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Abstract: Sequences of multi-temporal synthetic aperture radar (SAR) images are routinely used
for land-use land-change (LULC) applications, allowing the retrieval of accurate and up-to-date
information on the state of the Earth’s surface and its temporal variations. Change detection (CD)
methods that rely on the exploitation of SAR data are, generally, made of three distinctive steps:
(1) pre-processing of the SAR images; (2) comparison of the pairs of SAR images; and (3) the automatic
extraction of the “changed areas”, employing proper thresholding algorithms. Within this general
framework, the reduction in speckle noise effects, which can be obtained by applying spatial multi-
looking operations and ad hoc noise filters, is fundamental for the better detecting and classifying of
changed regions. Usually, speckle noise filters are singularly and independently applied to every
SAR image without the consideration of their inherent temporal relationships. In particular, most use
local (spatial) approaches based on determining and averaging SAR backscattered signals related to
neighboring SAR pixels. In this work, conversely, we explore the potential of a joint 3D space-time
non-local mean filter (NLMF), which relies on the discrimination of similar features in a block of non-
local SAR pixels extracted from the same or different SAR images. The theory behind non-local-mean
filters is, first, shortly revised. Then, the developed space-time NLMF is applied to a real test case for
the purposes of identifying flooded zones due to the massive inundations that hit the Kerala region,
India, during the summer of 2018. To this aim, a set of 18 descending SAR images collected from the
European (EU) Copernicus Sentinel-1 (S-1) sensor was exploited. The performance of the developed
NLMF has also been assessed. It is worth remarking that the proposed method can be applied for the
purposes of analyzing a heterogenous set of natural and/or artificial disastrous conditions. Further, it
can also be helpful during the pre-processing stages of the sequences of SAR images for the purposes
of CD applications.

Keywords: synthetic aperture radar (SAR); non-local-mean-filter (NLMF); change detection (CD); flooding

1. Introduction

The last two decades have represented for the remote-sensing (RS) community a
fructuous period characterized by the accelerated exploitation of synthetic aperture radar
(SAR) methodologies for Earth’s surface monitoring [1–13]. In this context, a series of
regularly acquired SAR data are typically used to track land changes at different spatial
and temporal scales, using both interferometric SAR (InSAR) [14–18] and amplitude-based
change detection (CD) approaches [19–25]. More specifically, over the recent eight years, a
new stimulus for developing and applying new SAR-driven techniques has been delivered
by the possibility of accessing extensive archives of SAR images collected by the European
(EU) Copernicus mission through the twin Sentinel-1A/B radar instruments. The free and
open access policy of Sentinel-1 [14,26–31] and the weekly repetition frequency of the SAR
observations have been fostering the evolution of novel SAR/InSAR methods, thereby
allowing suitable and up-to-date observations of the Earth’s surface. However, innovative
technological developments have resulted in fundamental responses for the purposes of
the adapting of existing processing codes, as well as of the handling of interferometric wide
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(IW) swath S-1 SAR data [32–39]. The IW SAR images are collected through the terrain
observation with progressive scans (TOPS) mode [39], which is the principal acquisition
mode of S-1 over lands. InSAR and CD methods can jointly be used to recover damage
maps on a global scale after a natural or human-made hazard occurs. Many features
can be extracted from the sets of SAR images; the most used factor for RS analyses is
the radar backscattering coefficient, which is an essential indicator of ground conditions
due to its sensitivity to surface roughness. Moreover, an alternative to the exclusive
use of SAR backscattering signatures for the generation of land-use land-change (LULC)
products [40–44] is found in the exploitation of interferometric SAR approaches, such as
those based on tracking the InSAR coherence changes [45–51].

The performance of InSAR and CD methods are impaired by the level of noise that
affects the used set of SAR images. Several approaches have been developed to dis-
criminate the valuable signals from the noise and filter out artefacts from SAR/InSAR
products [52–64]. Most operate independently on every SAR image product (i.e., a single
SAR image or single SAR interferogram) by exploiting exclusively spatial information. For
instance, multi-look processes [65–68] are typically used in order to reduce the variance of
the speckle from amplitude SAR images by averaging local signals while degrading the
spatial resolution of the filtered SAR images. Ad hoc (local) de-speckling and noise filtering
methods operating on SAR interferograms have been developed and widely used by the
scientific community [63,69–73]. It is worth noting that the role of SAR de-speckling meth-
ods, implemented explicitly for change detection purposes, has been widely addressed in
the literature. Interested readers can refer to high-impact papers in [8,24,74–80] to discuss
this interesting topic, comprehensively. Of course, on the one hand, de-noised SAR images
emphasize significant changes and, on the other hand, tend to destroy those minor changes
that are within the error bar of the noise artefacts.

