC periods. Air temperature was one of the most important
factors affecting the freeze–thaw processes on the TP. In recent decades, a clear signal of
elevation-dependent warming (EDW) of the air temperature has been observed on the
TP, based on observational and satellite data [41–43]. The decrease in maximum freezing
depth with elevation is a reaction to the EDW of the air temperature. The freezing dates
of soil at depths of 10, 20, 40, and 60 cm were 3.87, 3.70, 4.28, and 4.41 days, respectively,
while their thawing dates were −5.76, −5.22, −3.76, and −3.39 days, respectively; hence,
their freeze–thaw durations were −9.54, −8.92, −8.05, and −7.80 days, respectively. The
effect of air temperature on freeze–thaw processes can, thus, clearly be seen. The spatial
distribution of freeze–thaw processes between the RW and RC periods is similar to that
shown in Figure 10; shallow soils are more susceptible to climate change, and their changes
are more dramatic.
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Table 3. Differences in soil freeze–thaw processes between the RW and RC periods (unit: day).

Soil Depth Freezing Date Thawing Date Freeze–Thaw Duration

10 cm 3.87 −5.67 −9.54

20 cm 3.70 −5.22 −8.92

40 cm 4.28 −3.76 −8.05

60 cm 4.41 −3.39 −7.80

Satellite data (satellite-based 2 m air temperature (SBAT), Moderate Resolution Imag-
ing Spectroradiometer (MODIS)-based LST, snow cover, and daytime/nighttime cloud
extent) indicate that the annual mean 2 m air temperature above 4500 m on the TP rapidly
declined between 2001 and 2015 [44]. As a result, long-term freeze–thaw trends are compli-
cated, because other local parameters play important roles; in addition to changes in air
temperature, precipitation is another important meteorological element. To better study
the effect of precipitation on freeze–thaw processes, we divided the TP into climate zones
according to average annual precipitation. Areas with annual precipitation <200 mm were
classified as arid areas, those between 200 and 400 mm as semiarid, those between 400
and 800 mm as subhumid, and those >800 mm as humid. Figure 12 shows the climate
zones on the TP. The average annual precipitation decreases sequentially from southeast to
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northwest, while its spatial distribution of values is similar to that of soil temperature and
soil moisture.
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As shown in Figure 13, each layer of soil has specific freeze–thaw characteristics; that
is, with an increase in soil depth, there are changes in the freezing date, thawing date, and
freeze–thaw duration, which can reflect the hysteresis of freeze–thaw processes. There are
obvious differences between the climate zones, notably in humid areas. Areas with the
least precipitation freeze first, and other areas freeze sequentially, mirroring increases in
the average annual precipitation. On average, the soil at a 10 cm depth in arid areas began
to freeze at the end of October, while soil at a 60 cm depth in humid areas began to freeze
in mid-December; freezing started much later in humid regions than in other regions. The
soil in humid areas began to thaw in mid-March, while soil at a 60 cm depth in the rest of
the regions began to melt at the end of April. Humid regions also have a much shorter
freeze–thaw duration than other regions, with the freeze–thaw duration of every soil layer
being over 40 days less than in other areas. Hence, the effect of precipitation on freeze–thaw
processes is very clear.
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Figure 13. Multi-year means of the (a) freezing date, (b) thawing date, and (c) freeze–thaw duration
at four different soil depths from 1980 to 2016, plotted with respect to climate zone (unit: day).