Recently, non-local techniques have also been developed [2,81–83]. The key idea
behind these more recent methods is that there are enough pixels over a scene that, though
not necessarily located in nearby areas, could be used to suppress the noise while preserving
the spatial resolution of the original (unfiltered) images, with a significant impact on the
capability to discriminate features at finer spatial scales (even at the pixel-scale level). The
original method proposed by Buades [83] was developed in order to discriminate and filter
out noise signals that can be represented as additive Gaussian processes. The adaptations of
NLMF methods to work with amplitude SAR signals, which are affected by multiplicative
speckle noise, have subsequently been addressed in several papers (e.g., [64,84–90]). In
particular, the extension of 2D (space) NLMF filters for de-speckling sequences of 3D multi-
temporal SAR images was also recently proposed [91–94]. Other than the peculiarities of
every single method, these approaches all conduct non-local mean filters in the separate
spatial and time domains, using either the original or log-ratio SAR images.

In this work, we propose and analyze a non-local mean filter (NLMF) approach applied
to the sequences of 3D multi-temporal SAR images, thus extending the use of NLMF to the
space-time domain. Specifically, non-local information associated with pixels belonging to
different multi-temporal SAR images is extracted and averaged in order to improve the
NLMF performances further and to produce adaptive temporal multi-looking products for
CD analyses. Moreover, the presented method can also be adapted to work with InSAR
data. It will be shown how NLMF impacts the retrieval procedure of areas subjected to
significant changes, which can be due to underlying natural and human-made phenomena
using sequences of Sentinel-1 SAR images collected through the IW acquisition mode.

Experimental results have been carried out by processing a series of 18 SAR images
collected by the S-1A sensor from March to October 2018 over an area in the Kerala region,
India, affected by massive inundations in the summer of 2018. The selected case study
area is significant for the purposes of evaluating the impact of the developed method for
the analyses on the effects of hydro-geological disturbances on the Earth’s surface, which
are more frequent now than in the past and are occurring worldwide, as triggered by
present-day global climate change.
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2. Method

This section first introduces the fundamentals of non-local mean filtering when applied
to SAR images (Section 2.1). Subsequently, the developed space-time (3D) non-local mean
filter is presented in Section 2.2. The theoretical performance of the proposed method is
finally discussed in Section 2.3.

2.1. Spatial (2D) Non-Local Mean Filters for SAR Image De-Speckling

The “restoration quality” of a degraded SAR image may depend on a priori knowledge
of the phenomena that caused such a degradation. Having said this, the knowledge of
the noise characteristics is generally insufficient for the perfect retrieval of the suitable
actual signals that are immersed within the noise; thus, the only possibility that remains
is that of carrying out spatial or frequency-based filtering operations. Specifically, spatial
filtering is a digital image processing operation that allows the modifying of the intensity
of the involved imaged pixels. In the presence of speckle noise, SAR processing provides
two distinctive approaches [95]: (i) the multi-look approach, which is applied during pre-
processing, or (ii) the noise-filtering approach, which is applied during SAR processing.
The conventional multi-look operation consists in computing the incoherent average of
N-imaged SAR pixel estimates that can be extracted by considering local SAR pixels and/or
splitting the image spectra into N-independent segments (looks). Subsequently, these N
estimates, processed independently, are packed together in order to obtain an image where
the standard deviation of the speckle is decreased by a factor

√
N, but at the expense of the

spatial resolution, which is degraded by a factor N.
This work explores the potential of NLMF. In 2005, Buades et al. [83] proposed a

new method in order to better de-noise images corrupted by additive Gaussian noise. To
introduce the problem, let us assume we have a noisy image v. Let v f be the corresponding
(unknown) noise-free image. Further, NL means the estimates of the value of the filtered
image at the pixel of coordinates s via the weighting of the averaging of the similar pixels
as [55,96]:

v̂ f (s) =
∑

p∈Ω
w(s, p)v(p)

∑
p∈Ω

w(s, p)
(1)

where Ω is the entire image, or a sector of the image, and w(s, p) is a weight that allows one
to compute the grade of similarity between two patches, namely
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of adequate size, which are centered around the location of pixels s and p, respectively.

Figure 1 shows a pictorial representation of the functioning principles of NLMF. The
red box identifies a patch centered on the reference pixel s; the yellow box represents a
non-local window centered on the location of the generic pixel p, which can span the entire
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While additive Gaussian noise is present, the weights are profitably set by considering
the Euclidean distance between the two patches using a filter with a Gaussian kernel,
as follows:

w(s, p) = exp

[
−

d2(
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(p)
)

h2

]
(2)

where h is a parameter that represents the variance of the adopted Gaussian filter, permitting
us to modulate the strength of the NL mean filtering operation.

Several adaptations of the original NLMF have been proposed. They have all looked to de-
ploy that method in order to obtain amplitude SAR images and InSAR products [82,84–87,97–99].
The key point is that amplitude SAR images are characterized by multiplicative speckle
noise. Accordingly, the original method cannot simply be applied to SAR images. To cope
with this issue properly, a few modifications have been used in order to consider both
SAR image heterogeneities and the multiplicative nature of the speckle noise [100]. For
instance, in [101], the image ratio was employed in order to evaluate the distance metric
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between two SAR patches using adaptive filter weights based on computing the coefficient
of variation (CV) of a SAR patch, which is defined as CV = σ/µ. Where σ and µ are
the standard deviation and the average value of the image computed in an averaging
window, respectively. Specifically, if v is a noisy SAR image with N ×M (azimuth × range)
elements, the filtered SAR image is given by Equations (1) and (2) where the distance metric
is assigned by:

d
(
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(p)
)
=

∑
k∈Ψ

exp
(
−|CV(s, k)− CV(s)|2

)∣∣∣ vs(k)
vp(k)

+
vp(k)
vs(k)

∣∣∣2
∑

k∈Ψ
exp

(
−|CV(s, k)− CV(s)|2

) (3)

with CV(s, k) as the local CV of the generic pixel k within the patch
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plied to SAR images (Section 2.1). Subsequently, the developed space-time (3D) non-local 
mean filter is presented in Section 2.2. The theoretical performance of the proposed 
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2.1. Spatial (2D) Non-Local Mean Filters for SAR Image De-Speckling 
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cessing provides two distinctive approaches [95]: (i) the multi-look approach, which is 
applied during pre-processing, or (ii) the noise-filtering approach, which is applied dur-
ing SAR processing. The conventional multi-look operation consists in computing the in-
coherent average of N-imaged SAR pixel estimates that can be extracted by considering 
local SAR pixels and/or splitting the image spectra into N-independent segments (looks). 
Subsequently, these N estimates, processed independently, are packed together in order 
to obtain an image where the standard deviation of the speckle is decreased by a factor
N , but at the expense of the spatial resolution, which is degraded by a factor N.  

This work explores the potential of NLMF. In 2005, Buades et al. [83] proposed a new 
method in order to better de-noise images corrupted by additive Gaussian noise. To in-
troduce the problem, let us assume we have a noisy image v . Let v f  be the correspond-
ing (unknown) noise-free image. Further, NL means the estimates of the value of the fil-
tered image at the pixel of coordinates svia the weighting of the averaging of the similar 
pixels as [55,96]:  

 (1)

where  is the entire image, or a sector of the image, and  is a weight that allows 

one to compute the grade of similarity between two patches, namely  and  of 
an image of adequate size, which are centered around the location of pixels s  and p , 
respectively.  

Figure 1 shows a pictorial representation of the functioning principles of NLMF. The 
red box identifies a patch centered on the reference pixel s; the yellow box represents a 
non-local window centered on the location of the generic pixel p, which can span the entire 
image or a portion of it (e.g., the area inside the dashed blue contour line in Figure 1)  

(s), i.e., the set Ψ,
and CV(s) is the local CV of the pixel s. In order to adapt the filtering strength moving
from homogeneous to heterogeneous regions, the authors of [96] also proposed to use the
following adaptatively chosen weighting parameter h′ instead of h:

h′ = h

[
1− 1

1 + eξ( CV−σ
CVmax

)

]
(4)

where ξ is a value in the range [20,50], CV is the local coefficient of variation of the image,
and CVmax is the maximum CV value of the whole SAR image.
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Figure 1. Pictorial representation of the windows used by NLMF.