As shown in Figure 14, the soil freeze–thaw processes of the underlying surface of
different vegetation types are very different, so we can also see the hysteresis of soil freeze–
thaw processes with increasing soil depth. Compared with the underlying surface of other
types of vegetation, the soil underlying the surface of the forest froze the latest, began to
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thaw the earliest, and had the shortest freeze–thaw duration. The freeze–thaw duration of
the bare land underlying the surface of each layer of soil was more than one month longer
than that of the underlying surface of the forest. Different vegetation types have a great
influence on soil freeze–thaw processes. The soil freeze–thaw processes of the underlying
surface of the bare land were more sensitive to climate change.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 18 
 

 

As shown in Figure 13, each layer of soil has specific freeze‒thaw characteristics; that 
is, with an increase in soil depth, there are changes in the freezing date, thawing date, and 
freeze–thaw duration, which can reflect the hysteresis of freeze–thaw processes. There are 
obvious differences between the climate zones, notably in humid areas. Areas with the 
least precipitation freeze first, and other areas freeze sequentially, mirroring increases in 
the average annual precipitation. On average, the soil at a 10 cm depth in arid areas began 
to freeze at the end of October, while soil at a 60 cm depth in humid areas began to freeze 
in mid-December; freezing started much later in humid regions than in other regions. The 
soil in humid areas began to thaw in mid-March, while soil at a 60 cm depth in the rest of 
the regions began to melt at the end of April. Humid regions also have a much shorter 
freeze–thaw duration than other regions, with the freeze–thaw duration of every soil layer 
being over 40 days less than in other areas. Hence, the effect of precipitation on freeze–
thaw processes is very clear. 

 
(a) (b) (c) 

Figure 13. Multi-year means of the (a) freezing date, (b) thawing date, and (c) freeze–thaw duration 
at four different soil depths from 1980 to 2016, plotted with respect to climate zone (unit: day). 

As shown in Figure 14, the soil freeze–thaw processes of the underlying surface of 
different vegetation types are very different, so we can also see the hysteresis of soil 
freeze–thaw processes with increasing soil depth. Compared with the underlying surface 
of other types of vegetation, the soil underlying the surface of the forest froze the latest, 
began to thaw the earliest, and had the shortest freeze–thaw duration. The freeze–thaw 
duration of the bare land underlying the surface of each layer of soil was more than one 
month longer than that of the underlying surface of the forest. Different vegetation types 
have a great influence on soil freeze–thaw processes. The soil freeze–thaw processes of 
the underlying surface of the bare land were more sensitive to climate change. 

 
Figure 14. Same as Figure 13, but plotted with respect to vegetation types (unit: day). 

  

Figure 14. Same as Figure 13, but plotted with respect to vegetation types (unit: day).

5. Discussion

Freeze–thaw processes on the TP have a considerable influence on both regional and
Asia-wide climate. Therefore, it is critical to understand and forecast such freeze–thaw
processes. This study first investigated the characteristics of the temperature-dominant
mode using data from 1980 to 2016. According to EOF analysis, a pattern of interdecadal
increase in air temperature has emerged over almost all of the TP between 1980 and 2016.
According to the latest publication from the Intergovernmental Panel on Climate Change’s
Sixth Assessment Report Working Group I, the global climate has warmed significantly
over the last century (since 1850–1900); the average global surface temperature has risen by
approximately 1 ◦C, and the average temperature rise over the next 20 years is expected to
approach or surpass 1.5 ◦C [45]. Changes in the environment, such as permafrost, glacier,
and ice cap melting, are expected to be exacerbated as a result of global warming, and
this will have an impact on human existence. There are also substantial differences in
the responses of different underlying substrates to global warming. Arctic sea ice and
permafrost are particularly sensitive to a warming climate. The soil at various depths also
has a clear warming tendency under a background of rising air temperature. Previous
research has demonstrated that the warming trend of soil temperature in each layer was
more significant in western China from 1980 to 2017 than before 1980 [46]. Changes in the
features and spatial distribution of permafrost have been caused by the influence of global
warming and human activities in recent years, manifesting as the elevation of permafrost’s
lower limits, rising ground temperature, and thickening of the active layer. Permafrost
has been diminished in certain areas, resulting in seasonally frozen soil. Nearly half of the
permafrost on the TP will be reduced to seasonally frozen soil by the end of the century
under the Representative Concentration Pathway 4.5 (RCP 4.5) emissions scenario [47]. The
maximum freezing depth and freeze–thaw duration of seasonally frozen soil in western
China have shown downward trends in recent decades as a result of climate change,
whereby there have been delayed freezing start dates and early melting end dates [48].
Before soil freezes, soil moisture exists in the form of liquid water, which is conducive to
water transmission, and surface soil moisture is transported upwards in the form of liquid
or vapor; precipitation will directly change the value of soil moisture, causing surface
sensible and latent heat by affecting surface albedo; energy and water exchange between
the earth and atmosphere is relatively frequent at this time. When soil freezes, moisture in
the soil freezes into ice, and the amount of liquid water in the soil reduces dramatically,
making soil moisture transport difficult. As shown herein, freeze–thaw processes vary
with air temperature and precipitation. Indeed, the two most important factors impacting
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freeze–thaw processes on the TP are air temperature and precipitation. Freeze–thaw process
trends are complicated, because other local elements or parameters play important roles, in
addition to changes in air temperature and precipitation. Hence, further research into how
freeze–thaw processes respond to climate change is required.