2.2. The Developed Space-Time (3D) NLMF

Let us now assume the availability of a stack of Q-independent SAR single-look-complex
(SLC) images vi, i = 0, . . . , Q− 1 that are collected at ordered times

[
t0, t1, . . . , tQ−1

]
, which

have preliminarily been co-registered to one reference SLC image. While de-speckling
the generic q-th SAR image, the basic idea of the developed method is to extract similar
patches not only from the q-th image, but from the whole set of available SAR images, thus
increasing the total number of looks and enhancing the quality of filtered SAR images.
Mathematically, in this case, Equation (1) modifies as follows:
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v̂q, f (s) =

Q−1
∑

i=0
∑

p∈Ω
wi
(
sq, p

)
vi(p)

Q−1
∑

i=0
∑

p∈Ω
wi
(
sq, p

) (5)

where the weights wi
(
sq, p

)
∀i = 0, . . . , Q− 1 are computed by considering the pairs of

SAR patches extracted from the same or a different SAR image, thus extending to the
three-dimensional (3D) case that has already been developed for the two-dimensional
(spatial) case. Figure 2 pictorially describes how the developed 3D NLMF method works.
Further, the Q layers represent the available SAR images. When the noise in a single SAR
image is filtered out, patches are extracted from the same (see the example of layer 0 in this
picture) or from different SAR images. The green lines pictorially represent the moving
windows that allow us to dynamically identify the reference and the adaptive patches that
cover the whole picture or even a sector of every single layer into the stack of SAR images.
The straightforward method proposed here was preliminarily tested on a selected test case,
and the relevant results were first presented in a conference paper [102]. With respect to
it, the present investigation: (i) further explores the validity of the developed 3D method
when adaptatively chosen weights (Equations (3) and (4)) are used for the purposes of the
analysis of heterogenous scenes; (ii) it adopts synthetic indicators to test the potential and
the limitations of the method (see Section 2.3), and (iii) investigates implications for the
temporal multi-looking.
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2.3. Key Performance of the Developed 3D NLMF De-Speckling Method

In order to evaluate the de-noising performance of the developed NLMF method,
different key estimators can be used, such as: the equivalent number of looks (ENL),
the edge-preserving index (EPI), and the peak signal-to-noise ratio (PSNR), which are
subsequently shortly summarized [103].

The ENL factor determines the grade of smoothness of an image; it is defined as:

ENL =
(µ

σ

)2
(6)

where µ and σ are the (local) mean and standard deviation of the filtered image.
Conversely, EPI is used to evaluate the capability of correct retention of the edges in

an image; it is defined as:
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EPI =
∑

P∈Ξ

∣∣∣ ∂v f
∂x (P)

∣∣∣+ ∣∣∣ ∂v f
∂y (P)

∣∣∣
∑

P∈Ξ

∣∣∣ ∂v
∂x (P)

∣∣∣+ ∣∣∣ ∂v
∂y (P)

∣∣∣ (7)

where v f and v are the filtered and the un-filtered images, respectively, Ξ is the entire
image or a (local) sector of it and x an y are the generic 2D spatial dimensions of the
considered image.

Finally, PSNR is defined over a patch of the image as follows:

PSNR = 10 log10

 (max(v))2

mse
(

v, v f

)
 (8)

where mse
(

v, v f

)
and max(v) are the mean square of the difference between the filtered

and the unfiltered image and the maximum value of the unfiltered image, respectively: The
larger the PSNR, the better the de-noising effect.

3. Material

A dataset consisting of 18 SLC SAR images collected from 6 March to 20 October 2018—
through the terrain observation with progressive scans (TOPSAR) mode with Sentinel-1A
sensor (VV polarization)—was used in order to test the performance of the developed 3D
NLMF method. Table 1 lists the SAR images used for the experiments shown in Section 4.

Table 1. List of S-1 acquisitions (VV polarization, descending orbits, and Path 165) used for the
experiments carried out over the Kerala (India) area.

Year Month Day

2018 03 06
2018 03 18
2018 03 30
2018 04 11
2018 04 23
2018 05 05
2018 05 17
2018 05 29
2018 06 10
2018 06 22
2018 07 04
2018 07 16
2018 07 28
2018 08 09
2018 08 21
2018 09 02
2018 09 14
2018 09 26
2018 10 08

The selected case study is relevant to the Kerala region, India, as shown in Figure 3.
The area was subjected to severe floods during the summer of 2018 [104,105]. Heavy
monsoon rainfalls resulted in dams filling their operational capacity, causing the flood of
low-lying regions, with over 500 dead people, hundreds of villages destroyed, and millions
of USD in economic losses. In particular, the investigations presented in Section 4 refer to
the inundations that occurred in the Thrissur District.
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Figure 3. Case study area of the Kerala region, India. The red square box identifies the footprint of
the used IW S1-A data collected from the descending orbits (Path 165 and Frame 558).

4. Experimental Results

The available SAR images were preliminarily radiometrically calibrated through
the Sentinel Application Platform (SNAP) [106] in order to extract, from the digital data
maps of every single SAR image, the radar backscattering (sigma naught) values. It
is worth remarking that, in order to evaluate the performance of the developed NLMF
algorithm, the author of this investigation operated primarily in radar (azimuth × range)
coordinates. Figure 4a,b show the maps of (unfiltered) sigma naught images computed
over the Thrissur District on the two acquisition dates: 6 March 2018 (pre-) and 22 June 2018
(post-flood). The images were converted in log-scale (dB) for a suitable representation of
the computed backscattered signal values. Figure 4c also shows the ratio image (post/pre),
which corresponds to the difference between the images in Figure 4a,b. Maps are shown
after a multi-look operation (with 20 pixels in range and 4 pixels in the azimuth directions,
respectively) has been performed on the SAR images, thereby possessing images to show
with almost squared pixels.
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Figure 4. Maps of the sigma naught values (dB) computed on the unfiltered SAR images acquired
before (a) and after (b) the occurrence of inundations in the Kerala region. The map in (c) shows the
ratio image (i.e., the difference between (b) and (a)).
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For the readers’ convenience, Figure 5 shows the ratio image map (dB scale) su-
perimposed on Google Earth in order to better identify the geographical location of the
investigated region.
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The corresponding results obtained using the 2D NLMF method described in Section 2.1
are shown in Figure 6a–c.
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Figure 6. These are the same graphs as shown in Figure 4 but using the filtered SAR images, computed
by independently applying the non-local mean filter as described in Section 2.1 to every SAR image
(2D case). (a–b) Maps of the sigma naught values (dB) computed before and after the main flood
events, and (c) is the ratio image between (a) and (b) in log scale.

Figure 7 shows the equivalent results obtained by applying the developed 3D NLMF
method described in Section 2.2.

Note that the maps shown in Figures 4, 6 and 7 were obtained after applying a multi-
look operation (with 20 pixels in range and 4 pixels in the azimuth directions, respectively)
on the single-look SAR images/products, thereby resulting in possessing images with
almost squared pixels. It is also worth remarking that non-local mean filter operations had
been carried out considering “similarity windows” with a dimension of (20 × 20 pixels).
The “similar” patches were searched over the 100 × 100 pixels centered on the analyzed,
generic SAR pixel in order to reduce the overall algorithm computation time. Of course,
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the proposed method is naturally prone to a parallel implementation on multi-core/multi-
node computing architectures. As a further remark, it is worth highlighting that no
other preliminarily or post-processing noise-filtering algorithms were applied to available
SAR images. It was explicitly intended to elucidate the potential of the developed 3D
noise-filtering method. Nonetheless, the joint application of additional pre-processing
noise-filtering procedures were, for instance, using [69,70]. In addition, the subsequent
application of the developed de-speckling method could enhance expected performance
while preserving spatial details.
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5. Key Performance of the Proposed Method

In order to quantify the performance of the 3D NLMF method, first, the NLMF method
was applied to 2D images separately, as described in Section 2.1. Subsequently, the 3D
method explored in Section 2.2 was used for the sequence of available SAR images.