Frozen soil is a kind of soil that is very sensitive to temperature and is extremely
unstable [49]. As the global temperature increases, the exchange process between the surface
and the atmosphere of energy, water, soil temperature, etc., rises, and the ice melts, the
soil moisture increases, the freezing date is delayed, the thawing date is advanced, and the
freeze–thaw duration is shortened; the freezing–thawing process significantly affects the
energy balance and water cycle of the soil surface through water phase transformation [50,51].
In addition, the abnormal soil moisture caused by snowmelt and the thawing process has
an impact on summer precipitation in eastern China [52]. The multi-process interaction
and complex influence mechanism of hydrothermal elements and vegetation activities have
formed obvious regional differentiation characteristics. Moreover, areas with lush vegetation
generally have more precipitation and higher temperatures.

6. Conclusions

On the basis of the remote sensing data and CLM4.5 model simulation results, this
study investigated the main modes of air temperature on the TP, as well as the spatiotem-
poral distribution and changing trends in air temperature and precipitation. In addition,
the characteristics of freeze–thaw processes and their response to climate change were also
studied. The main conclusions are as follows:

1. The climate of the TP has become warmer and wetter over the past 37 years; the rates
of the increase in regional average temperature and precipitation were 0.41 ◦C/decade
and 6.44 mm/decade, respectively. As the monsoon moved forward, the regional
distributions of precipitation and temperature were similar, with values steadily rising
from the northwest to the southeast of the TP. We depicted the spatial pattern of the
first dominant mode (EOF1), which was created using air temperature data. The
spatial distribution of EOF1 was marked by consistent variations in temperature on
the whole TP; the years from 1980 to 1998 were relatively cold, and the years from
1999 to 2016 were relatively warm.

2. Soil temperature and moisture across most parts of the TP showed an increasing
trend. Soil temperature and moisture were shown to be affected by air temperature
and precipitation.

3. Surface soil was first to freeze and thaw on the TP; freezing and thawing then pervaded
deeper soil as time passed, with an obvious hysteresis in the freeze–thaw cycle. On
average, the four analyzed layers of soil on the TP began to freeze in November
and began to thaw in April. The mean freeze–thaw duration of these four layers
of soil was 144–146 days. Between 1980 and 2016, the freezing date of each soil
layer in most regions of the TP has moved later in the year, with an average rate of
>2 days decade−1. Meanwhile, the thawing date has moved earlier in the year, and
the freeze–thaw duration has declined.

4. Areas with the least amount of precipitation were the first to freeze, with other
areas freezing sequentially, in line with increasing average annual precipitation. Soil
thawing occurred sooner in areas with more precipitation. Hence, precipitation
appears to have a substantial impact on freeze–thaw processes.

5. The areas under the bare land were the first to freeze, and the areas under the forest
were the first to thaw. Different vegetation types had a major impact on the freeze–
thaw process.
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