The selected case study area represents an excellent example of a heterogeneous
scene. In order to evaluate the performance and limitations of the presented 3D filtering
method, the subsequent analyses focus on the evaluation of crucial results obtained by
considering different values for the standard deviation (i.e., h’) of the Gaussian kernel
shown in Equations (3) and (4). Moreover, the selected value for the ξ parameter was set to
ξ = 50. Then, the value of the constant parameter h was varied accordingly. For every pool
of parameters, the values of averaged ENL, EPI, and PSLR were calculated in the context
of considering, as a test, the region highlighted with the red rectangle drawn in Figure 7a.
Figure 8 shows the zoomed view of the 3D NLMF de-speckled SAR image (represented in
a linear scale) relevant to the SAR acquisition data collected on 22 June 2018, as obtained
considering different values of the parameter h. The ENL, EPI, and PSLR were initially
computed using a moving averaging window of 20 × 20 pixels and then averaging them
over the selected area.

As a further experiment, the size of the “similar patches” was varied, considering
the cases of the 10 × 10 and 30 × 30 SAR pixels. Figure 9 shows the 3D filtered maps of
22 June 2018, obtained with different patches sizes and Gaussian filter standard deviations.
The results show that small patches sizes (i.e., 10 × 10) are responsible for a dramatic
smoothing of the filtered SAR image, as shown in Figure 9b, due to lack of information
in the estimation of the patches distance. Conversely, the noise-filtering performance
improvements in terms of enhanced ENL values with larger patches sizes is paid in terms
of higher computation times.
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Figure 10 shows the plots of ENL, EPI, and PSLR vs. the variance of the Gaussian
kernel (h2), in the logarithmic scale, which are for the two separate cases in which the 2D
NLMF and 3D NLMF procedures are applied, when considering the patch sizes of the
20 × 20 SAR pixels.
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The analysis of Figure 10 reveals that the correct choice of the Gaussian kernel must
necessarily result from a compromise between noise reduction and feature extraction
preservation. More specifically, small values of h correspond to high values of PSLR and
EPI. In contrast, higher values of h significantly ameliorate ENL at the expense of a reduced
capacity to identify small features and preserve edges. EPI is practically the same for
both the 2D and 3D cases. ENL improvements of the 3D case with respect to the 2D one,
using the same parameters of the Gaussian Filter in Equations (2)–(4), appear predominant
with values of h2 larger than 5 × 105. The results demonstrate a balance between the
different aspects that must be adopted in order to tune the 3D NLMF. A strategy that may
be assumed in order to identify the correct value of h2 to be used is, for instance, found in
determining the elbow point of the curve, as shown in Figure 10a.

The obtained noise-filtered images can be beneficial for the purposes of applying
conventional and multi-temporal change detection (CD) methods, considering several
heterogeneous contexts and natural/anthropogenic risk conditions. This work only intends
to provide readers with information concerning the newly developed 3D NMLF algorithm
and its performance. However, further analyses of the identified CD maps are worth
subsequent investigations. Moreover, exploiting extensive archives of processed SAR
data is mandatory in order to access the potential of the developed method in a fully
operational context.
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6. Conclusions

This paper investigated the potential of 3D non-local mean filters (NLMF) for the
purposes of de-speckling SAR images, particularly in change detection applications. The
theory of NLMF was briefly introduced and a specific implementation was considered in
order to translate the problem from the 2D to the 3D domain. The proposed methodology
was initially tested on a region in Kerala, India, which was a region that was severely
affected by disastrous flooding inundations in 2018. This method can be used to analyze
several heterogenous catastrophic conditions by the improving of the spatial resolution
of data products while profiting from the time redundancy of information gathered in
a sequence of multi-temporal SAR images. The noise-filtering operation was conducted
adaptatively in order to preserve the capability to recover even the tiny amplitude variations
from one image to another. This method was implemented considering SAR applications
involving sets of amplitude (and calibrated) SAR images. However, the same concept
can also be adapted to better filter out the noise from a sequence of multi-temporal SAR
interferograms, operating directly in the 3D space/time domain, in conjunction with
other methods (see for instance [17,107–109]). Furthermore, it must be noted that this
was recently proposed in the literature for ground deformation retrieval through InSAR
technology [110,111].
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